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Abstract

Few-shot learning, which aims at extracting new con-

cepts rapidly from extremely few examples of novel class-

es, has been featured into the meta-learning paradigm re-

cently. Yet, the key challenge of how to learn a general-

izable classifier with the capability of adapting to specif-

ic tasks with severely limited data still remains in this do-

main. To this end, we propose a Transductive Episodic-wise

Adaptive Metric (TEAM) framework for few-shot learning,

by integrating the meta-learning paradigm with both deep

metric learning and transductive inference. With explor-

ing the pairwise constraints and regularization prior with-

in each task, we explicitly formulate the adaptation proce-

dure into a standard semi-definite programming problem.

By solving the problem with its closed-form solution on the

fly with the setup of transduction, our approach efficiently

tailors an episodic-wise metric for each task to adapt all

features from a shared task-agnostic embedding space into

a more discriminative task-specific metric space. Moreover,

we further leverage an attention-based bi-directional sim-

ilarity strategy for extracting the more robust relationship

between queries and prototypes. Extensive experiments on

three benchmark datasets show that our framework is supe-

rior to other existing approaches and achieves the state-of-

the-art performance in the few-shot literature.

1. Introduction

Deep neural networks have achieved great success on

many practical applications recently and even have sur-

passed humans in image recognition domain [8, 15, 28].

However, these successes largely benefit from tens of thou-

sands of labeled data, enormous number of parameters and

sophisticated training strategies. In terms of the low-data

scenarios, such as medical images classification and ma-
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Figure 1. The left part shows a general framework of previous ap-

proaches based on meta learning. The model embeds all samples

into a task-independent metric space with a shared CNN. How-

ever, considering the distinctive information within each task, we

further learn an episodic-wise adaptive metric for classification.

The right part illustrates the motivation of our approach briefly.

rine biological recognition, deep neural networks will be

over-fitting and severely collapse because only rare labeled

samples are provided for training. To this end, by explor-

ing the exciting idea that tries to learn new concepts rapidly

and generalize well with extremely few examples, or even

single, few-shot learning has attracted significant research

interest recently [5, 19, 24, 27, 29, 35, 38].

Concretely, we focus on the case of few-shot classifica-

tion with the meta-learning paradigm, which leverages a

series of independent and identically distributed few-shot

tasks to learn a desired classifier at training time and applies

the model directly to non-overlap unseen target classifica-

tion problem during testing phase. The so-called episodic-

training strategy, which has been widely developed in many

previous work [29, 35], keeps the consistency between the

training and real test scenario and improve the generaliza-

tion performances. In each task (or episode), only a handful

of labeled examples per classes (the support set) are provid-

ed to the classifier for training and then plenty of unlabeled

points (the query set) need to be assigned labels for pre-

diction. Specifically, [29, 35, 38] jointed the meta-learning

with metric learning as a feed-forward manner, with opti-
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mizing a shared distance metric across all tasks. Moreover,

[5] proposed to learn a general initialization strategy and

[17, 24] learned to update the parameters of learner directly

with a higher-level meta-optimizer (e.g. LSTM).

While these approaches based on meta-learning paradig-

m have made significant advances in few-shot classification,

they do suffer from two distinct limitations. One is that all

examples from various different tasks are embedded into a

task-independent metric space indiscriminately, see Fig. 1

(left). Namely, this assumption does not take the task-level

information (meta-data) into account but example-level fea-

ture only, which neglects the specificity of different tasks.

Actually, what is missing of this idea is an adaptive module

that tailors the metric space for each task. The other is that

most current methods follow the setup of inductive infer-

ence, that is, training the meta-learner with severely limited

support data and predicting queries one by one in each task.

Obviously, this process does not adequately consider the in-

teraction between the support set and unlabeled test set and

thus weakens the advantages of meta-learning.

To deal with the key challenge of how to learn a gen-

eralizable classifier with the capability of adapting to spe-

cific tasks with severely limited data, we propose a novel

meta-learning framework for few-shot classification, named

as Transductive Episodic-wise Adaptive Metric (TEAM),

which efficiently tailors an episodic-wise metric space with

applying the idea of transductive inference. Specifically, we

put forward not only to learn a task-agnostic instance em-

bedding model end-to-end over a pool of few-shot tasks as

a meta-learning manner, but also constructs a task-specific

distance metric explicitly for each task with the distinctive

information, such as the pairwise constraints and regulariza-

tion prior, see Fig. 1 (right). Furthermore, we formulate the

optimization process for task-specific metric into a standard

semi-definite programming (SDP) problem [2] and finally

acquire the closed-form solution by solving the SDP prob-

lem on the fly. Hereafter all features generated by the task-

agnostic model are adapted into task-specific metric spaces

where samples from the same class are closer and differ-

ent classes are farther apart. According to the transformed

embeddings, we then perform a novel attention-based bi-

directional similarity strategy to compute more robust rela-

tionship between each unlabeled query and class prototype-

s, which further improves the performance of our approach.

In addition, by utilizing the convex combination of all sam-

ples within each task to construct auxiliary training tasks,

we propose a task-level data augmentation technique for

boosting the generalization of the embedding model. The

whole framework is illustrated in Fig. 2 in details.

The main contribution is summarized as threefold. (1)

We propose a general meta-learning framework of apply-

ing the transductive inference on formulating the adaptation

procedure into a SDP problem and tailoring the episodic-

wise metric in each task for few-shot learning, which can

also be directly extended to other existing methods and

even semi-supervised learning. (2) We identify a novel bi-

directional similarity strategy for extracting the more robust

relationship between queries and prototypes. (3) The exper-

imental results on three benchmark datasets show that our

framework is superior to other state-of-the-art approaches.

2. Related Work

Meta-learning in Few-shot Learning. Meta-learning, or

learning to learn [31], is the technique of observing how

different machine learning approaches perform on a wide

range of tasks rather than batches of data points, and then

starting from this experience, or meta-data, to learn new

tasks much faster and obtain higher performance. In recent

few-shot learning literature, more and more approaches fol-

low the idea of meta-learning to alleviate over-fitting. Meta-

LSTM [24] aims to learn efficient parameter updating rules

for training neural network (learner) with a LSTM-based

meta-learner. MAML [5], on the other hand, tries to learn

a good model parameter initialization strategy that gener-

alizes better to similar tasks. Similarly, Reptile [21] is an

approximation of MAML that executes stochastic gradient

descent with a first-order form. Meta-SGD [17] goes fur-

ther in meta-learning by arguing to learn the weights initial-

ization, gradient update direction and learning rate within

a single step. However, these approaches mentioned above

suffer from the issue of fine-tuning. In contrast, after opti-

mizing a meta-learner over a series of tasks, our approach

solves unseen target tasks in an feed-forward manner with-

out any further model updates and just optimize an episodic-

wise distance metric efficiently for each task, thus avoiding

gradient computation and serious overfitting.

Distance Metric Learning Approaches. Another category

of approach focus on obtaining a generalizable embedding

model to transform all samples into a common metric s-

pace where can perform simple classifiers such as nearest

neighbor directly. Matching Network [35] integrates metric

learning with meta-learning for the first time by training a

learnable nearest neighbor classifier with deep neural net-

works. Prototypical Network [29] utilizes class prototype

representations to assign labels for query points and formu-

lates the final loss function with euclidean distance directly.

Later, this work is extended to semi-supervised few-shot s-

cenario by [25], unlabeled data are used to refine the class

prototypes. Relation Network [38] trains an auxiliary net-

work to compute the similarity score between each query

and the support set, which is equivalent to further learn a

non-linear metric. These approaches assume all samples

are embedded into a task-agnostic metric space. Instead,

our framework intends to emphasize the specificity among

different tasks, that is, samples from different tasks should

be embedded into a more discriminative task-specific space.
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Figure 2. The architecture of Transductive Episodic-wise Adaptive Metric (TEAM) framework for few-shot learning. The whole training

data is reorganized into a pool of few-shot tasks (meta-training set) firstly and then the task-level data augmentation technique (TIM) per-

forms the convex combination between all samples in each task. After that, the augmented episodic data is fed into the CNN and the EAM

module constructs a task-specific distance metric M
†
t

explicitly for each task on the fly with the pairwise constraints and regularization

prior. The symbol ⊗ in Bi-SIM module indicates that each query is assigned a label using the bi-directional similarity.

Task Adaptation Approaches. The third family of ap-

proaches, which aims to mine the task adaptability with the

meta-learning paradigm, is currently a hot research direc-

tion for few-shot learning. MT-Net [16] proposes that the

meta-learner learns on each layers activation space and the

task-specific learner performs gradient descent on a sub-

space, which is more sensitive to task identity. TADAM

[22] proposes a Task Encoding Network to produce scaling

and shift vectors for each layer weights, leading to a task-

dependent metric space. Our approach is slightly similar

to these methods in the sense that we all focus on the idea

of task adaptation. However, without imposing auxiliary

network or applying complicated training strategy, our pro-

posed framework formulates the adaptation procedure into

a standard SDP problem under the transductive inference

setting, which is more efficient and convenient.

Transductive Inference. Transductive inference [34] fol-

lows the setting of generalizing from the training set to the

test set directly and avoiding the intermediate problem of

estimating a function. In data-scarce scenario, it can signif-

icantly improve the performance over inductive methods.

Reptile [21], which implicitly shared information between

all test samples via batch normalization [11], is the first

work of applying the transductive setting in few-shot learn-

ing. TPN [18] models the transductive inference explicitly

by learning a graph construction module, which propagates

labels from labeled instances to unlabeled query points di-

rectly. Different from using example-wise parameters for

the static Euclidean distance in [18], our approach explores

the episodic-wise distance metric by integrating the small

support set with the entire query set for transduction.

3. Transductive Episodic-wise Adaptive Metric

In this section, we describe the definition of few-shot

learning problem (FSL) and then introduce the Transduc-

tive Episodic-wise Adaptive Metric (TEAM) in details.

3.1. Problem Formulation

Just like what is employed in various previous work-

s [25, 29, 35, 38], we organize the learning procedure in-

to the form of episodic paradigm, which gradually collect-

s meta-knowledge across a pool of source tasks and per-

forms adaptation on target tasks quickly. Under this setting,

the ultimate goal of our algorithm is to train models with

a large labeled dataset Dtrain, which is composed of a set

of seen classes Ctrain, and apply the classifiers on a novel

testing set Dtest with many unseen classes Ctest. Note that

there are only a few labeled examples for each category in

Ctest and Ctest ∩ Ctrain = ∅. In order to mimic the few-

shot test scenario during the training procedure and take full

advantage of the large quantities of labeled Dtrain, we re-

organize all examples in Dtrain as a series of N -way K-

shot tasks (or episodes). Concretely, N -way K-shot task is

usually constructed by first selecting N classes from Ctrain
randomly and then generate a support set and a query set

from the selected classes. The support set includes K sam-

ples per classes, termed as S = {(xi, yi)}
N×K
i=1 , and whilst

the query set Q = {(x̂1, ŷ1), . . . , (x̂M , ŷM )} contains dif-

ferent samples from the same label space with S . In each

episode, we train the learner with small labeled support set

S and minimize the loss on the large query set Q. After

training episode by episode until convergence, the learned

model can perform pretty well on novel few-shot tasks.

However, we argue that it is not ideal to apply the

learned model to all target tasks directly without consid-

ering the specificity of them. Our approach proposes an

episodic-wise metric construction module to transform the

task-agnostic embeddings into a task-specific metric space,

namely episodic adaptation. Moreover, in order to mitigate

the data-scarce problem of support set and construct a more

generalizable task-adaptive metric, we follow the paradig-

m of transductive inference and consider the query set as a

whole for prediction, instead of one by one.
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Specifically, our few-shot classification framework (see

Fig. 2) is composed of three modules: (1) learning a task-

agnostic feature extractor to embed raw inputs into a shared

embedding space, this procedure includes a loss function to

drive the parameters update and a novel task-level augmen-

tation strategy to boost the generalization, (2) tailoring an

episodic-wise adaptive metric for each task by solving a s-

tandard SDP problem efficiently and (3) performing a novel

bi-directional similarity strategy in the task-specific space to

assign label for each query. It is worth noting that the latter

two modules utilize the setting of transduction. We describe

the details of each module in the following sections.

3.2. Task­agnostic Feature Extractor

Learning Embedding Function. Our approach first em-

ploys an embedding function fθ to extract feature of an in-

stance x, where fθ(x) refers to the embedding of x and θ

indicates the parameters of deep model. Given the few-shot

task sequence T from Dtrain, we train the feature extractor

fθ episode by episode with minimizing the negative log-

probability of true label for each sample via SGD as:

argmin
fθ

∑

Ti∽T

∑

(x,y) ∈ TIM(Ti)

−log p(y | fθ(x,MTi
)) (1)

where Ti is a few-shot episode sampled from task sequence

randomly, TIM(·) is the novel task-level data augmentation

operation and MTi
stands for the episodic-wise adaptation

metric of Ti. Until convergence, the optimal embedding

model f∗
θ is applied directly to unseen target tasks which

are sampled from Dtest instead of Dtrain.

Task Internal Mixing Augmentation Strategy. Recently,

some data augmentation techniques, such as flipping, rota-

tion or distorting the inputs, follow the learning principle

named Vicinal Risk Minimization (VRM) [3] to improve

the generalization performance of deep neural networks. In-

spired by [10, 39], we further propose a task-level data aug-

mentation technique which is termed as Task Internal Mix-

ing (TIM), performing the convex combination between all

support samples in each task to synthesize new episodes. To

be concrete, for each instance (xi, yi) in a source task, we

randomly select another sample (xj , yj) from the same task

and synthesize new training examples (x̃, ỹ) as follows:

x̃ = ω · xi + (1− ω) · xj , ỹ = yi (2)

where ω ∽ U(l, h) and 0.5 6 l < h 6 1.0. Note xi and

xj are just the raw input tensors instead of features. Then

we handle each instance a few times with Eq. (2) to form a

virtual task (i.e. TIM(Ti) in Eq. (1) ) for training. In essence,

TIM extends the source task distribution by incorporating

the prior that if two samples are similar to each other in the

original pixel space, then they are likely to be closer in the

feature space. As such, xi and x̃ are more similar to each

other than xj and x̃ in Eq. (2) because of ω > 0.5, which

leads to the synthetic label ỹ should be yi instead of yj .

3.3. Episodic­wise Adaptive Metric

Distance with Metric Mt. Given two embeddings xi and

xj in vector space V ∈ R
d, we denote the distance between

them with the metric Mt as follows:

dMt
(xi, xj) =

√
tr〈Mt(xi − xj)(xi − xj)T〉 (3)

where tr〈·〉 stands for the trace operator and Mt is a sym-

metric positive semi-definite matrix, which ensures that

dMt
satisfies the properties of a pseudo-distance [1]. In gen-

eral, the matrix Mt parameterizes a family of Mahalanobis

distances in the vector space V . In particular, the dMt
in Eq.

(3) will degenerate into the popular Euclidean distance if we

set Mt = I , that is, assuming all features are equally scaled

and equally relevant [32]. Inspired by these observations,

we proposed to explicitly construct episodic-wise adaptive

metric by leveraging the specific information of each task,

such as the pairwise constraints and the regularization prior.

Pair-constrained Loss. Given a few-shot task, our goal

is to minimize the mean of distances between all similar

sample pairs (must-link constraints, denoted with M) while

keeping the mean of distances between all dissimilar sample

pairs (cannot-link constraints, denoted with C) larger than 1

at meanwhile. Motivated by the above idea, we formulate

the Min-Max principle as a convex optimization problem in

Eq. (4) by adopting the square distance in terms of its effec-

tiveness and efficiency.

min
Mt�0

1

|M|

∑
(xi,xj)∈M

d2Mt
(xi, xj)

s.t.
1

|C|

∑
(xi,xj)∈ C

d2Mt
(xi, xj) ≥ 1

(4)

Based on Eq. (3) and the methods of lagrange multiplier, we

rewrite the Eq. (4) into a pair-constrained loss function as:

LC(Mt | M̃, C̃) = tr(Mt · M̃)− λ · tr(Mt · C̃ ) (5)

where λ is the multiplier, M̃ and C̃ have the following form:

M̃ =
1

|M|

∑
(xi,xj)∈M

(xi − xj)(xi − xj)
T

C̃ =
1

| C |

∑
(xi,xj)∈ C

(xi − xj)(xi − xj)
T

(6)

Furthermore, given a N -way K-shot task with support set

S = {(xi, yi)}
NK
i=1 and its query set Q, we first shrink the

support set S to a prototype set P = {pc}
N
c=1 by:

pc =
1

|Sc|

∑
(xi, yi)∈Sc

xi (7)

where Sc is the subset which contains the samples with the

same label c in S . The we define the similar and dissimilar

constraints with M = {xi ∈ Sc, xj ∈ Sc, i 6= j} ∪ {xi ∈
Sc, xj ∈ Pc} ∪ {xi ∈ Sc, xj ∈ N (xi, k,Q)} and C =
{xi ∈ Pc, xj ∈ Pc′ , c 6= c′} ∪ {xi ∈ Pc, xj ∈ PT } where

Pc is a prototype with label c in P , N (xi, k,Q) is a set of

k nearest neighbors of xi in the query set Q and PT is the

prototype set from the seen classes Ctrain.
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Regularization Loss. Without imposing any restrictions or

prior information into the Eq. (5), we have d2 parameters to

be optimized for each task due to Mt ∈ R
d×d, while we can

only construct a few pairwise constraints in few-shot sce-

nario. From the perspective of machine learning theory, this

inconsistency will lead to severe over-fitting of our models.

To this end, we propose the second principle to regularize

the episodic-wise metric Mt to be close to a given metric

M0, which is associated with the prior across all few-shot

tasks. Specifically, we try to minimize the Bregman diver-

gence DΦ(Mt‖M0) = Φ(Mt)−Φ(M0)−〈∇Φ(M0),Mt−
M0〉 between Mt and M0 with the log-determinant function

Φ(M) = −log det(M), which is a strict convex, continu-

ously differentiable divergence function. Then we formu-

late the regularization loss function LR(Mt |M0) as:

LR(Mt | M0) = tr〈M−1
0 Mt〉 − log det(Mt) (8)

where tr〈·〉 means the trace operator on matrix and Eq. (8)

ignores the constant term regarding M0. More precisely,

with the information-theory, optimizing LR is equivalent

to minimizing the KL divergence between two multivari-

ate Gaussian distributions parameterized by Mt and M0.

Episodic-wise Adaptive Metric. By integrating two prin-

ciples mentioned above, we formulate a novel episodic-wise

adaptive metric (EAM) loss function for each task as:

min
Mt�0

LR(Mt | M0) + γ · LC(Mt | M̃, C̃ ) (9)

where LC and LR are defined in Eq. (5) and Eq. (8) re-

spectively, γ is a positive trade-off parameter. In general,

minimizing Eq. (9) with SGD-based optimizers or other ex-

isting convex optimization solvers [30] will produce a local

optimal solution for each task. However, due to the high

time complexity of SDP solvers and requiring too many it-

erations with SGD-based optimizers, this sub-optimization

procedure within each task will lead to an inefficient learn-

ing process. Here, we propose a faster and more efficien-

t approach to construct the episodic-wise metric for each

task. Concretely, we first reformulate the Eq. (9) as follows:

min
Mt�0

tr〈Mt ·(M
−1
0 +γ ·M̃−γλ·C̃)〉−log det(Mt) (10)

Based on the Lemma (1), we get the optimal solution M∗
t

by letting Y = M−1
0 +γ ·M̃−γλ · C̃ and assuming Y ≻ 0,

M∗
t = (M−1

0 + γ · M̃ − γλ · C̃ )−1 (11)

And the assumption of Y ≻ 0 can always hold if we pick

up a positive definite matrix as prior metric M0. In addition

to considering the pairwise constraints and regularization

prior, we further introduce the feature correlation informa-

tion into the final metric M
†
t with the task covariance matrix

Σt =
1

n−1

∑n

i=1 (Xi − X̄)(Xi − X̄)T , which results in:

M
†
t = (M−1

0 + γ · M̃ − γλ · C̃)−1 + α · Σt (12)

where α, λ, γ are positive trade-off parameters and M̃, C̃
are from Eq. (6). Moreover, with the insights of trans-

duction, we calculate the task covariance matrix Σt with

both the support set and query set in each episode. Obvi-

ously, the Eq. (12) only involves simple matrix operations,

such as inversion and transpose, which is more efficien-

t than SGD-based optimizers and naive SDP solvers. In

addition, as a symmetric positive definite matrix, another

insights into the nature of the learned episodic-wise metric

is an adaptive linear projection layer by expressing M
†
t as

Lt
TLt, then the dMt

(xi, xj) in Eq.(3) can be formulated as√
tr〈(Ltxi − Ltxj)T(Ltxi − Ltxj)〉, where Lt ∈ R

r×d is

a task-specific transformation matrix.

Lemma 1 Let X ,Y be two symmetric positive-define ma-

trices of the same size, then the function f(X ) = tr(XY)−
log det(X ) is minimized uniquely by: X ∗ = Y−1.

Proof. See supplementary material for more details.

3.4. Bi­directional Similarity

Assuming all samples have been transformed into a task-

specific embedding space with the learned feature extractor

fφ and the episodic-wise adaptive metric M
†
t in Eq. (12),

we then perform a novel bi-directional similarity strategy

(Bi-SIM) to calculate the probability that each query be-

longs to each category. In detail, after shrinking the the

support set S to a prototype set with Eq.(7), we formulate

the positive-direction similarity si→c between query xi and

each prototype pc with the softmax function:

si→c =
exp(−dMt

(xi, pc))∑
c′ exp(−dMt

(xi, pc′))
(13)

Most previous methods used this similarity as the final prob-

ability of the query xi belonging to each category. However,

taking the entire query set into account with transductive in-

ference, we further compute the probability of prototype pc
belonging to each query xi with the following equation:

sc→i =
exp(−dMt

(pc, xi))∑
i′ exp(−dMt

(pc, xi′))
(14)

We termed sc→i as the negative-direction similarity which

can be interpreted as an attention-based weight of the pro-

totype pc over the whole query set Q. At last, we perfor-

m the product of si→c and sc→i as the final bi-directional

similarity (denoted with Bi-Sim) between the query xi and

the prototype pc, i.e. si↔c = sc→i · si→c. Essentially, the

basic idea behind the Bi-Sim strategy is that if a query is

similar to one prototype and the prototype is also similar to

the query, then we argue that they are more matching with

each other. Without increasing any computational burden

or requiring any human interaction, our proposed strategy

calculates more robust similarity efficiently.

4. Experiments

In this section, we detail our experimental setting and

compare TEAM with state-of-the-art approaches on three

challenging datasets, i.e. miniImageNet [35], Cifar-100 [14]
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and CUB [36], which are widely used as few-shot classifi-

cation benchmarks in the literature.

4.1. Datasets

miniImageNet. The miniImageNet dataset is the most

popular benchmark in few-shot learning community, which

is proposed by [35] originally. This dataset is composed

of 100 classes selected from ImageNet [15] randomly, and

each class has 600 images, which are resized to 84×84 pix-

els for fast training and inference. Note that we follow the

setup provided by [24] which splits the total 100 classes into

64 classes, 16 classes and 20 classes for training, validation

and evaluation respectively. The validation set is only used

for tracking model generalization in all experiments.

Cifar-100. The Cifar-100 [14] is a simple dataset for im-

age classification and consists of 100 categories, each hav-

ing 600 RGB images (32× 32). We further split the whole

dataset into 64 classes as seen categories for training, 16 and

20 classes for validation and testing respectively [40]. Com-

pared with miniImageNet, Cifar-100 keeps the simplicity of

dataset and decreases the inference complexity.

CUB. CUB [36], which is a benchmark dataset for fine-

grain classification initially, is composed of 11788 images

over 200 birds classes. Follow the same partition as [9], we

use 100 classes for training, and another two 50 classes as

unseen classes for validation and evaluation. And all images

are cropped with the provided bounding box [33].

4.2. Experimental Settings

Backbone Networks. For fair and comprehensive com-

parison with previous baselines, we employ two backbone

networks as our embedding function. 1) A four-layers con-

volution network (ConvNet) and 2) A standard deep residu-

al network (ResNet-18) are widely adopted in the few-shot

learning literature. Specifically, the ConvNet contains 4 re-

peated convolutional blocks, where each block is composed

of a convolution layer with 64 filters (3× 3 kernel), a batch

normalization layer [11], a ReLU non-linearity and a max-

pooling layer with size 2. In addition, we empirically add

a global average pooling layer as last for accelerating the

convergence of the model and reducing the dimensionali-

ty of the features. All inputs are resized to 84 × 84 × 3
uniformly and the final output dimension is 256 for each

image accordingly. For ResNet, we utilize the standard ar-

chitecture proposed by [8] and remove the last fc-layer for

reducing parameters. Furthermore, all inputs are resized to

224× 224× 3 like many previous works. After the last av-

erage pooling layer, it leads to a 512 vector for each image.

Training Strategy. All backbone networks are optimized

via SGD by Adam [13] end-to-end on DGX-1. Follow the

strategy in [23, 26], we pre-train the ConvNet to classify al-

l seen classes and utilizing the optimal weights for model

initialization, and we train ResNet from scratch for simplic-

ity. Moreover, We perform TIM strategy in all experiments

and set l = 0.5 and h = 1.0 for U(l, h). Inspired by [10],

we start TIM strategy after 5000 episodes and intermittent-

ly disable it during training procedure, that is, performing

task mixing for Y episodes and then close it for the next

Z episodes. We empirically set Y = 4 and Z = 1 in our

experiments. We decay the learning rate half every 10000

episodes and set the patience of early stopping as 20000.

Parameter Setup in M
†
t . In Eq. (9), we set the trade-off

parameters as α = 2, γ = 0.2, λ = 0.01 and the prior met-

ric as M0 = I in all experiments. In general, the choice

of M0 is not fixed and has an important influence on gen-

eralization of the learned episodic-wise metric. However,

based on the following two observation, we argue the iden-

tity matrix is a quite natural choice for M0. Firstly, learn-

ing from the Euclidean distance provides the most unbiased

prior across all few-shot tasks, that is, assuming all features

from the task-agnostic embedding space are equally scaled

and equally relevant. Secondly, we observe that the optimal

adaptive metric for each few-shot task is close to the identi-

ty matrix, which has been illustrated in Fig. 3 of the paper.

Please zoom in the Fig. 3 or refer appendix for more details.

4.3. Few­shot Learning Results

To verify the effectiveness of our approach for few-shot

classification, we compare the proposed TEAM framework

with our re-implemented baseline (ProtoNet [29]) and many

state-of-the-art methods in various setting on three bench-

mark datasets (miniImageNet, Cifar-100 and CUB). For fair

comparison with previous works, we focus on two popular

few-shot learning settings, namely 5-way 1-shot and 5-way

5-shot tasks, which both contain 15 queries per episode for

validation. In addition to the above setup, we also exper-

imente with the transductive setting in all datasets, where

the model utilizes the entire query set in each task. Specif-

ically, we consider two types of transduction in our experi-

ments. 1) Transductive batch normalization [5, 21], which

shares information between all test examples via batch nor-

malization layer, denoted with BN in all tables and 2) ex-

plicit transduction, which is first introduced into the few-

shot learning by [18]. Moreover, to make the evaluation

more convincing, we report the final mean accuracy over

1000 test trails for all experiments and present 95% confi-

dence intervals of all results in our supplementary material.

Please refer our appendix for more complete results.

Results on miniImageNet. Experimental results on mi-

niImageNet are shown in Table 1, where we can see that our

model achieves state-of-the-art performance with ConvNet

backbone and competitive results with ResNet architecture.

We re-implement ProtoNet as our baseline with the sim-

ple pre-train strategy proposed by [23], and achieve better

performance than previously reported ones in [29]. Taking

ConvNet as an example, we get 51.68% and 68.71% for 5-
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Table 1. Few-shot classification accuracy on miniImageNet. All

results are averaged over 1000 test tasks which are randomly se-

lected from the testing set. Tran: different type of transduction.

Model Tran.
5-Way 1-Shot 5-Way 5-Shot

ConvNet ResNet ConvNet ResNet

MatchNet [35] No 43.56 - 55.31 -

MAML [5] BN 48.70 - 63.10 -

MAML+ [18] Yes 50.83 - 66.19 -

Reptile [21] BN 49.97 - 65.99 -

ProtoNet [29] No 49.42 - 68.20 -

GNN [6] No 50.33 - 64.02 -

RelationNet [38] BN 50.44 - 65.32 -

PFA [23] No 54.53 59.60 67.87 73.74

TADAM [22] No - 58.50 - 76.70

adaResNet [20] No - 56.88 - 71.94

LEO [26] No - 60.06 - 75.72

TPN [18] Yes 55.51 59.46 69.86 75.65

Baseline (Ours) No 51.68 55.25 68.71 70.58

TEAM (Ours) Yes 56.57 60.07 72.04 75.90

way 1-shot and 5-way 5-shot respectively, which are slight-

ly better than 49.42% and 68.20% in [29]. After applying

the TEAM framework on the baseline, the performance has

been further improved significantly. For example, the abso-

lute promotion of TEAM over published state-of-the-art is

1.06% for 1-shot and 2.18% for 5-shot, over our baseline is

4.89% and 3.33% respectively. Note that the comparison-

s with PFA [23], LEO[26] and TADAM [22] are a bit un-

fair since we train the TEAM(ResNet) without any pre-train

weights or including a classification objective, however, our

model still achieves the best performance on 1-shot task.

Results on Cifar-100. Next we turn to the rich experi-

ments evaluated on the Cifar-100, and all results are shown

in Table 2 for comparison in detail. Note that all results

of MatchNet [35], MAML [5] and DEML [40] in Table 2

refer to the reported performance in [40]. Compared with

our baseline, whose accuracy is slightly higher than pre-

vious points, we notice that our TEAM(ConvNet) increases

by 6.24 % on 1-shot tasks and 2.65 % on 5-shot tasks, which

demonstrates the effectiveness of our approach.

Results on CUB. The CUB dataset [36] is proposed for

fine-grain recognition initially and also widely utilized in

current few-shot classification literature. From Table 3, we

observe that the performance of our baseline is far better

than the previous ProtoNet [29], that is because we pre-

process all images with the provided bounding boxes [33]

to reduce the impact of background on final performance.

Comparing the TEAM with our re-implemented baseline,

both ConvNet and ResNet backbones achieve outstanding

performance over 1-shot and 5-shot tasks.

Further Analysis. All results which are summarized in

the Table 1 - 3 indicate that our approach can consistent-

ly improve the few-shot learning performance on different

datasets. This confirms that, under the setting of transduc-

tive inference, our model can efficiently tailor an episodic-

wise adaptive metric for each task and perform a suitable

Table 2. Few-shot classification performance on Cifar-100.

Model Tran.
5-Way 1-Shot 5-Way 5-Shot

ConvNet ResNet ConvNet ResNet

MatchNet [35] No 50.53 - 60.30 -

MAML [5] BN 49.28 - 58.30 -

ProtoNet [29] No 56.66 - 76.29 -

DEML [7] No - 61.62 - 77.94

Baseline (Ours) No 57.83 66.30 76.40 80.46

TEAM (Ours) Yes 64.07 70.43 79.05 81.25

Table 3. Few-shot classification performance on CUB.

Model Tran.
5-Way 1-Shot 5-Way 5-Shot

ConvNet ResNet ConvNet ResNet

MatchNet [35] No 56.53 - 63.54 -

MAML [5] BN 50.45 - 59.60 -

ProtoNet [29] No 58.43 - 75.22 -

RelationNet [38] BN 62.45 - 76.11 -

DEML [7] No - 66.95 - 77.11

TriNet [4] No - 69.61 - 84.10

Baseline (Ours) No 69.39 74.55 82.78 85.98

TEAM (Ours) Yes 75.71 80.16 86.04 87.17

similarity between all samples. Furthermore, we notice that

the performance promotion of our approach in 1-shot sce-

nario is more significant than that in 5-shot. This observa-

tion agrees with the nature of transduction [12, 18], where

more training data are available, the less performance im-

provement will be. With regards to this, we then perform 5-

way k-shot (k=1, 3, 5, 7, 9) experiments on mini-ImageNet

and all results are shown in Table. 6. As the number of shot-

s increases, we notice that our TEAM consistently outper-

forms our baseline with a large margin, but the performance

improvement from TEAM decreases slightly, which further

verifies the above analysis about transductive inference.

4.4. Ablation Study

Effectiveness of Different Modules. According to the pre-

vious analysis, the proposed TEAM framework is far supe-

rior to our baseline and becomes the new state-of-the-art

approach in few-shot classification literature. As a neces-

sary step to the ablation study, we first analyze how much

each module (TIM, EAM and Bi-Sim) contributes to the ulti-

mate performance. All results are shown in Table 4 in great

details. Note that our baseline (ProtoNet) uses the ConvNet

as backbone network and achieves higher performance on

all three datasets (see the second row in Table 4) than pre-

vious performance because of the pre-train weights initial-

ization. Furthermore, we perform various setting of TEAM

framework as follows. 1) TEAM‡ adds the TIM strategy

into our baseline, 2) TEAM† utilizes the TIM strategy and

episodic-wise adaptive metric (EAM) simultaneously and 3)

TEAM combines all three modules together to get the ulti-

mate performance. By comparing the second and third rows

in Table 4, we observe that the TIM strategy can consistent-

ly improve the performance of all few-shot tasks. Then we
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Table 4. Few-shot classification performance for ablation study.

Proto (Ours): the baseline. TEAM‡: baseline+TIM. TEAM†:

baseline+TIM+EAM. TEAM: baseline+TIM+EAM+Bi-SIM.

Model
miniImageNet Cifar-100 CUB

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Proto [35] 49.42 68.20 56.66 76.29 58.43 75.22

Proto (Ours) 51.68 68.71 57.83 76.40 69.39 82.78

TEAM‡ 52.97 70.45 59.56 77.65 70.27 84.68

TEAM† 55.35 71.59 62.76 78.80 75.06 86.06

TEAM 56.57 72.04 64.07 79.05 75.71 86.04

Table 5. semi-Supervised comparison on miniImageNet

Methods 5-way 1-shot 5-way 5-shot

Soft k-Means [25] 50.09± 0.45 64.59± 0.28

Soft k-Means+Cluster [25] 49.03± 0.24 63.08± 0.18

Masked Soft k-Means [25] 50.41± 0.31 64.39± 0.24

TPN-semi [18] 52.78± 0.27 66.42± 0.21

TEAM-semi (Ours) 54.81 ± 0.59 68.92 ± 0.38

further compare the TEAM‡ and TEAM†, where the on-

ly difference between them is whether using EAM module.

Taking 1-shot task of miniImageNet as an example, TEAM†

is 2.38% higher than TEAM‡, which demonstrates that it is

feasible to construct an episodic-wise adaptive metric for

each task in few-shot learning. And the last row of Table 4

further shows the effectiveness of our entire framework.

Comparison with semi-Supervised Few-shot Learning.

From the perspective of unlabeled data, transductive in-

ference is a special case of semi-supervised learning, that

is, the former one directly uses test set as unlabeled data

and the latter uses more auxiliary unlabeled data. As such,

we propose a semi-supervised version of the TEAM frame-

work, namely TEAM-semi, to compare it with other semi-

supervised few-shot approaches. Specifically, following the

labeled/unlabeled data split in [25], we use 40% and 60% in

each class as labeled and unlabeled data respectively. Note

that the support/query examples in each task are both ran-

domly sampled from the labeled set only for fair compar-

ison. All results, which are averaged over 10 random la-

beled/unlabeled partition of the training set, are reported in

Table 5 in details. Compared with the previous state-of-

the-art approaches TPN [18], our TEAM-semi framework

increases by 2.03% and 2.50% for 1-shot/5-shot respective-

ly, which verifies its ability to handle both supervised and

semi-supervised few-shot classification.

Sparsity Nature of Episodic-wise Adaptive Metric. In

this section we explore the sparsity nature of the episodic-

wise adaptive metric in few-shot learning. Take a 5-way

5-shot task as an example, we set 15-queries in each class

and exploit the classic LMNN algorithm [37] with all sup-

port and query samples to optimize an oracle metric, which

ensures all examples in this task can be completely distin-

guished. Then we scale all elements of the metric into the

region [0, 1] and visualize its heatmap in Fig. 3 (left). We

Figure 3. This figure illustrates the sparsity nature of the metric in

few-shot learning. Left: The heatmap of the oracle metric (Please

zoom in it for more details). Right: The values distribution in

different position of the matrix (sorted by descending order).

Table 6. 5-way performance with various training/testing shots.

Methods 1-shot 3-shot 5-shot 7-shot 9-shot

Baseline (Ours) 51.68 63.87 68.71 71.28 73.35

TEAM (Ours) 56.57 67.64 72.04 73.47 75.04

Accuracy (+) 4.89 3.77 3.33 2.19 1.69

observe that diagonal elements always maintain larger val-

ues (close to red) than off-diagonal elements (close to blue).

After reorganizing all values with numerical descending or-

der in Fig. 3 (right), we further notice that there is a large

value gap between the diagonal elements and off-diagonal

elements. These practical observations indicate that, due

to the low-data setup, we cannot have enough prior to find

accurate correlations between all dimensions, except strong

self-correlation in diagonal, which leads to the sparsity na-

ture of episodic-wise adaptive metric. Moreover, from this

practical viewpoint, we further verify that it is reasonable to

set the identity matrix as prior metric M0 in Eq. (12).

5. Conclusions

We have proposed Transductive Episodic-wise Adaptive

Metric (TEAM) for few-shot learning, which is a simple

and efficient framework based on meta-learning. It not only

learns a shared embedding model across all tasks end-to-

end but also further tailors an episodic-wise metric by tak-

ing more distinctive information within each task into ac-

count. Moreover, with using the entire query set at once for

inference, we leverage a bi-directional similarity strategy

for extracting more robust relationship between queries and

prototypes. Our TEAM achieves the state-of-the-art perfor-

mance on three few-shot benchmark datasets and is easi-

ly extended to semi-supervised version. The extensions of

TEAM on other few-shot approaches could be future work.
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