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Abstract

Single-image super-resolution restores the lost struc-

tures and textures from low-resolved images, which has

achieved extensive attention from the research community.

The top performers in this field include deep or wide con-

volutional neural networks, or recurrent neural networks.

However, the methods enforce a single model to process all

kinds of textures and structures. A typical operation is that a

certain layer restores the textures based on the ones recov-

ered by the preceding layers, ignoring the characteristics

of image textures. In this paper, we believe that the lower-

frequency and higher-frequency information in images have

different levels of complexity and should be restored by

models of different representational capacity. Inspired by

this, we propose a novel embedded block residual network

(EBRN) which is an incremental recovering progress for

texture super-resolution. Specifically, different modules in

the model restores information of different frequencies. For

lower-frequency information, we use shallower modules of

the network to recover; for higher-frequency information,

we use deeper modules to restore. Extensive experiments

indicate that the proposed EBRN model achieves superior

performance and visual improvements against the state-of-

the-arts.

1. Introduction

Single-image super-resolution (SISR) has attracted ex-

tensive attention in both academia and industry. This tech-

nique aims at recovering a high-resolved (HR) image from

a single low-resolved (LR) one, which offers an opportuni-

ty of overcoming resolution limitations in various computer
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†D.Tao is the corresponding author.
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Figure 1. The Barbara image from the Set14 dataset with an up-

scaling factor 4.

vision applications, such as security, medical imaging [37],

and object recognition [3]. The problem of SISR is ill-posed

since there exist multiple HR solutions for any LR input. To

overcome this issue, most methods such as those based on

deep convolutional neural networks constrain the solution

space by learning a mapping function from external low-

and high-resolution exemplar pairs or by involving a priori

knowledge on the HR feature space.

Learning-based methods are placed in the top performer-

s in literatures, especially deep or wide convolutional neu-

ral networks because of their high representational capacity.

With extensive parameters and a good learning process, the

models have the ability of fitting on a large number of train-

ing data and that of exploiting the underlying structures of

natural images. Most methods advocate to design an end-

to-end learning process that facilitates both training and in-

ference. The performance improvement in such a design

comes from an increase of the parameter number and the

elaboration of neural connection. However, the resultant

complex models usually raise high consumption of compu-

tation and memory, which hinders their real-world applica-

tions.

The reason of the above issue is that the deep model-

based methods fail to consider the frequency characteristics

of images which is, however, widely used in convention-

al image processing techniques. The characteristics state
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that natural images consist of different frequency bands of

information, with each band containing structures and tex-

tures of different complexity. Hence, different bands of in-

formation are extracted by using different base functions,

as in wavelet analysis [6]. In image restoration tasks in-

cluding SISR, the recovery of each band information re-

quires a specific restoring function. Considering that the

feature distribution varies across different frequency bands,

lower-frequency information is composed of simpler struc-

tures and textures where simpler functions are needed for

restoration; higher-frequency information consists of com-

plex structures and textures where more complex restoring

functions are expected.

At this point, the existing deep model-based methods do

not distinguish the image frequency. The task of each layer

in those models is to recover all information based on the

features of the preceding layer. For shallow layers, the pa-

rameters may fit on the low-frequency information (which

has simple textures), but underfit on the high-frequency in-

formation (which has complex textures). For deep layers,

the parameters may fit on the high-frequency information,

but overfit on the low-frequency information. The incon-

sistency between the model complexity and the frequency

is a key issue that limits the performance of those deep

CNN-based methods. While residual connection provides

a way to split the information as those recovered and those

not-recovered, the residual architectures have no correlation

with the frequency-splitting principle. Instead, they advo-

cate that the residual connection transfers the information of

shallow layers to deep layers in a dense and direct way. To

bridge the connection between the model architecture and

the frequency bands, elaboration of the residual idea is re-

quired. We illustrate an example in Figure 1, from which we

see that the textures on the book cannot be well restored by

EDSR [29]. That method takes advantage of residual con-

nection which, however, fails to recover the simple textures

by using a very deep architecture. Instead, complex curves

appear in the result. Our result exhibits better visual proper-

ties. This comparison validates the drawback of EDSR [29]

that deep layers are easily over-fitted on the low-frequency

information of the image.

Based on the above analyses, in this paper, we propose

an embedded block residual network (EBRN) for single im-

age super-resolution that restores the textures of different

frequency by using sub-networks of different complexity.

Specifically, the block residual module (BRM) is the basic

module in our model, which splits the data flow as a super-

resolution flow and a back-projection flow. The former flow

restores most structures and textures of lower frequency,

while the later flow calculates the information of higher fre-

quency which is remained to be recovered by deeper lay-

ers. The whole model is an embedding of multiple BRMs.

Each BRM is stacked on the back-projection flow of its an-

tecedent BRM. In this way, a BRM is responsible for the

recovery of information at lower frequency, passing the in-

formation of higher frequency to deeper BRMs. To fuse

the outputs of all BRMs, we also propose a recurrent fusion

technique that stabilizes the feature flow and the gradient

flow in training and encourages a faster convergence rate of

training. Extensive experiments on multiple SISR dataset-

s illustrate the state-of-the-art performance of the proposed

method and validate the correlation of the model complexity

and the image frequency as discussed above. In summary,

the main contributions of this work are as follows:

1. We propose a motivation that the information of dif-

ferent frequency in images should be restored by the

models of different complexity. In a bad case, the in-

formation of lower frequency could be over-recovered

by a deeper model while the information of higher fre-

quency would be under-recovered by a shallower mod-

el.

2. We propose a block residual module (BRM) that tries

to restore the image structures and textures while pass-

ing the hard-to-recovered information to deeper mod-

ules. This allows each BRM to focus on the informa-

tion of proper frequency, which is important for en-

suring the correlation of model complexity and image

frequency.

3. We propose a novel technique for embedding multi-

ple BRMs, which can effectively improve the final re-

construction quality based on the outputs of each mod-

ule. We also empirically demonstrate that the proposed

model is superior over the state-of-the-arts.

2. Related work

SISR is an active research field and has a long history.

Existing literatures could be grouped into three categories:

the interpolation-based methods [20, 9], the reconstruction-

based methods [5, 38], and the learning-based methods.

While the conventional methods have a long list, here we re-

view the top performers, especially the deep learning-based

methods, due to the limit of page length.

Dong et al. [7] introduced CNN [26] into the SR task

and proposed the SRCNN model that was composed of a

three-layer network to learn the mapping from LR images to

HR images. This model achieved much better performance

compared with the traditional algorithms. Kim et al. [21]

proposed the VDSR model that used a very deep network

with 20 layers which produced improved performance com-

pared with SRCNN. A main contribution of this method is

to employ residual learning which encourages a fast conver-

gence rate in the training process. Lai et al. [25] proposed

the lapSRN method that took the original LR images as in-

put and progressively reconstructed the sub-band residuals
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of HR images. Kim et al. [22] proposed the DRCN method

which was the first to involve recursive learning into SIS-

R. To reuse the features of each layer in CNN, Tong et al.

[42] developed the DenseNet [14] by increasing dense con-

nections among the convolutional layers. Lim et al. [29]

designed the EDSR model by removing unnecessary mod-

ules in conventional residual networks, which achieved the

champion of the NTIRE2017 SR Challenge [40]. Sajjadi

et al. [35] compared the performance of different combina-

tions of loss functions in EnhanceNet, and empirically draw

the conclusion that the combination of perceptual loss, tex-

ture matching loss, and anti-loss worked best. Li et al. [39]

proposed MenNet to address the issue that a deep network

lacks long-term memory. This method introduced a mem-

ory block which consisted of a recursive unit and a gate

unit, to explicitly mine persistent memory through an adap-

tive learning process. In order to reduce model parameters

and model practicability, Ahn et al. [1] proposed a cascad-

ing residual network (CARN) that achieved good perfor-

mance by using a cascading mechanism with few parame-

ters. Haris et al. [11] developed a novel architecture which

was named as DBPN. This model exploited iterative up- and

down- sampling layers, providing an error feedback mech-

anism for project errors at each stage. DBPN also improved

super-resolution performance, yielding superior results and

in particular establishing new state-of-the-art performance

for large scale factors such as ×8 on multiple datasets. The

enhanced version D-DBPN achieved the best performance

in ×8 enlargement in NTIRE2018 [41] and won the cham-

pionship of NTIRE2018 SR Challenge. Zhang et al. [48]

proposed the RDN model which differed from other CN-

N models, i.e., this model did not make full use of hier-

archical features of LR images. Hui et al. [16] proposed

the information distillation network (IDN) with lightweight

architecture and low computational complexity. Zhang et

al. [47] stated that previous SR models treated each chan-

nel equally, hindering the representational capacity of CNN.

They proposed RCAN to solve the problem by introducing

channel attention mechanism. Li et al. [28] proposed the

MSRN model to explore the multi-scale information of LR

images.

The above deep learning-based methods were proposed

to improve the PSNR/SSIM indexes of the restored images.

However, existing studies indicate that the solution of the

L2 objective function is an averaged version of multiple real

HR solutions. Regarding this, the perceptual loss [19] was

investigated to recover visually pleasing results for textures.

For example, Ledig et al. [27] proposed SRGAN which in-

ferred photo-realistic natural images. The results did not

yield a high PSNR value, but produced realistic visual ef-

fects by using a perceptual loss consisting of an adversar-

ial loss and a content loss. Wang et al. [43] proposed the

SFTGAN model which involved a spatial feature modula-

Figure 3. The block residual module.

tion layer that integrated a priori of semantic categories into

the network, generating more realistic and visually pleasing

textures. Park et al. [32] proposed the SRFeat model to al-

leviate the issue that GAN-based approaches tend to include

less meaningful high-frequency noise which is irrelevant to

the input image. This model involved an additional discrim-

inator on the feature domain. Wang et al. [44] developed

ESRGAN to remove the artificial artifacts in the results of

SRGAN by compensating an improvement sub-network.

The above literature review reveals that a significant im-

provement on SISR has been achieved by deep learning-

based methods, especially CNNs and GANs. While the

performance in the cases of scale factors ×2, ×3, and ×4
may reach a bottleneck, the restoration of ×8 becomes a

main interest in recent publications. With the increase of

the scale factor, we find that existing models have no con-

cern about image frequency and model complexity, result-

ing in over-restoration of simple textures by using complex

models, and under-restoration of complex textures by using

simple models. Therefore, to alleviate this issue, this work

starts from a different viewpoint, developing a proper archi-

tecture that associates the information of a frequency range

with the model of appropriate complexity.

3. Proposed Method

In this section, we introduce the details of the proposed

EBRN model and analyze how the information of different

frequency is processed by the network. The architecture

is illustrated in Figure 2, where the basic module is BRM

which is presented in the following.

3.1. Block Residual Module

The block residual module (BRM) aims at restoring parts

of the HR information while passing the remained signals to

deeper modules for restoration. At this regard, the module

contains two data flow: the super-resolution flow and the

back-projection flow.

The super-resolution flow is a basic deconvolution net-

work which takes the LR feature maps Ix as input and pro-

cesses by using a stack of a deconvolutional layer (also
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Figure 2. The architecture of the proposed embedded block residual network.

known as transposed convolution) and three convolutional

layers. The output of this flow is the super-resolved fea-

ture maps Ox, where x is the index of BRM in the mod-

el. An alternative choice of the deconvolutional layer is the

sub-pixel convolutional layer [36] which could improve the

performance but yielding more parameters. Considering the

tradeoff between performance and model efficiency, the de-

convolutional layer is selected for up-scaling.

To compute the information that the super-resolution

flow has not recovered, the back-projection flow employs

an operation which first down-samples the deconvolved fea-

ture maps to the LR spatial size and then compute a minus

between the down-sampled feature maps and the input LR

feature maps of this module. The computed residual con-

veys the information that the super-resolution flow fails to

recover. This residual is then processed by a local residu-

al learning stage, outputting a set of encoded features Ix+1

which forms the input of the next BRM.

The design of BRM is illustrated in Figure 3. All the

convolutional layers utilize 3 × 3 × 64 convolutional ker-

nels. The layers except that for down-sampling are set with

the stride of 1 × 1 and the padding size of 1 × 1. The pa-

rameters of the down-sampling layer are set according to

the up-scaling factor, i.e., the output feature maps have the

same spatial size as the input feature maps. The local resid-

ual learning stage is to encourage a fast convergence rate of

training, as in other residual learning methods. With such

a design, we empirically find that the super-resolution flow

could restore information of lower frequency, and the infor-

mation of higher frequency which is difficult to be recov-

ered is passed to later modules.

3.2. Embedded Block Residual Network

The embedded block residual network (EBRN) is com-

posed of multiple BRMs, as shown in Figure 2. Before the

first BRM, an initial feature extraction module is presented

to formulate the shape of the feature maps. In this module,

the first convolutional layer produces 256-channel feature

maps, followed by which two convolutional layers are s-

tacked with each outputting 64-channel feature maps. The

convolutional kernel size in these layers is 3× 3.

The BRMs are composed in an embedding way, instead

of a simple stacking way. That is, the first BRM is stacked

on the output of the initial feature extraction module, the

second BRM is concatenated to the output of the back-

projection flow of the first BRM, and so on. Each BRM is

responsible for restoring the residual feature maps produced

by the back-projection flow of its antecedent BRM. Note

that the last BRM only contains the super-resolution flow

where the back-projection flow is dropped. In this way, the

information of lower frequency is only passed through the

shallower BRMs which have low model complexity. The

issue of overfitting on this part of information can be avoid-

ed. On the other hand, the information of higher frequency

is flowed to deeper BRMs which have higher model com-

plexity, where the underfitting problem can be alleviated.

Therefore, a deeper BRM always tries to restore what has

not been restored by shallower BRMs. This is consisten-

t with our motivation. Another important point is that we

associate the information of certain frequencies with a sub-

network of proper complexity. It is not required to fit a sim-

ple model on complex textures and also not to fit a com-

plex model on simple structures. Hence, the number of the

parameters in those sub-networks could be significantly re-
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Figure 4. The residual module.
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Figure 5. The up-projection and down-projection units in DBPN.

duced yet retaining a high restoration performance on the

corresponding information.

To combine the outputs of all BRMs, we note that the

recovered information by deep modules could help improve

the restoration of shallow modules. Regarding this, we pro-

pose a recursive fusion technique instead of simple summa-

tion. Specifically, the outputs of the super-resolution flows

of two adjacent BRMs are summed, which is then followed

by a convolutional layer. Suppose that the output of the

(x+ 1)-th module is Ox+1. The fusion process is

O′

x
= f(Ox +O′

x+1), (1)

where f is the function of the convolutional layer. Such a

recursive fusion process is conducted until the first BRM is

reached. Compared with simple summation, this technique

allows us to process the outputs in a smooth way, result-

ing in better reconstruction. Moreover, to avoid the gradi-

ent vanishing issue in training, we propose to connect the

output of each BRM directly to the image reconstruction

module. As shown in Figure 2, we combine the outputs of

all BRMs through a concatenation layer followed by a re-

construction sub-network. This design has two advantages:

1) the error propagation way to deep BRMs is shortened,

encouraging a fast convergence rate in training, and 2) the

intermediate feature maps of the model are reused for re-

construction, which is beneficial. The reconstruction sub-

network utilizes 3× 3× 64 convolutional kernels, while the

last layer produces a 3-channel RGB image.

3.3. Loss Function

Existing loss functions for SISR include the L1 loss,

the L2 loss, the adversarial loss [10], and the perceptual

loss [19]. The current work aims at restoring an image that

is as close as possible to the original HR image, and thus

pixel-wise losses are selected. We follow the suggestion of

Zhao et al. [49] which says that a SR model trained with

the L2 loss function does not guarantee better PSNR/SSIM

performance than with other loss functions. Here, we first

select the L1 loss as the training objective of the proposed

model, which is shown to speed up the convergence of train-

ing compared with the L2 loss. As a second step, we em-

ploy the L2 loss to finetune the model, which could result in

higher PSNR performance. More details about training can

be found in Section 5.2.

4. Discussions

In this section, we mainly discuss the difference between

the proposed model and its related methods.

4.1. EBRN vs. Residual Network

Residual networks [13] have recently exhibited excellen-

t performance in various computer vision tasks. In SIS-

R, the first model using the residual learning idea is VD-

SR [21], which achieved superior performance compared

with its competitors. The advantage of residual networks

relative to traditional CNN models is that residual learning

promotes the transmission of features in the network, and

alleviates the gradient vanishing problem, making the net-

work easier to train.

In this work, we exploit the residual learning idea, which

is different from the conventional residual networks. For ex-

ample, as shown in Figure 3, the proposed model does not

use the batch normalization (BN) [17] layer since the BN

layer limits the range flexibility of the intermediate features

during feature normalization [29]. Another important dif-

ference comes from how the residual is computed and what

the residual conveys. In the residual networks, the residual

signal is the difference between the input and the output. In

the proposed model, one type of residual signal is the infor-

mation of a certain frequency range; another type of residual

signal is the difference between the original LR features and

the back-projected LR features. In each BRM, the second

residual signal is important for SR since it explicitly con-

veys which information is to be recovered by the following

BRM.

4.2. EBRN vs. Deep BackProjection Network

A similar method to the current work is the deep back-

projection network (DBPN) proposed by Haris et al. [11].

This method exploits iteratively up- and down-sampling

layers, providing an error feedback mechanism for project-

ing errors at each stage. The errors can effectively improve

the restoration by deep layers in the model.

The difference between the two methods comes from t-

wo aspects: 1) in each up- and down-projection unit, DBPN

directly maps the LR residual to the HR space, whereas the

LR residual in our model contains higher frequency infor-

mation which is fed into deeper sub-networks for restora-
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ferent frequency bands.

tion; and 2) DBPN exploits the LR residual and the HR

residual with the goal that each up- and down-projection u-

nit tries to minimize these residuals, whereas our method

relates the residual signals to the information of different

frequencies and each BRM is responsible for restoring the

corresponding information. The difference of motivation

results in that the proposed model has fewer parameters than

DBPN, yet producing improved performance over DBPN.

5. Experiments

In this section, we present the experimental details and

analyses to validate the effectiveness of the propose model.

5.1. Datasets

Following [29], we use the DIV2K [40] dataset for train-

ing, which is a high-quality (2K resolution) image restora-

tion dataset containing 800 training images, 100 validation

images, and 100 test images. The up-scaling factors in-

cluding ×2, ×4, and ×8 are used for training and model

evaluation. 5 standard benchmark datasets are employed

during testing, among which Set5 [4], Set14 [46], BSD-

S100 [2] consist of natural scenes, Urban100 [15] contains

urban scenes with large amounts of regular texture patterns,

and Manga109 [31] is a dataset of Japanese manga.

5.2. Implementation Details

To prepare the training data, we synthesize the LR im-

ages by down-sampling the training HR images using bicu-

bic interpolation. Three training datasets are collected with

each corresponding to one of the up-scaling factors, i.e., ×2,

×4, and ×8. Data augmentation techniques are utilized in-

cluding horizontal, vertical flipping, and 90◦ rotation. Re-

garding the training details, the proposed model takes the

Method
Set5 Set14

PSNR SSIM PSNR SSIM

EBRN(summation) 32.63 0.9018 28.89 0.7895

EBRN(recursive fusion) 32.79 0.9032 29.01 0.7903

Table 1. The comparison of different feature fusion techniques.

Red indicates the best performance (×4).

Model VDSR DRCN lapSRN DRRN MemNet IDN EBRN

time 0.071 0.984 0.023 4.4373 5.887 0.007 0.034

Table 2. Comparison of the running time (in seconds) on BSD100

(×4).

#BRMs 4 5 6 7 8 9 10

PSNR 32.05 32.23 32.35 32.44 32.51 32.65 32.79

Table 3. Performance v.s. number of BRMs on Set5 (×4).

RGB-channel images as input and output. The LR images

are randomly cropped as 64 × 64 patch images which are

then fed into the model with the batch size of 32. The sizes

of the ground-truth HR patch images are determined by the

up-scaling factor. The model weights are initialized using

the method proposed in [12] and the biases are initialized

as zero. The parametric rectified linear units (PRelu) [12]

is used as the activation function. To ensure numeric sta-

bility during training, we scale the pixel range of LR and

HR images to [0, 1]. The Adam [23] optimization algorith-

m is employed with β1 = 0.9, β2 = 0.999, and ε = 10−8.

The learning rate is initially set to 10−4 and decreased by a

factor of 10 at every 100 epochs. All experiments are im-

plemented using the Pytorch [33] framework and evaluated

on the NVIDIA TITAN X GPU devices.

5.3. Model Analyses

In this section, we conduct a series of experiments to

validate the proposed motivation and investigate the effects

of parameters on model performance.

Recall the motivation that the information of different

frequency range should be processed by models of differ-

ent complexity. To validate this, we illustrate the energy

distributions of different-BRM outputs across different fre-

quency bands in Figure 6. The energy distribution across

different frequency bands is computed based on the wavelet

coefficients of different levels. The result indicates that the

outputs of shallower BRMs contain more lower-frequency

information while the outputs of deeper BRMs tends to re-

cover more higher-frequency information.

We also investigate the proposed model via ablation s-

tudies, including the correlation between the model perfor-

mance and the feature fusion technique, and the correlation

between the performance and the number of BRMs. Table

1 reveals the superiority of the proposed recursive feature

fusion technique, compared with a simple summation op-
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Figure 7. Four examples for the visualization of different restorations.

Method Scale
Set5 Set14 BSD100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 2 33.66 0.9299 30.24 0.8688 29.56 0.8431 26.88 0.8403 30.80 0.9339

SRCNN [7] 2 36.66 0.9542 32.45 0.9067 31.36 0.8879 29.50 0.8946 35.60 0.9663

VDSR [21] 2 37.53 0.9590 33.05 0.9130 33.05 0.8960 30.77 0.9140 37.22 0.9750

N
3Net [34] 2 37.57 - - - 31.98 - 30.80 - - -

DRCN [22] 2 37.63 0.9588 33.04 0.9118 31.85 0.8942 30.75 0.9133 37.57 0.9730

LapSRN [25] 2 37.52 0.9591 33.08 0.9130 31.08 0.8950 30.41 0.9101 32.27 0.9740

MemNet [39] 2 37.78 0.9597 33.28 0.9142 32.08 0.8978 31.31 0.9195 32.72 0.9740

EDSR [29] 2 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.10 0.9773

D-DBPN [11] 2 38.09 0.9600 33.85 0.9190 32.27 0.9000 32.55 0.9324 38.89 0.9775

IDN [16] 2 37.83 0.9600 33.30 0.9148 32.08 0.8985 31.27 0.9196 - -

NLRN [30] 2 38.00 0.9603 33.46 0.9159 32.19 0.8992 31.81 0.9249 - -

MSRN [28] 2 38.08 0.9605 33.74 0.9170 32.23 0.9013 32.22 0.9326 38.82 0.9868

CARN [1] 2 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 - -

RDN [48] 2 38.24 0.9614 34.01 0.9212 32.34 0.9017 32.89 0.9353 39.18 0.9780

RCAN [47] 2 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786

EBRN(ours) 2 38.35 0.9620 34.24 0.9226 32.47 0.9033 33.52 0.9402 39.62 0.9802

Bicubic 4 28.42 0.8104 26.00 0.7027 25.96 0.6675 23.14 0.6577 24.89 0.7866

SRCNN [7] 4 30.48 0.8628 27.50 0.7513 26.90 0.7101 24.52 0.7221 27.58 0.8555

VDSR [21] 4 31.35 0.8830 28.02 0.7680 27.29 0.0726 25.18 0.7540 28.83 0.8870

N
3Net [34] 4 31.50 - - - 27.34 - 25.23 - - -

DRCN [22] 4 31.53 0.8854 28.02 0.7670 27.23 0.7233 25.14 0.7510 28.97 0.8860

LapSRN [25] 4 31.54 0.8850 28.19 0.7720 27.32 0.7270 25.21 0.7560 29.09 0.8900

MemNet [39] 4 31.74 0.8893 28.26 0.7723 27.40 0.7281 25.50 0.7630 29.42 0.8942

EDSR [29] 4 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148

D-DBPN [11] 4 32.47 0.8980 28.82 0.7860 27.72 0.7400 26.38 0.7946 30.91 0.9137

IDN [16] 4 31.82 0.8903 28.25 0.7730 27.41 0.7297 25.41 0.7632 - -

NLRN [30] 4 31.92 0.8916 28.36 0.7745 27.48 0.7306 25.79 0.7729 - -

MSRN [28] 4 32.07 0.8903 28.60 0.7751 27.52 0.7273 26.04 0.7896 30.17 0.9034

CARN [1] 4 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837 - -

RDN [48] 4 32.47 0.8990 28.81 0.7871 27.72 0.7419 26.61 0.8028 31.00 0.9151

PFF [24] 4 32.74 0.9021 28.98 0.7904 - - - - - -

RCAN [47] 4 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173

EBRN(ours) 4 32.79 0.9032 29.01 0.7903 27.85 0.7464 27.03 0.8114 31.53 0.9198

Bicubic 8 24.40 0.6580 23.10 0.5660 23.67 0.5480 20.74 0.5160 21.47 0.6500

SRCNN [7] 8 25.33 0.6900 23.76 0.5910 24.13 0.5660 21.29 0.5440 22.46 0.6950

VDSR [21] 8 25.93 0.7240 24.26 0.6140 24.49 0.5830 21.70 0.5710 23.16 0.7250

LapSRN [25] 8 26.15 0.7380 24.35 0.6200 24.54 0.5860 21.81 0.5810 23.39 0.7350

MemNet [39] 8 26.16 0.7414 24.38 0.6199 24.58 0.5842 21.89 0.5825 23.56 0.7387

EDSR [29] 8 26.96 0.7762 24.91 0.6420 24.81 0.5985 22.51 0.6221 24.69 0.7841

MSRN [28] 8 26.59 0.7254 24.88 0.5961 24.70 0.5410 22.37 0.5977 24.28 0.7517

D-DBPN [11] 8 27.21 0.7840 25.13 0.6480 24.88 0.6010 22.73 0.6312 25.14 0.7987

RCAN [47] 8 27.31 0.7878 25.23 0.6511 24.98 0.6058 23.00 0.6452 25.24 0.8029

EBRN(ours) 8 27.45 0.7908 25.44 0.6542 25.12 0.6079 23.32 0.6498 25.51 0.8085

Table 4. The average performance of the state-of-the-art methods. Red font indicates the best performer and blue font indicates the second

best performer.

eration. The two models have the same number of BRMs

(i.e., 10). Table 3 lists the performance of EBRN models

with different sizes.

The number of model parameters is an important fac-

tor for SISR in real applications. As discussed in previ-

ous sections, the proposed embedding strategy could signif-

icantly reduce the number of parameters, which is validat-

ed here by comparing with the state-of-the-arts. As shown

in Figure 9, the EBRN model with 10 BRMs exhibits bet-

ter performance and fewer parameters than MDSR [29], D-

DBPN [11], RCAN [47], and EDSR [29] which are the re-

cently published SR methods. EBRN is also superior over

the conventional small models including SRDenseNet [42],

DRCN [22], LapSRN [25], VDSR [21], FSRCNN [8], and

SRCNN [7]. These results indicate that the proposed EBRN

performs well with limited amount of parameters, owing to

its elaborate architecture.

5.4. Comparison with Stateofthearts

In this section, we compare the proposed model with the

state-of-the-arts including SRCNN [7], VDSR [21], DRC-

N [22], lapSRN [25], EDSR [29], RDN [48], IDN [16], M-
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Figure 8. Visualization of the selected parts restored by different methods. The up-scaling factor is 4.
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Figure 9. PSNR vs. the number of parameters. The comparison is

conducted on Set5 with the ×4 up-scaling factor.

SRN [28], D-DBPN [11], and RCAN [47]. The peak signal-

to-noise ratio (PSNR) [18] and the structural similarity in-

dex (SSIM) [45] are employed as the evaluation metrics.

Following a common setting and for fair comparison, we

use the luminence channel (Y) of the transformed YCbCr

space for quality measurement. While the proposed model

takes RGB images as input, the Y-channel output is extract-

ed after color conversion. The LR images are synthesized

by using bicubic interpolation. Table 4 presents the ×2, ×4,

and ×8 performances of different methods, from which we

see that the proposed method achieves the best PSNR and

SSIM scores in all cases. Regarding the inference time, we

use the published codes of the competitors which are eval-

uated on a server with 4.2GHz Intel i7 CPU, 32GB RAM,

and a Nvidia TITANX GPU card. In Table 2, we show the

comparison of running time of several efficient methods, in-

dicating that the proposed model fullfills the requirements

of real-time applications. We select four examples for visu-

alization, as shown in Figure 7. The details of the examples

are zoomed in and visualized in Figure 8, from which it

is observed that the proposed method can synthesize more

pleasing textures and structures. The competitors produce

flawed textures which may be caused by underfitting of the

model on complex textures or overfitting of the model on

simple areas.

6. Conclusions

In this paper, we are motivated by that information

of different frequency should be restored by models of

different complexity, and propose an embedded block

residual network for single image super-resolution. We

advocate that the limitation of existing methods is caused

by underfitting of the models on complex textures and

overfitting on simple structures. As such, we develop

a block residual module that could restore parts of the

image information while passing the remained information

to deeper layers. The modules are embedded to form

a deep architecture. An elaborate sub-network is also

designed for effective feature fusion. Using the proposed

model, the information of lower frequency is restored by

shallower BRMs while the information of higher frequency

is recovered by deeper BRMs. Comprehensive experiments

demonstrate the effectiveness of the proposed idea.
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