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Abstract

We present an approach to recover absolute 3D human

poses from multi-view images by incorporating multi-view

geometric priors in our model. It consists of two separate

steps: (1) estimating the 2D poses in multi-view images and

(2) recovering the 3D poses from the multi-view 2D poses.

First, we introduce a cross-view fusion scheme into CNN to

jointly estimate 2D poses for multiple views. Consequently,

the 2D pose estimation for each view already benefits from

other views. Second, we present a recursive Pictorial Struc-

ture Model to recover the 3D pose from the multi-view 2D

poses. It gradually improves the accuracy of 3D pose with

affordable computational cost. We test our method on two

public datasets H36M and Total Capture. The Mean Per

Joint Position Errors on the two datasets are 26mm and

29mm, which outperforms the state-of-the-arts remarkably

(26mm vs 52mm, 29mm vs 35mm).

1. Introduction

The task of 3D pose estimation has made significant

progress due to the introduction of deep neural networks.

Most efforts [16, 13, 33, 17, 23, 19, 29, 28, 6] have been de-

voted to estimating relative 3D poses from monocular im-

ages. The estimated poses are centered around the pelvis

joint thus do not know their absolute locations in the envi-

ronment (world coordinate system).

In this paper, we tackle the problem of estimating abso-

lute 3D poses in the world coordinate system from multiple

cameras [1, 15, 4, 18, 3, 20]. Most works follow the pipeline

of first estimating 2D poses and then recovering 3D pose

from them. However, the latter step usually depends on the

performance of the first step which unfortunately often has

large errors in practice especially when occlusion or motion

∗This work is done when Haibo Qiu is an intern at Microsoft Research

Asia.

blur occurs in images. This poses a big challenge for the

final 3D estimation.

On the other hand, using the Pictorial Structure Model

(PSM) [14, 18, 3] for 3D pose estimation can alleviate the

influence of inaccurate 2D joints by considering their spatial

dependence. It discretizes the space around the root joint by

an N ×N ×N grid and assigns each joint to one of the N3

bins (hypotheses). It jointly minimizes the projection error

between the estimated 3D pose and the 2D pose, along with

the discrepancy of the spatial configuration of joints and its

prior structures. However, the space discretization causes

large quantization errors. For example, when the space sur-

rounding the human is of size 2000mm and N is 32, the

quantization error is as large as 30mm. We could reduce the

error by increasing N , but the inference cost also increases

at O(N6), which is usually intractable.

Our work aims to address the above challenges. First, we

obtain more accurate 2D poses by jointly estimating them

from multiple views using a CNN based approach. It ele-

gantly addresses the challenge of finding the corresponding

locations between different views for 2D pose heatmap fu-

sion. We implement this idea by a fusion neural network as

shown in Figure 1. The fusion network can be integrated

with any CNN based 2D pose estimators in an end-to-end

manner without intermediate supervision.

Second, we present Recursive Pictorial Structure Model

(RPSM), to recover the 3D pose from the estimated multi-

view 2D pose heatmaps. Different from PSM which directly

discretizes the space into a large number of bins in order to

control the quantization error, RPSM recursively discretizes

the space around each joint location (estimated in the previ-

ous iteration) into a finer-grained grid using a small num-

ber of bins. As a result, the estimated 3D pose is refined step

by step. Since N in each step is usually small, the inference

speed is very fast for a single iteration. In our experiments,

RPSM decreases the error by at least 50% compared to PSM

with little increase of inference time.
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Figure 1. Cross-view fusion for 2D pose estimation. The images

are first fed into a CNN to get initial heatmaps. Then the heatmap

of each view is fused with the heatmaps from other views through

a fusion layer. The whole network is learned end-to-end.

For 2D pose estimation on the H36M dataset [11], the

average detection rate over all joints improves from 89% to

96%. The improvement is significant for the most challeng-

ing “wrist” joint. For 3D pose estimation, changing PSM to

RPSM dramatically reduces the average error from 77mm

to 26mm. Even compared with the state-of-the-art method

with an average error 52mm, our approach also cuts the er-

ror in half. We further evaluate our approach on the Total

Capture dataset [27] to validate its generalization ability. It

still outperforms the state-of-the-art [26].

2. Related Work

We first review the related work on multi-view 3D pose

estimation and discuss how they differ from our work. Then

we discuss some techniques on feature fusion.

Multi-view 3D Pose Estimation Many approaches [15,

10, 4, 18, 3, 19, 20] are proposed for multi-view pose esti-

mation. They first define a body model represented as sim-

ple primitives, and then optimize the model parameters to

align the projections of the body model with the image fea-

tures. These approaches differ in terms of the used image

features and optimization algorithms.

We focus on the Pictorial Structure Model (PSM) which

is widely used in object detection [8, 9] to model the spa-

tial dependence between the object parts. This technique is

also used for 2D [32, 5, 1] and 3D [4, 18] pose estimation

where the parts are the body joints or limbs. In [1], Amin

et al. first estimate the 2D poses in a multi-view setup with

PSM and then obtain the 3D poses by direct triangulation.

Later Burenius et al. [4] and Pavlakos et al. [18] extend

PSM to multi-view 3D human pose estimation. For exam-

ple, in [18], they first estimate 2D poses independently for

each view and then recover the 3D pose using PSM. Our

work differs from [18] in that we extend PSM to a recursive

version, i.e. RPSM, which efficiently refines the 3D pose es-

timations step by step. In addition, they [18] do not perform

cross-view feature fusion as we do.

𝑌𝑃𝑢 𝑌𝑃𝑣
𝑃

𝐼

Figure 2. Epipolar geometry: an image point Y u

P back-projects to

a ray in 3D defined by the camera Cu and Y u

P . This line is imaged

as I in the camera Cv . The 3D point P which projects to Y u

P must

lie on this ray, so the image of P in camera Cv must lie on I .

Multi-image Feature Fusion Fusing features from dif-

ferent sources is a common practice in the computer vision

literature. For example, in [34], Zhu et al. propose to warp

the features of the neighboring frames (in a video sequence)

to the current frame according to optical flow in order to ro-

bustly detect the objects. Ding et al. [7] propose to aggre-

gate the multi-scale features which achieves better segmen-

tation accuracy for both large and small objects. Amin et

al. [1] propose to estimate 2D poses by exploring the geo-

metric relation between multi-view images. It differs from

our work in that it does not fuse features from other views to

obtain better 2D heatmaps. Instead, they use the multi-view

3D geometric relation to select the joint locations from the

“imperfect” heatmaps. In [12], multi-view consistency is

used as a source of supervision to train the pose estimation

network. To the best of our knowledge, there is no previous

work which fuses multi-view features so as to obtain better

2D pose heatmaps because it is a challenging task to find

the corresponding features across different views which is

one of our key contributions of this work.

3. Cross View Fusion for 2D Pose Estimation

Our 2D pose estimator takes multi-view images as input,

generates initial pose heatmaps respectively for each, and

then fuses the heatmaps across different views such that the

heatmap of each view benefits from others. The process

is accomplished in a single CNN and can be trained end-

to-end. Figure 1 shows the pipeline for two-view fusion.

Extending it to multi-views is trivial where the heatmap of

each view is fused with the heatmaps of all other views.

The core of our fusion approach is to find the corresponding

features between a pair of views.

Suppose there is a point P in 3D space. See Figure 2. Its

projections in view u and v are Y
u
P ∈ Z

u and Y
v
P ∈ Z

v ,

respectively where Zu and Zv denote all pixel locations in

the two views, respectively. The heatmaps of view u and

v are Fu = {xu
1 , · · · ,x

u
|Zu|} and Fv = {xv

1, · · · ,x
v
|Zv|}.

The core idea of fusing a feature in view u, say x
u
i , with the

features fromFv is to establish the correspondence between
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Figure 3. Two-view feature fusion for one channel. The top grid

denotes the feature map of view A. Each location in view A is con-

nected to all pixels in view B by a weight matrix. The weights are

mostly positive for locations on the epipolar line (numbers in the

yellow cells). Different locations in view A have different weights

because they correspond to different epipolar lines.

the two views:

x
u
i ← x

u
i +

|Zv|
∑

j=1

ωj,i · x
v
j , ∀i ∈ Zu, (1)

where ωj,i is a to be determined scalar. Ideally, for a specific

i, only one ωj,i should be positive, while the rest are zero.

Specifically, ωj,i is positive when the pixel i in view u and

pixel j in view v correspond to the same 3D point.

Suppose we know only Y
u
P , how can we find the corre-

sponding point Y v
P in the image of a different view? We

know Y
v
P is guaranteed to lie on the epipolar line I . But

since we do not know the depth of P , which means it may

move on the line defined by Cu and Y
u
P , we cannot deter-

mine the exact location of Y v
P on I . This ambiguity poses a

challenge for the cross view fusion.

Our solution is to fuse x
u
i with all features on the line

I . This may sound brutal at the first glance, but is in fact

elegant. Since fusion happens in the heatmap layer, ideally,

x
v
j should have large response at Y v

P (the cyan point) and

zeros at other locations on the epipolar line I . It means the

non-corresponding locations on the line will contribute no

or little to the fusion. So fusing all pixels on the epipolar

line is a simple yet effective solution.

3.1. Implementation

The feature fusion rule (Eq. (1)) can be interpreted as a

fully connected layer imposed on each channel of the pose

heatmaps where ω are the learnable parameters. Figure 3

illustrates this idea. Different channels of the feature maps,

which correspond to different joints, share the same weights

because the cross view relations do not depend on the joint

types but only depend on the pixel locations in the camera

views. Treating feature fusion as a neural network layer

enables the end-to-end learning of the weights.

We investigate two methods to train the network. In the

first approach, we clip the positive weights to zero during

training if the corresponding locations are off the epipolar

line. Negative weights are allowed to represent suppression

relations. In the second approach, we allow the network

to freely learn the weights from the training data. The fi-

nal 2D pose estimation results are also similar for the two

approaches. So we use the second approach for training be-

cause it is simpler.

3.2. Limitation and Solution

The learned fusion weights which implicitly encode the

information of epipolar geometry are dependent on the cam-

era configurations. As a result, the model trained on a par-

ticular camera configuration cannot be directly applied to

another different configuration.

We propose an approach to automatically adapt our

model to a new environment without any annotations. We

adopt a semi-supervised training approach following the

previous work [21]. First, we train a single view 2D pose

estimator [31] on the existing datasets such as MPII which

have ground truth pose annotations. Then we apply the

trained model to the images captured by multiple cameras

in the new environment and harvest a set of poses as pseudo

labels. Since the estimations may be inaccurate for some

images, we propose to use multi-view consistency to filter

the incorrect labels. We keep the labels which are consis-

tent across different views following [21]. In training the

cross view fusion network, we do not enforce supervision

on the filtered joints. We will evaluate this approach in the

experiment section.

4. RPSM for Multi-view 3D Pose Estimation

We represent a human body as a graphical model with

M random variables J = {J1,J2, · · · ,JM} in which each

variable corresponds to a body joint. Each variable Ji de-

fines a state vector Ji = [xi, yi, zi] as the 3D position of the

body joint in the world coordinate system and takes its value

from a discrete state space. See Figure 4. An edge between

two variables denotes their conditional dependence and can

be interpreted as a physical constraint.

4.1. Pictorial Structure Model

Given a configuration of 3D pose J and multi-view 2D

pose heatmaps F , the posterior becomes [3]:

p(J |F) =
1

Z(F)

M
∏

i=1

φconf
i (Ji,F)

∏

(m,n)∈E

ψlimb(Jm,Jn),

(2)

where Z(F) is the partition function and E are the graph

edges as shown in Figure 4. The unary potential func-

tions φconf
i (Ji,F) are computed based on the previously

estimated multi-view 2D pose heatmaps F . The pairwise

potential functions ψlimb(Jm,Jn) encode the limb length

constraints between the joints.
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Figure 4. Graphical model of human body used in our experiments.

There are 17 variables and 16 edges.

Discrete state space We first triangulate the 3D location

of the root joint using its 2D locations detected in all views.

Then the state space of the 3D pose is constrained to be

within a 3D bounding volume centered at the root joint. The

edge length s of the volume is set to be 2000mm. The vol-

ume is discretized by anN×N×N grid G. All body joints

share the same state space G which consists of N3 discrete

locations (bins).

Unary potentials Every body joint hypothesis, i.e. a bin

in the grid G, is defined by its 3D position in the world coor-

dinate system. We project it to the pixel coordinate system

of all camera views using the camera parameters, and get

the corresponding joint confidence from F . We compute

the average confidence over all camera views as the unary

potential for the hypothesis.

Pairwise potentials Offline, for each pair of joints

(Jm,Jn) in the edge set E , we compute the average dis-

tance ˜lm,n on the training set as limb length priors. During

inference, the pairwise potential is defined as:

ψlimb(Jm,Jn) =

{

1, if lm,n ∈ [ ˜lm,n − ǫ, ˜lm,n + ǫ]
0, otherwise

,

(3)

where lm,n is the distance between Jm and Jn. The pair-

wise term favors 3D poses having reasonable limb lengths.

In our experiments, ǫ is set to be 150mm.

Inference The final step is to maximize the posterior (Eq.

(2)) over the discrete state space. Because the graph is

acyclic, it can be optimized by dynamic programming with

global optimum guarantee. The computational complexity

is of the order of O(N6).

4.2. Recursive Pictorial Structure Model

The PSM model suffers from large quantization errors

caused by space discretization. For example, when we set

N = 32 as in the previous work, the quantization error is

as large as 30mm (i.e. s
32×2 where s = 2000 is the edge

𝐿𝑚

𝐿𝑛

𝐺𝑖(𝑚)

𝐺𝑗(𝑛)

Figure 5. Illustration of the recursive pictorial structure model.

Suppose we have estimated the coarse locations Lm and Ln for

the two joints Jm and Jn, respectively, in the previous iteration.

Then we divide the space around the two joints into finer-grained

grids and estimate more precise locations.

length of the bounding volume). Increasing N can reduce

the quantization error, but the computation time quickly be-

comes intractable. For example, if N = 64, the inference

speed will be 64 = ( 6432 )
6 times slower.

Instead of using a large N in one iteration, we propose

to recursively refine the joint locations through a multiple

stage process and use a small N in each stage. In the

first stage (t = 0), we discretize the 3D bounding vol-

ume space around the triangulated root joint using a coarse

grid (N = 16) and obtain an initial 3D pose estimation

L = (L1, · · · , LM ) using the PSM approach.

Fo the following stages (t ≥ 1), for each joint Ji, we

discretize the space around its current location Li into an

2 × 2 × 2 grid G(i). The space discretization here differs

from PSM in two-fold. First, different joints have their own

grids but in PSM all joints share the same grid. See Figure

5 for illustration of the idea. Second, the edge length of

the bounding volume decreases with iterations: st =
st−1

N
.

That is the main reason why the grid becomes finer-grained

compared to the previous stage.

Instead of refining each joint independently, we simul-

taneously refine all joints considering their spatial relations.

Recall that we know the center locations, sizes and the num-

ber of bins of the grids. So we can calculate the location of

every bin in the grids with which we can compute the unary

and pairwise potentials. It is worth noting that the pairwise

potentials should be computed on the fly because it depends

on the previously estimated locations. However, because

we set N to be a small number (two in our experiments),

this computation is fast.

4.3. Relation to Bundle Adjustment [25]

Bundle adjustment [25] is also a popular tool for refin-

ing 3D reconstructions. RPSM differs from it in two as-

pects. First, they reach different local optimums due to

their unique ways of space exploration. Bundle adjustment

explores in an incremental way while RPSM explores in a

divide and conquer way. Second, computing gradients by

finite-difference in bundle adjustment is not stable because

most entries of heatmaps are zeros.
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Table 1. This table shows the 2D pose estimation accuracy on the

H36M dataset. “+MPII” means we train on “H36M+MPII”. We

show JDR (%) for six important joints due to space limitation.

Method
Training

Dataset
Shlder Elb Wri Hip Knee Ankle

Single H36M 88.50 88.94 85.72 90.37 94.04 90.11

Sum H36M 91.36 91.23 89.63 96.19 94.14 90.38

Max H36M 92.67 92.45 91.57 97.69 95.01 91.88

Ours H36M 95.58 95.83 95.01 99.36 97.96 94.75

Single +MPII 97.38 93.54 89.33 99.01 95.10 91.96

Ours +MPII 98.97 98.10 97.20 99.85 98.87 95.11

5. Datasets and Metrics

The H36M Dataset [11] We use a cross-subject evalua-

tion scheme where subjects 1, 5, 6, 7, 8 are used for training

and 9, 11 for testing. We train a single fusion model for

all subjects because their camera parameters are similar. In

some experiments (which will be clearly stated), we also

use the MPII dataset [2] to augment the training data. Since

this dataset only has monocular images, we do not train the

fusion layer on these images.

The Total Capture Dataset [27] we also evaluate our

approach on the Total Capture dataset to validate its gen-

eral applicability to other datasets. Following the previ-

ous work [27], the training set consists of “ROM1,2,3”,

“Walking1,3”, “Freestyle1,2”, “Acting1,2”, “Running1” on

subjects 1,2 and 3. The testing set consists of “Freestyle3

(FS3)”, “Acting3 (A3)” and “Walking2 (W2)” on subjects

1,2,3,4 and 5. We use the data of four cameras (1,3,5,7) in

experiments. We do not use the IMU sensors. We do not

use the MPII dataset for training in this experiment. The

hyper-parameters for training the network are kept the same

as those on the H36M dataset.

Metrics The 2D pose estimation accuracy is measured

by Joint Detection Rate (JDR). If the distance between the

estimated and the groundtruth locations is smaller than a

threshold, we regard this joint as successfully detected. The

threshold is set to be half of the head size as in [2]. JDR is

the percentage of the successfully detected joints.

The 3D pose estimation accuracy is measured by Mean

Per Joint Position Error (MPJPE) between the groundtruth

3D pose y = [p31, · · · , p
3
M ] and the estimated 3D pose ȳ =

[p̄31, · · · ,
¯p3M ]: MPJPE = 1

M

∑M

i=1 ‖p
3
i − p̄

3
i ‖2 We do not

align the estimated 3D poses to the ground truth. This is

referred to as protocol 1 in [16, 24]

6. Experiments on 2D Pose Estimation

6.1. Implementation Details

We adopt the network proposed in [31] as our base net-

work and use ResNet-152 as its backbone, which was pre-

trained on the ImageNet classification dataset. The input

Table 2. This table shows the 3D pose estimation error MPJPE

(mm) on H36M when different datasets are used for training.

“+MPII” means we use a combined dataset “H36M+MPII” for

training. 3D poses are obtained by direct triangulation.

Method
Training

Dataset
Shlder Elb Wri Hip Knee Ankle

Single H36M 59.70 89.56 313.25 69.35 76.34 120.97

Ours H36M 42.97 49.83 70.65 24.28 34.42 52.13

Single +MPII 30.82 38.32 64.18 24.70 38.38 62.92

Ours +MPII 28.99 29.96 34.28 20.65 29.71 47.73

Image

GT

Heatmap

Fused  

Heatmap

Detected  

Heatmap

Warped  

Heatmap

Figure 6. Sample heatmaps of our approach. “Detected heatmap”

denotes it is extracted from the image of the current view. “Warped

heatmap” is obtained by summing the heatmaps warped from the

other three views. We fuse the “warped heatmap” and the “de-

tected heatmap” to obtain the “fused heatmap”. For challeng-

ing images, the “detected heatmaps” may be incorrect. But the

“warped heatmaps” from other (easier) views are mostly correct.

Fusing the multi-view heatmaps improves the heatmap quality.

image size is 320 × 320 and the resolution of the heatmap

is 80 × 80. We use heatmaps as the regression targets and

enforce l2 loss on all views before and after feature fusion.

We train the network for 30 epochs. Other hyper-parameters

such as learning rate and decay strategy are kept the same

as in [31]. Using a more recent network structure [22] gen-

erates better 2D poses.

6.2. Quantitative Results

Table 1 shows the results on the most important joints

when we train, either only on the H36M dataset, or on a

combination of the H36M and MPII datasets. It compares

our approach with the baseline method [31], termed Single,

which does not perform cross view feature fusion. We also

compare with two baselines which compute sum or max

values over the epipolar line using the camera parameters.

The hyper parameters for training the two methods are kept

the same for fair comparison.
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Our approach outperforms the baseline Single on all

body joints. The improvement is most significant for the

wrist joint, from 85.72% to 95.01%, and from 89.33% to

97.20%, when the model is trained only on “H36M” or on

“H36M + MPII”, respectively. We believe this is because

“wrist” is the most frequently occluded joint and cross view

fusion fuses the features of other (visible) views to help de-

tect them. See the third column of Figure 6 for an example.

The right wrist joint is occluded in the current view. So the

detected heatmap has poor quality. But fusing the features

with those of other views generates a better heatmap. In

addition, our approach outperforms the sum and max base-

lines. This is because the heatmaps are often noisy espe-

cially when occlusion occurs. Our method trains a fusion

network to handle noisy heatmaps so it is more robust than

getting sum/max values along epipolar lines.

It is also interesting to see that when we only use the

H36M dataset for training, the Single baseline achieves very

poor performance. We believe this is because the limited

appearance variation in the training set affects the general-

ization power of the learned model. However, our fusion

approach suffers less from the lack of training data. This is

probably because the fusion approach requires the features

extracted from different views to be consistent following a

geometric transformation, which is a strong prior to reduce

the risk of over-fitting to the training datasets with limited

appearance variation.

The improved 2D pose estimations in turn help signif-

icantly reduce the error in 3D. We estimate 3D poses by

direct triangulation in this experiment. Table 2 shows the

3D estimation errors on the six important joints. The er-

ror for the wrist joint (which gets the largest improvement

in 2D estimation) decreases significantly from 64.18mm to

34.28mm. The improvement on the ankle joint is also as

large as 15mm. The mean per joint position error over all

joints (see (c) and (g) in Table 3) decreases from 36.28mm

to 27.90mm when we do not align the estimated 3D pose to

the ground truth.

6.3. Qualitative Results

In addition to the above numerical results, we also qual-

itatively investigate in what circumstance our approach will

improve the 2D pose estimations over the baseline. Figure

6 shows four examples. First, in the fourth example (col-

umn), the detected heatmap shows strong responses at both

left and right elbows because it is hard to differentiate them

for this image. From the ground truth heatmap (the sec-

ond row) we can see that the left elbow is the target. The

heatmap warped from other views (fifth row) correctly lo-

calizes the left joint. Fusing the two heatmaps gives better

localization accuracy. Second, the third column of Figure

6 shows the heatmap of the right wrist joint. Because the

joint is occluded by the human body, the detected heatmap

is not correct. But the heatmaps warped from the other three

views are correct because it is not occluded there.

7. Experiments on 3D Pose Estimation

7.1. Implementation Details

In the first iteration of RPSM (t = 0), we divide the

space of size 2, 000mm around the estimated location of the

root joint into 163 bins, and estimate a coarse 3D pose by

solving Eq. 2. We also tried to use a larger number of bins,

but the computation time becomes intractable.

For the following iterations where t ≥ 1, we divide the

space, which is of size st = 2000
16×2(t−1) , around each es-

timated joint location into 2 × 2 × 2 bins. Note that the

space size st of each joint equals to the size of a single

bin in the previous iteration. We use a smaller number of

bins here than that of the first iteration, because it can sig-

nificantly reduce the time for on-the-fly computation of the

pairwise potentials. In our experiments, repeating the above

process for ten iterations only takes about 0.4 seconds. This

is very light weight compared to the first iteration which

takes about 8 seconds.

7.2. Quantitative Results

We design eight configurations to investigate different

factors of our approach. Table 3 shows how different fac-

tors of our approach decreases the error from 94.54mm to

26.21mm.

RPSM vs. Triangulation: First, RPSM achieves signif-

icantly smaller 3D errors than Triangulation when 2D pose

estimations are obtained by a relatively weak model. For

instance, by comparing the methods (a) and (b) in Table 3,

we can see that, given the same 2D poses, RPSM signifi-

cantly decreases the error, i.e. from 94.54mm to 47.82mm.

This is attributed to the joint optimization of all nodes and

the recursive pose refinement.

Second, RPSM provides marginal improvement when

2D pose estimations are already very accurate. For ex-

ample, by comparing the methods (g) and (h) in Table 3

where the 2D poses are estimated by our model trained on

the combined dataset (“H36M+MPII”), we can see the er-

ror decreases slightly from 27.90mm to 26.21mm. This is

because the input 2D poses are already very accurate and

direct triangulation gives reasonably good 3D estimations.

But if we focus on some difficult actions such as “sitting”,

which gets the largest error among all actions, the improve-

ment resulted from our RPSM approach is still very signifi-

cant (from 40.47mm to 32.12mm).

In summary, compared to triangulation, RPSM obtains

comparable results when the 2D poses are accurate, and sig-

nificantly better results when the 2D poses are inaccurate

which is often the case in practice.
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Table 3. 3D pose estimation errors MPJPE (mm) of different methods on the H36M dataset. The naming convention of the methods

follows the rule of “A-B-C” where “A” indicates whether we use fusion in 2D pose estimation. “Single” means the cross view fusion is not

used. “B” denotes the training datasets. “H36M” means we only use the H36M dataset and “+MPII” means we combine H36M with MPII

for training. “C” represents the method for estimating 3D poses.

Direction Discus Eating Greet Phone Photo Posing Purch

(a) Single-H36M-Triangulate 71.76 65.89 56.63 136.52 59.32 96.30 46.67 110.51

(b) Single-H36M-RPSM 33.38 36.36 27.13 31.14 31.06 30.28 28.59 41.03

(c) Single-“+MPII”-Triangulate 33.99 32.87 25.80 29.02 34.63 26.64 28.42 42.63

(d) Single-“+MPII”-RPSM 26.89 28.05 23.13 25.75 26.07 23.45 24.41 34.02

(e) Fusion-H36M-Triangulate 34.84 35.78 32.70 33.49 34.44 38.19 29.66 60.72

(f) Fusion-H36M-RPSM 28.89 32.46 26.58 28.14 28.31 29.34 28.00 36.77

(g) Fusion-“+MPII”-Triangulate 25.15 27.85 24.25 25.45 26.16 23.70 25.68 29.66

(h) Fusion-“+MPII”-RPSM 23.98 26.71 23.19 24.30 24.77 22.82 24.12 28.62

Sitting SittingD Smoke Wait WalkD Walking WalkT Average

(a) Single-H36M-Triangulate 150.10 57.01 73.15 292.78 49.00 48.67 62.62 94.54

(b) Single-H36M-RPSM 245.52 33.74 37.10 35.97 29.92 35.23 30.55 47.82

(c) Single-“+MPII”-Triangulate 88.69 36.38 35.48 31.98 27.43 32.42 27.53 36.28

(d) Single-“+MPII”-RPSM 39.63 29.26 29.49 27.25 25.07 27.82 24.85 27.99

(e) Fusion-H36M-Triangulate 53.10 35.18 40.97 41.57 31.86 31.38 34.58 38.29

(f) Fusion-H36M-RPSM 41.98 30.54 35.59 30.03 28.33 30.01 30.46 31.17

(g) Fusion-“+MPII”-Triangulate 40.47 28.60 32.77 26.83 26.00 28.56 25.01 27.90

(h) Fusion-“+MPII”-RPSM 32.12 26.87 30.98 25.56 25.02 28.07 24.37 26.21

Table 4. 3D pose estimation errors when different numbers of

iterations t are used in RPSM. When t = 0, RPSM is equiv-

alent to PSM. “+MPII” means we use the combined dataset

“H36M+MPII” to train the 2D pose estimation model. The MPJPE

(mm) are computed when no rigid alignment is performed be-

tween the estimated pose and the ground truth.
Methods t = 0⋆ t = 1 t = 3 t = 5 t = 10

Single-H36M-RPSM 95.23 77.95 51.78 47.93 47.82

Single-“+MPII”-RPSM 78.67 58.94 32.39 28.04 27.99

Fusion-H36M-RPSM 80.77 61.11 35.75 31.25 31.17

Fusion-“+MPII”-RPSM 77.28 57.22 30.76 26.26 26.21

RPSM vs. PSM: We investigate the effect of the recur-

sive 3D pose refinement. Table 4 shows the results. First,

the poses estimated by PSM, i.e. RPSM with t = 0, have

large errors resulted from coarse space discretization. Sec-

ond, RPSM consistently decreases the error as t grows and

eventually converges. For instance, in the first row of Ta-

ble 4, RPSM decreases the error of PSM from 95.23mm to

47.82mm which validates the effectiveness of the recursive

3D pose refinement of RPSM.

Single vs. Fusion: We now investigate the effect of the

cross-view feature fusion on 3D pose estimation accuracy.

Table 3 shows the results. First, when we use H36M+MPII

datasets (termed as “+MPII”) for training and use triangula-

tion to estimate 3D poses, the average 3D pose error of our

fusion model (g) is smaller than the baseline without fu-

sion (c). The improvement is most significant for the most

challenging “Sitting” action whose error decreases from

88.69mm to 40.47mm. The improvement should be at-

tributed to the better 2D poses resulted from cross-view fea-

ture fusion. We observe consistent improvement for other

different setups. For example, compare the methods (a) and

(e), or the methods (b) and (f).

Comparison to the State-of-the-arts: We also compare

our approach to the state-of-the-art methods for multi-view

human pose estimation in Table 5. Our approach outper-

forms the state-of-the-arts by a large margin. First, when we

train our approach only on the H36M dataset, the MPJPE

error is 31.17mm which is already much smaller than the

previous state-of-the-art [24] whose error is 52.80mm. As

discussed in the above sections, the improvement should be

attributed to the more accurate 2D poses and the recursive

refinement of the 3D poses.

7.3. Qualitative Results

Since it is difficult to demonstrate a 3D pose from all pos-

sible view points, we propose to visualize it by projecting it

back to the four camera views using the camera parameters

and draw the skeletons on the images. Figure 7 shows three

estimation examples. According to the 3D geometry, if the

2D projections of a 3D joint are accurate for more than two

views (including two), the 3D joint estimation is accurate.

For instance, in the first example (first row of Figure 7), the

2D locations of the right hand joint in the first and fourth

camera view are accurate. Based on this, we can infer with

high confidence that the estimated 3D location of the right

hand joint is accurate.
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Table 5. Comparison of the 3D pose estimation errors MPJPE

(mm) of the state of the art multiple view pose estimators on the

H36M datasets. We do NOT use the Procrustes algorithm to align

the estimations to the ground truth. The result of “Multi-view Mar-

tinez” is reported in [24]. The four state-of-the-arts do not use

MPII dataset for training. So they are directly comparable to our

result of 31.17mm.

Methods Average MPJPE

PVH-TSP [27] 87.3mm

Multi-View Martinez [16] 57.0mm

Pavlakos et al. [18] 56.9mm

Tome et al. [24] 52.8mm

Our approach 31.17mm

Our approach + MPII 26.21mm

(a)   20mm

(b)  40mm

(c) 120mm

Figure 7. We project the estimated 3D poses back to the 2D image

space and draw the skeletons on the images. Each row shows the

skeletons of four camera views. We select three typical examples

whose 3D MPJPE errors are 20, 40, 120mm, respectively.

In the first example (row), although the right hand joint is

occluded by the human body in the second view (column),

our approach still accurately recovers its 3D location due to

the cross view feature fusion. Actually, most leg joints are

also occluded in the first and third views but the correspond-

ing 3D joints are estimated correctly.

The second example gets a larger error of 40mm because

the left hand joint is not accurately detected. This is because

the joint is occluded in too many (three) views but only vis-

ible in a single view. Cross-view feature fusion contributes

little in this case. For most of the testing images, the 3D

MPJPE errors are between 20mm to 40mm.

There are few cases (about 0.05%) where the error is as

large as 120mm. This is usually when “double counting”

happens. We visualize one such example in the last row of

Figure 7. Because this particular pose of the right leg was

rarely seen during training, the detections of the right leg

joints fall on the left leg regions consistently for all views.

In this case, the warped heatmaps corresponding to the right

leg joints will also fall on the left leg regions thus cannot

drag the right leg joints to the correct positions.

Table 6. 3D pose estimation errors MPJPE (mm) of different

methods on the Total Capture dataset. The numbers reported for

our method and the baselines are obtained without rigid alignment.

Methods Subjects1,2,3 Subjects4,5 Mean

W2 FS3 A3 W2 FS3 A3

Tri-CPM [30] 79 112 106 79 149 73 99

PVH [27] 48 122 94 84 168 154 107

IMUPVH [27] 30 91 49 36 112 10 70

AutoEnc [26] 13 49 24 22 71 40 35

Single-RPSM 28 42 30 45 74 46 41

Fusion-RPSM 19 28 21 32 54 33 29

7.4. Generalization to the Total Capture Dataset

We conduct experiments on the Total Capture dataset

to validate the general applicability of our approach. Our

model is trained only on the Total Capture dataset. Table

6 shows the results. “Single-RPSM” means we do NOT

perform cross-view feature fusion and use RPSM for re-

covering 3D poses. First, our approach decreases the er-

ror of the previous best model [26] by about 17%. Second,

the improvement is larger for the hard cases such as “FS3”.

The results are consistent with those on the H36M dataset.

Third, by comparing the approaches of “Single-RPSM” and

“Fusion-RPSM”, we can see that fusing the features of dif-

ferent views improves the final 3D estimation accuracy sig-

nificantly. In particular, the improvement is consistent for

all different subsets.

7.5. Generalization to New Camera Setups

We conduct experiments on the H36M dataset using NO

pose annotations. The single view pose estimator [31] is

trained on the MPII dataset. If we directly apply this model

to the test set of H36M and estimate the 3D pose by RPSM,

the MPJPE error is about 109mm. If we retrain this model

(without the fusion layer) using the harvested pseudo labels,

the error decreases to 61mm. If we train our fusion model

with the pseudo labels described above, the error decreases

to 43mm which is already smaller than the previous super-

vised state-of-the-arts. The experimental results validate the

feasibility of applying our model to new environments with-

out any manual label.

8. Conclusion

We propose an approach to estimate 3D human poses

from multiple calibrated cameras. The first contribution is a

CNN based multi-view feature fusion approach which sig-

nificantly improves the 2D pose estimation accuracy. The

second contribution is a recursive pictorial structure model

to estimate 3D poses from the multi-view 2D poses. It im-

proves over the PSM by a large margin. The two contribu-

tions are independent and each can be combined with the

existing methods.
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