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Abstract

Facial landmark detection, or face alignment, is a fun-

damental task that has been extensively studied. In this

paper, we investigate a new perspective of facial land-

mark detection and demonstrate it leads to further no-

table improvement. Given that any face images can be

factored into space of style that captures lighting, tex-

ture and image environment, and a style-invariant struc-

ture space, our key idea is to leverage disentangled style

and shape space of each individual to augment existing

structures via style translation. With these augmented syn-

thetic samples, our semi-supervised model surprisingly out-

performs the fully-supervised one by a large margin. Ex-

tensive experiments verify the effectiveness of our idea

with state-of-the-art results on WFLW [67], 300W [54],

COFW [6], and AFLW [34] datasets. Our proposed struc-

ture is general and could be assembled into any face align-

ment frameworks. The code is made publicly available at

https://github.com/thesouthfrog/stylealign.

1. Introduction

Facial landmark detection is a fundamentally impor-

tant step in many face applications, such as face recogni-

tion [42], 3D face reconstruction [16], face tracking [31]

and face editing [59]. Accurate facial landmark localization

was intensively studied with impressive progress made in

these years. The main streams are learning a robust and dis-

criminative model through effective network structure [67],

usage of geometric information [5, 29], and correction of

loss functions [18].

It is common wisdom now that factors such as variation

of expression, pose, shape, and occlusion could greatly af-

fect performance of landmark localization. Almost all prior

work aims to alleviate these problems from the perspective

of structural characteristics, such as disentangling 3D pose

to provide shape constraint [35], and utilizing dense bound-

Figure 1: Problem in a well-trained facial landmark detec-

tor. It is biased towards unconstrained environment factors,

including lighting, image quality, and occlusion. We regard

these degradations as “style” in our analysis.

ary information [67]. The influence of “environment” still

lacks principled discussion beyond structure. Also, consid-

ering limited labeled data for this task, how to optimally

utilize limited training samples remains unexplored.

About “environment” effect, distortion brought by ex-

plicit image style variance was observed recently [14]. We

instead utilize style transfer [28, 20] and disentangled rep-

resentation learning [60, 9, 40, 15, 23] to tackle the face

alignment problem, since style transfer aims at altering style

while preserving content. In practice, image content refers

to objects, semantics and sharp edge maps, whereas style

could be color and texture.

Our idea is based on the purpose of facial landmark de-

tection, which is to regress “facial content” – the principal

component of facial geometry – by filtering unconstrained

“styles”. The fundamental difference to define “style” from

that of [14] is that we refer it to image background, lighting,

quality, existence of glasses, and other factors that prevent

detectors from recognizing facial geometry. We note ev-

ery face image can be decomposed into its facial structure
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along with a distinctive attribute. It is a natural conjecture

that face alignment could be more robust if we augment im-

ages only regarding their styles.

To this end, we propose a new framework to augment

training for facial landmark detection without using ex-

tra knowledge. Instead of directly generating images, we

first map face images into the space of structure and style.

To guarantee the disentanglement of these two spaces, we

design a conditional variational auto-encoder [33] model,

in which Kullback-Leiber (KL) divergence loss and skip

connections are incorporated for compact representation of

style and structure respectively. By factoring these fea-

tures, we perform visual style translation between existing

facial geometry. Given existing facial structure, faces with

glasses, of poor quality, under blur or strong lighting are re-

rendered from corresponding style, which are used to fur-

ther train the facial landmark detectors for a rather general

and robust system to recognize facial geometry.

Our main contribution is as follows.

1. We offer a new perspective for facial landmark local-

ization by factoring style and structure. Consequently,

a face image is decomposed and rendered from distinc-

tive image style and facial geometry.

2. A novel semi-supervised framework based on condi-

tional variational auto-encoder is built upon this new

perspective. By disentangling style and structure,

our model generates style-augmented images via style

translation, further boosting facial landmark detection.

3. We propose a new dataset based on AFLW [34] with

new 68-point annotation. It provides challenging

benchmark considering large pose variation.

With extensive experiments on popular benchmark

datasets including WFLW [67], 300W [54], COFW [6] and

AFLW [34], our approach outperforms previous state-of-

the-arts by a large margin. It is general to be incorporated

into various frameworks for further performance improve-

ment. Our method also works well under limited training

computation resource.

2. Related Work

This work has close connection with the areas of facial

landmark detection, disentangled representation and self-

supervised learning.

Facial Landmark Detection This area has been exten-

sively studied over past years. Classic parameterized meth-

ods, such as active appearance models (AAMs) [10, 55, 45,

30] and constrained local models (CLMs) [11] provide sat-

isfying results. SDM [71], cascaded regression, and their

variants [65, 81, 80, 7, 6, 8, 71, 62, 17] were also proposed.

Recently, with the power of deep neural networks,

regression-based models are able to produce better results.

They are mainly divided into two streams of direct coor-

dinate regression [78, 43, 61, 48] and heatmap-based re-

gression [49, 4, 12, 73, 46]. Meanwhile, in [78], auxiliary

attributes were used to learn a discriminative representa-

tion. Recurrent modules [61, 70, 50] were introduced then.

Lately, methods improved performance via semi-supervised

learning [24]. Influence of style variance was also discussed

in [14], where a style aggregated component provides a sta-

tionary environment for landmark detector. Our solutions

are distinct with definition of “style”, different from prior

work. Our solution does not rely on the aggregation archi-

tecture, and instead is based on a semi-supervised scheme.

Disentangled Representation Our work is also related to

disentangled representation learning. Disentanglement is

necessary to control and further alter the latent information

in generated images. Under the unsupervised setting, Info-

GAN [9] and MINE [2] learned disentangled representation

by maximizing the mutual information between latent code

and data observation. Recently, image-to-image transla-

tion [41, 26, 40, 27] explored the disentanglement between

style and content without supervision. In structured tasks

such as conditional image synthesis [44], keypoints [15, 51]

and person mask [1] were utilized as self-supervision sig-

nals to disentangle factors, such as foreground, background

and pose information. As our “style” is more complex while

“content” is represented by facial geometry, traditional style

transfer [20] is inapplicable since it may suffer from struc-

tural distortion. In our setting, by leveraging the structure

information base on landmarks, our separation component

extracts the style factor from each face image.

Self-Supervised Learning Our method also connects to

self-supervised learning. The mainstream work, such

as [74], directly uses image data to provide proxy super-

vision through multi-task feature learning. Another widely-

adopted approach is to use video data [64]. Visual invari-

ance of the same instance could be captured in a consecu-

tive sequence of video frames [19, 66, 38, 83, 58, 57, 64].

Also, there is work focusing on fixed characteristics of ob-

jects from data statistics [13, 76, 77, 36, 37], such as image

patch level information [13]. These methods learn visual

invariance, which could essentially provide a generalized

feature of objects.

Our landmark localization involves computing the visual

invariance. But our approach is different from prior self-

supervised frameworks. Our goal lies in extracting facial

structure and keypoints considering different environment

factors, including occlusion, lighting, makeup and so on.

Eliminating the influence of style makes it possible to reli-

ably alter or process face structure and accordingly recog-

nize invariant features. It thus better deals with style varia-
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Figure 2: Our framework. It consists of two stages. The first stage is to train the network to disentangle face images to style

and structure space. At the second stage, style translation is performed to augment training of facial landmark detectors.

tion, which commonly exists in natural images.

3. Proposed Framework

Our framework consists of two parts. One learns the dis-

entangled representation of facial appearance and structure,

while the other can be any facial landmark detectors. As

illustrated in Fig. 2, during the first phase, conditional vari-

ational auto-encoder is proposed for learning disentangled

representation between style and structure. In the second

phase, after translating style from other faces, “stylized” im-

ages with their structures are available for boosting training

performance and our style-invariant detectors.

3.1. Learning Disentangled Style and Structure

Given an image x, and its corresponding structure y.

Two essential descriptors of a face image are facial geom-

etry and image style. Facial geometry is represented by la-

beled landmarks, while style captures all environmental fac-

tors that are mostly implicit, as described above. With this

setting, if the latent space of style and shape is mostly un-

correlated, using Cartesian product of z and y latent space

should capture all variation included in a face image. There-

fore, the generator that re-renders a face image based on

style and structure can be modeled as p(x|y, z).

To encode the style and structure information and com-

pute the parametric distribution p(x|y, z), a conditional

variational auto-encoder based network, which introduces

two encoders, is applied. Our network consists of a struc-

ture estimator Estruct to encode landmark heatmaps into

structure latent space, a style encoder Estyle that learns the

style embedding of images, and a decoder that re-renders

the style and structure to image space.

As landmarks available in this task, the facial geometry

is represented by stacking landmarks to heat maps. Our goal

therefore becomes inferring disentangled style code z from

a face image and its structure by maximizing the conditional

likelihood of

log p(x|y) = log

Z
z

p(x, z|y)dz ≥ Eq[log
p(x, z|y)

q(z|x, y)
]

= Eq[log p(x|z, y)]−DKL[q(z|x, y), p(z|y)].

(1)

In particular, the generator G
full
θ contains two encoders

and a decoder (renderer), i.e., E
style
φ , Estruct and Drender,

where G
full
θ and E

style
φ respectively estimate parameters of

p(x|y, z) and q(z|x, y). Consequently, the full loss function

on learning separating information of style and structure is

written as

Ldisentangle(x, θ,φ) = −KL(qφ(z|x, y))||pθ(z|y))

+Lrec(x,G
full(Estyle(x, y), Estruct(y)).

(2)

KL-Divergence Loss Kullback-Leiber (KL) divergence

loss severs as a key component in our design to help the

encoder to learn decent representation. Basically, the KL-

divergence measures the similarity between the variational

posterior and prior distribution. In our framework, it is

taken as regularization that discourages Estyle to encode

structure-related information. As the prior distribution is

commonly assumed to be a unit Gaussian distribution p ∼

N(0, 1), the learned style feature is regularized to suppress

contained structure information through reconstruction.

The KL-divergence loss limits the distribution range and

capacity of the style feature. By fusing inferred style code

z with encoded structure representation, sufficient structure

information can be obtained from prior through multi-level

skip connection. Extra structure encoded in z incurs penalty

of the likelihood p(x|y, z) during training with no new in-

formation captured. In this way, Estyle is discouraged from

learning structure information that is provided by Estruct

during training. To better reconstruct the original image,

Estyle is enforced to learn structure-invariant style infor-

mation.

Reconstruction Loss The second term Lrec in Eq. (2)

refers to the reconstruction loss in the auto-encoder frame-
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Figure 3: Visualization of style translation. Given the input images in red 4 different styles are provided to perform translation

towards input structure. The synthetic images along with input original landmarks are provided to demonstrate the strong

coherence of structure.

work. As widely discussed [79, 28], basic pixel-wise L1 or

L2 loss cannot model rich information within images well.

We instead adopt perceptual loss to capture style informa-

tion and better visual quality. Lrec is formulated as

Lrec(x, θ,φ) =
X
l

||(Φl(x)− Φl(G
full(x, y))||2

2
, (3)

where we use VGG-19 network Φ structure that measures

perceptual quality. l indexes the layer of network Φ.

Since the style definition could be complicated, Estyle

here encodes semantics of the style signal that simulates

different types of degradation. It does not have to maintain

fine-grained visual details. Besides, to reserve the strong

prior on structure information encoded from landmarks y,

skip connection between Estruct and Drender is established

to avoid landmark inaccuracy through style translation.

In this design, the model is capable of learning comple-

mentary representation of facial geometry and image style.

3.2. Augmenting Training via Style Translation

Disentanglement of structure and style forms a solid

foundation for diverse stylized face images under invariant

structure prior.

Given a dataset X that contains n face images with land-

marks annotation, each face image xi(1 ≤ i ≤ n) within

the dataset has its explicit structure denoted by landmark yi,

as well as an implicit style code zi depicted and embedded

by Estyle. To perform style translation between two images

xi and xj , we pass their latent style and structure code em-

bedded by Estyle and Estruct to Drender. To put the style

of image xj on xi’s structure, the stylized synthetic image

is denoted as

xij = Drender(Estyle(xj , yi), E
struct(yi)). (4)

As illustrated in Fig. 2, the first stage of our framework is to

train the disentangling components. In the second phase, by

augmenting and rendering a given sample x in the original

dataset X with styles from random k other faces, we pro-

duce k×n “stylized” synthetic face images with respective

annotated landmarks. These samples are then fed into train-

ing of facial landmark detectors together with the original

dataset. Visualization of style translation results is provided

in Fig. 3. The input facial geometry is maintained under

severe style variation, indicating its potential at augmenting

training of facial landmark detectors.

Albeit with cohesive structure, the decoder generally

does not re-render perfect-quality images, since the com-

plexity of plentiful style information has been diminished

to a parametric Gaussian distribution, confined by its ca-

pacity. Also, as discussed before, each face image xi has

its own style. Theoretically, the renderer could synthesize

n2 images by rendering each available landmark with any

other images’ style. To understand how the quantity of styl-

ized synthetic samples helps improve the facial landmark

detectors, we analyze the effect of our design in following

experiments and ablation study.

4. Experiments

4.1. Datasets

WFLW [67] dataset is a challenging one, which contains

7,500 faces for training and 2,500 faces for testing, based
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Metric Method Fullset Pose Expression Illumination Make-Up Occlusion Blur

Mean Error (%)

CFSS [80] 9.07 21.36 10.09 8.30 8.74 11.76 9.96

DVLN [68] 6.08 11.54 6.78 5.73 5.98 7.33 6.88

LAB [67] 5.27 10.24 5.51 5.23 5.15 6.79 6.32

SAN [14] 5.22 10.39 5.71 5.19 5.49 6.83 5.80

WING [18] 5.11 8.75 5.36 4.93 5.41 6.37 5.81

Res-18 6.09 10.76 6.97 5.83 6.19 7.15 6.67

Ours w. Res-18 5.25 9.10 5.83 4.93 5.47 6.26 5.86

Ours w. LAB 4.76 8.21 5.14 4.51 5.00 5.76 5.43

Ours w. SAN 4.39 8.42 4.68 4.24 4.37 5.60 4.86

Failure Rate (%)

CFSS [80] 20.56 66.26 23.25 17.34 21.84 32.88 23.67

DVLN [68] 10.84 46.93 11.15 7.31 11.65 16.30 13.71

LAB [67] 7.56 28.83 6.37 6.73 7.77 13.72 10.74

SAN [14] 6.32 27.91 7.01 4.87 6.31 11.28 6.60

WING [18] 6.00 22.70 4.78 4.30 7.77 12.50 7.76

Res-18 10.92 43.87 13.38 7.31 11.17 16.30 11.90

Ours w. Res-18 7.44 32.52 8.60 4.30 8.25 12.77 9.06

Ours w. LAB 5.24 20.86 4.78 3.72 6.31 9.51 7.24

Ours w. SAN 4.08 18.10 4.46 2.72 4.37 7.74 4.40

AUC @0.1

CFSS [80] 0.3659 0.0632 0.3157 0.3854 0.3691 0.2688 0.3037

DVLN [68] 0.4551 0.1474 0.3889 0.4743 0.4494 0.3794 0.3973

LAB [67] 0.5323 0.2345 0.4951 0.5433 0.5394 0.4490 0.4630

SAN [14] 0.5355 0.2355 0.4620 0.5552 0.5222 0.4560 0.4932

WING [18] 0.5504 0.3100 0.4959 0.5408 0.5582 0.4885 0.4918

Res-18 0.4385 0.1527 0.3718 0.4559 0.4366 0.3655 0.3931

Ours w. Res-18 0.5034 0.2294 0.4534 0.5252 0.4849 0.4318 0.4532

Ours w. LAB 0.5460 0.2764 0.5098 0.5660 0.5349 0.4700 0.4923

Ours w. SAN 0.5913 0.3109 0.5490 0.6089 0.5812 0.5164 0.5513

Table 1: Evaluation of our approach on WFLW dataset. Top-2 results are highlighted in bold font.

on WIDER Face [72] with 98 manually annotated land-

marks [67]. The dataset is partitioned into 6 subsets ac-

cording to challenging attribute annotation of large pose,

expression, illumination, makeup, occlusion, and blur.

300W [54] provides multiple face datasets including

LFPW [3], AFW [52], HELEN [39], XM2VTS [47], and

IBUG with 68 automatically-annotated landmarks. Follow-

ing the protocol used in [53], 3,148 training images and 689

testing images are used. The testing images include two

subsets, where 554 test samples from LFPW and HELEN

form the common subset and 135 images from IBUG con-

stitute the challenging subset.

AFLW [34] dataset is widely used for benchmarking fa-

cial landmark localization. It contains 24,386 in-the-wild

faces with a wide range of yaw, pitch and roll angles

([−120�, 120�] for yaw, [−90�, 90�] for pitch and roll). Fol-

lowing the widely-adopted protocol [80, 81], the AFLW-full

dataset has 20,000 images for training and 4,386 for testing.

It is originally annotated with 19 sparse facial landmarks.

To provide a better benchmark for evaluating pose variation

and allow cross-dataset evaluation, we re-annotate it with

68 facial landmarks, which follow the common standard in

300W [54, 56]. Based on the new 68-point annotation, we

conduct more precise evaluation. Cross-dataset evaluation

is also provided among existing datasets [3, 52, 39].

COFW dataset [6] contains 1,345 images for training and

507 images for testing, focusing on occlusion. The whole

dataset is originally annotated with 29 landmarks and has

been re-annotated with 68 landmarks in [21] to allow cross-

dataset evaluation. We utilize 68 annotated landmarks pro-

vided by [21] to conduct comparison with other approaches.

4.2. Experimental Setting

Evaluation Metrics We evaluate performance of facial

landmark detection using normalized landmarks mean error

and Cumulative Errors Distribution (CED) curve. For the

300W dataset, we normalize the error using inter-pupil dis-

tance. In Table 2, we also report the NME using inter-ocular

distance to compare with algorithms of [14, 29, 69, 35],

which also use it as the normalizing factor. For other

datasets, we follow the protocol used in [54, 61] and apply

inter-ocular distance for normalization.

Implementation Details Before training, all images are

cropped and resized to 256 × 256 using provided bound-

ing boxes. For the detailed conditional variational auto-

encoder network structures, we use a two-branch encoder-

decoder structure as shown in Fig. 2. We use 6 residual

encoder blocks for downsampling the input feature maps,
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where batch normalization is removed for better synthetic

results. The facial landmark detector backbone is substi-

tutable and different detectors are usable to achieve im-

provement, which we will discuss later.

For training of the disentangling step, we use Adam [32]

with an initial learning rate of 0.01, which descends linearly

to 0.0001 with no augmentation. For training of detectors,

we first augment each landmark map with k random styles

sampled from other face images. The number is set to 8
if not specially mentioned in experiments. For the detector

architecture, a simple baseline network based on ResNet-

18 [22] is chosen by changing the output dimension of the

last FC layers to landmark × 2 to demonstrate the increase

brought by style translation. To compare with state-of-the-

arts and further validate the effectiveness of our approach,

we replace our baseline model with similar structures pro-

posed in [67, 14], with the same affine augmentation.

4.3. Comparison with State-of-the-arts

WFLW We evaluate our approach on WFLW [67]

dataset. WFLW is a recently proposed challenging dataset

with images from in-the-wild environment. We com-

pare algorithm in terms of NME(%), Failure Rate(%) and

AUC(@0.1) following protocols used in [67].

The Res-18 baseline receives strong enhancement using

synthetic images. To further verify the effectiveness and

generality of using style information, we replace the net-

work by two strong baselines [14, 67] and report the result

in Table 1. The light-weight Res-18 is improved by 13.8%.

By utilizing a stronger baseline, our model achieves 4.39%
NME under style-augmented training, outperforms state-of-

the-art entries by a large margin. In particular, for the strong

baselines, our method also brings 15.9% improvement to

SAN [14] model, and 9% boost to LAB [67] from 5.27%
NME to 4.76%. The elevation is also determined by the

model capacity.

300W In Table 2, we report different facial landmark de-

tector performance (in terms of normalized mean error) on

300W dataset. The baseline network follows Res-18 struc-

ture. With additional “style-augmented” synthetic training

samples, our model based on a simple backbone outper-

forms previous state-of-the-art methods. We also report re-

sults of models that are trained on original data, which re-

flect the performance gain brought by our approach.

Similarly, we replace the baseline model with a state-of-

the-art method [14]. Following the same setting, this base-

line is also much elevated. Note that the 4-stack LAB [67]

and SAN [14] are open-source frameworks. We train the

models from scratch, which perform less well than those

reported in their original papers. However, our model still

yields 1.8% and 3.1% improvement on LAB and SAN re-

spectively, which manifest the consistent benefit when using

the “style-augmented” strategy.

Method
Common Challenging

Fullset
Subset Subset

Inter-pupil Normalization

SDM [71] 5.57 15.40 7.52

CFAN [75] 5.50 16.78 7.69

ESR [7] 5.28 17.00 7.58

LBF [53] 4.95 11.98 6.32

CFSS [80] 4.73 9.98 5.76

TCDCN [78] 4.80 8.60 5.54

RCN [25] 4.67 8.44 5.41

3DDFA [82] 6.15 10.59 7.01

SeqMT [24] 4.84 9.93 5.74

RAR [70] 4.12 8.35 4.94

TSR [43] 4.36 7.56 4.99

DCFE [63] 3.83 7.54 4.55

LAB [67] 4.20 7.41 4.92

Res-18 4.53 8.41 5.30

Ours w LAB 4.23 7.32 4.83

Ours w Res-18 3.98 7.21 4.54

Inter-ocular Normalization

PIFA [29] 5.43 9.88 6.30

RDR [69] 5.03 8.95 5.80

PCD-CNN [35] 3.67 7.62 4.44

SAN [14] 3.34 6.60 3.98

Ours w SAN 3.21 6.49 3.86

Table 2: Normalized mean error (%) on 300W common,

challenging subset and the full set.

Figure 4: Cumulative error distribution curve on COFW 68-

point test set.

Cross-dataset Evaluation on COFW To comprehen-

sively evaluate the robustness of our method towards oc-

clusion, COFW-68 is also utilized for cross-dataset evalua-

tion. We perform comparison against several state-of-the-

art methods in Fig. 4. Our model performs the best with

4.43% mean error and 2.82% failure rate, which indicates

high robustness to occlusion due to our proper utilization of

style translation.
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Figure 5: Visual comparison on WFLW test set between the original baseline model and the boosted framework via style translation.

Method
NME(%) AUC@ 0.1 FR(%)

Frontal Full Full Full

LAB [67] 2.23 7.15 0.39 11.28

SAN [14] 2.01 6.94 0.44 10.43

Res-18 2.30 7.23 0.37 11.89

Ours w. Res-18 2.20 7.17 0.38 11.91

Ours w. LAB 2.10 7.06 0.42 10.01

Ours w. SAN 1.86 6.01 0.58 9.70

Table 3: Normalized mean error (%) on re-annotated 68-pt

AFLW frontal subset and the full set.

AFLW We further evaluate our algorithm on the

AFLW [34] dataset following the AFLW Full protocol.

AFLW is also challenging for its large pose variation. It

is originally annotated with 19 facial landmarks, which are

relatively sparse. To make it more useful, we richen the

dataset by re-annotating it with 68-point facial landmarks.

This new set of data is also publicly available.

We compare our approach with several models in Ta-

ble 3, by re-implementing their algorithms on the new

dataset along with our style-augmented samples. Exploit-

ing style information also boosts landmark detectors with

a large-scale training set (25, 000 images in AFLW). Inter-

estingly, our method improves SAN baseline in terms of

NME on Full set from 6.94% to 6.01%, which indicates that

augmenting in style level brings promising improvement on

solving large pose variation. The visual comparison in Fig.

5 shows hidden face part is better modeled with our strategy.

4.4. Ablation Study

4.4.1 Improvement on Limited Data

Disentanglement of style and structure is the key that influ-

ences quality of style-augmented samples. We evaluate the

Dataset PCT (%)
NME (%)

Res-18 w Ours Improved

300W

10 13.72 7.86 +42.71%

20 9.66 6.07 +37.16%

30 8.9 5.86 +34.16%

40 8.86 5.29 +40.29%

50 7.96 5.23 +34.30%

60 7.89 5.18 +34.35%

70 7.02 5.04 +28.21%

80 6.66 4.82 +27.63%

90 6.58 4.69 +28.72%

WFLW

10 22.09 10.81 +51.06%

20 16.04 8.98 +44.01%

30 13.91 8.24 +40.76%

40 12.19 8.03 +34.13%

50 11.78 7.75 +34.21%

60 10.41 7.31 +29.78%

70 9.87 7.29 +26.14%

80 9.66 7.25 +24.95%

90 9.04 7.19 +20.46%

Table 4: Normalized mean error (%) on 300W common and

WFLW datasets when the training images are split into 10 folds.

Each row represents NME on test set when the model is trained

using a percentage (PCT%) of the training set. The landmark de-

tector backbone is Res-18.

completeness of disentanglement especially when the train-

ing samples are limited. To evaluate the performance and

relative gain of our approach when training data is limited.

The training set is split into 10 subsets and respectively we

evaluate our model on different portions of training data.

Note that for different portions, we train the model from

scratch with no extra data used. The quantitative result is

reported in Tables 4 and 5.

In Table 4, a light baseline network Res-18 is used to
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Dataset PCT (%)
NME (%)

SAN w Ours Improved

300W

10 84.33 4.27 +94.94%

20 5.08 3.85 +24.21%

30 4.05 3.65 +9.88%

40 3.8 3.49 +8.16%

50 3.6 3.39 +5.83%

60 3.54 3.32 +6.21%

70 3.48 3.29 +5.46%

80 3.39 3.21 +5.31%

90 3.38 3.19 +5.62%

WFLW

10 9.16 7.2 +21.40%

20 7.41 6 +19.03%

30 6.73 5.48 +18.57%

40 6.26 5.21 +16.77%

50 5.95 4.98 +16.30%

60 5.72 4.84 +15.38%

70 5.5 4.69 +14.73%

80 5.43 4.63 +14.73%

90 5.23 4.6 +12.05%

Table 5: Normalized mean error (%) on 300W common

and WFLW datasets when using different percentages of

the training set, with the same protocol as in Table 4 on

a stronger baseline. The baseline network here follows

SAN [14] structure.

show the relative improvement on different training sam-

ples. Style-augmented synthetic images improve detectors’

performance by a large margin, while the improvement is

even larger when the number of training images is quite

small. In Table 5, a stronger baseline SAN [14] is cho-

sen. Surprisingly, the baseline easily reaches state-of-the-

art performance using only 50% labeled images, compared

to former methods provided in Table 1.

Besides, Fig. 6 provides an intuitive visualization of the

resulting generated faces when part of the data is used.

Each column contains output that is rendered from the input

structure and given style, when using a portion of face im-

age data. It shows when the data is limited, our separation

component tends to capture weak style information, such as

color and lighting. Given more data as examples, the style

becomes complex and captures detailed texture and degra-

dation, like occlusion.

The results verify that even using limited labeled images,

our design is capable of disentangling style information and

keeps improve those baseline methods that are already very

strong.

4.4.2 Estimating the Upper-bound

As discussed before, our method conceptually and empiri-

cally augments training with n2 synthetic samples. By aug-

Figure 6: Results of style translation using different num-

bers of data. The left 2 images are the input, with 2 different

reference styles. The percentage refers to how much data is

used to train the disentangle module.

Number 0 2 4 8 16 32

NME (%) 6.22 5.89 5.54 5.31 5.29 5.34

Table 6: Normalized mean error (%) on WFLW test set

using different numbers of style translation.

menting each face image with k random styles, the training

set could be very large and slows down convergence. In this

section, we experiment with choosing the style augmenting

factor k and test the upper bound of style translation. We

evaluate our method by adding the number of random sam-

pled styles k of each annotated landmarks on a ResNet-50

baseline.

The result is reported in Table 6. By adding a number

of augmented styles, the model continue gaining improve-

ment. However, when k ≥ 8, the performance grow slows

down. It begins to decrease if k reaches 32. The reason

is that due to the quantity imbalance between real and syn-

thetic faces, a very large k makes the model overfit to syn-

thetic image texture when the generated image quantity is

large.

5. Conclusion and Future Work

In this paper, we have analyzed the well-studied facial

landmark detection problem from a new perspective of im-

plicit style and environmental factor separation and utiliza-

tion. Our approach exploits the disentanglement represen-

tation of facial geometry and unconstrained style to provide

synthetic faces via style translation, further boosting quality

of facial landmarks. Extensive experimental results mani-

fest its effectiveness and superiority.

We also note that utilizing synthetic data for more high-

level vision tasks still remains an open problem, mainly due

to the large domain gap between generated and real images.

In our future work, we plan to model style in a more realistic

way by taking into account the detailed degradation types

and visual quality. We also plan to generalize our structure

to other vision tasks.
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