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Abstract

Zero-shot object detection (ZSD) is a relatively unex-

plored research problem as compared to the conventional

zero-shot recognition task. ZSD aims to detect previously

unseen objects during inference. Existing ZSD works suf-

fer from two critical issues: (a) large domain-shift between

the source (seen) and target (unseen) domains since the two

distributions are highly mismatched. (b) the learned model

is biased against unseen classes, therefore in generalized

ZSD settings, where both seen and unseen objects co-occur

during inference, the learned model tends to misclassify un-

seen to seen categories. This brings up an important ques-

tion: How effectively can a transductive setting1 address the

aforementioned problems? To the best of our knowledge, we

are the first to propose a transductive zero-shot object de-

tection approach that convincingly reduces the domain-shift

and model-bias against unseen classes. Our approach is

based on a self-learning mechanism that uses a novel hybrid

pseudo-labeling technique. It progressively updates learned

model parameters by associating unlabeled data samples to

their corresponding classes. During this process, our tech-

nique makes sure that knowledge that was previously ac-

quired on the source domain is not forgotten. We report

significant ‘relative’ improvements of 34.9% and 77.1% in

terms of mAP and recall rates over the previous best induc-

tive models on MSCOCO dataset.

1. Introduction

The availability of large-scale annotated datasets and

high capacity deep networks have paved the way for rapid

progress in supervised learning tasks. As a result, deep

CNNs are now performing as well as humans on special-

ized tasks of visual recognition and fine-grained categoriza-

tion [17, 33]. However, in several domains, acquiring large-

scale annotations is not viable due to the requirement of

expert knowledge or simply due to scarcity of visual sam-

ples in the real world (e.g., rare species). Zero-shot learn-

1In a transductive ZSD setting, unlabeled test examples are available

during model training.
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Figure 1: We propose a self-learning approach based on pseudo-

labeling for transductive ZSD. (1) Unlabeled data is fed to the in-

ductive model to (2) generate fixed pseudo-labels. (3) The Trans-

ductive model is initialized with an inductive model. (4) Unla-

beled data is fed to the transductive model to generate (5) dynamic

labels. (6) Fixed and dynamic labels are then fed to the transduc-

tive model to interactively update it (4-5-6). The initial decision

boundary of an inductive model (solid black line) is updated to a

modified decision boundary (blue dashed line) after transductive

learning.

ing (ZSL) addresses such scenarios where we do not have

any visual examples for the unseen classes during training

[23, 30]. Traditional ZSL approaches have been limited to

recognition (classification) setting.

Zero-shot object detection (ZSD) is a recently-

introduced problem that aims to simultaneously locate and

categorize unseen object classes. Compared to the recogni-

tion task, ZSD is far more challenging due to the ill-posed

nature and inherent complexity of localizing totally unseen

categories. The problem is compounded when we consider

a generalized ZSD setting, which assumes both seen and

unseen objects can co-occur during inference. Existing ef-

forts [1, 3, 24, 38, 22] to address the ZSD problem explore
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an inductive setting, which considers only labeled examples

in the source domain for training. In practice, there exists

a large domain-gap between the source (seen objects) and

target (unseen) domains. To circumvent this gap, a trans-

ductive setting for ZSL assumes that a part of the unlabeled

target domain samples are available during training.

Given the challenging nature of the ZSD problem, it is

of great interest to study how transductive settings can help

in dealing with domain-shift [4] and model-bias [2] prob-

lems. In this work, we provide the first solution to trans-

ductive ZSD and generalized ZSD problems. The transduc-

tive learning paradigm allows a method to take advantage

of unlabeled test data. The main insight used in our ap-

proach is that the learning acquired on the seen classes can

be used to resolve ambiguities in the unlabeled target do-

main images. We progressively assign pseudo-labels to the

unlabeled data, which are then used to update model param-

eters without forgetting the previously acquired learning on

the source domain. Fig. 1 illustrates an overview of our ap-

proach.

Our main contributions are as follows: (1) We propose a

single-stage object detector for transductive zero-shot learn-

ing that learns to optimally combine semantic and visual

domain cues. (2) To leverage unlabeled target domain data,

our solution introduces a novel pseudo-labeling strategy

that dynamically associates unlabeled samples with their re-

spective classes. (3) To retain concepts previously learned

on the source domain, we propose a fixed pseudo-labeling

objective. (4) Our experiments demonstrate that the novel

pseudo-labeling strategy effectively reduces both domain-

shift and model-bias against unseen classes, leading to new

state of the art on ZSD. We obtain 3.77% and 20.9% abso-

lute boost in mAP and recall rate which translate to relative

gains of 34.9% and 77.1%, respectively, on the challenging

MSCOCO dataset.

2. Related Work

Transductive zero-shot learning: To alleviate the do-

main shift problem in ZSL, transductive settings have been

proposed. Rohrbach et al. [27] explored the manifold struc-

ture of unseen classes by graph-based label propagation. [5]

extended the label propagation with a multi-view hyper-

graph. Several approaches adopt a joint learning frame-

work to train on labeled and unlabeled data separately

[7, 11, 36, 32]. Such training can be in semantic space

[7], visual space [11] or a latent space [36, 32]. Few other

efforts attempt to refine visual-semantic embeddings iter-

atively with unlabeled unseen data [35, 12]. A domain-

invariant projection is learnt in [37] that maps visual fea-

tures to semantic embeddings and then reconstructs back

the same visual feature. Recently, [28] described a trans-

ductive unbiased embedding to improve generalized ZSL

performance. All past works in the transductive literature

deal with only ‘object recognition’, which is an fundamen-

tal but easier problem. In this paper, we study transductive

setting for the challenging ‘zero-shot detection’ problem.

Pseudo-annotation for ZSL: In the literature, pseudo-

annotation has been used for ZSL in two different scenar-

ios. Firstly, given the unseen class names available during

training, these approaches try to learn the cluster structure

of the unseen world. Typically, this is achieved by building

a classifier for unseen classes by selecting pseudo-samples

from seen images [6] or by generating pseudo-instances

[31, 19, 20]. The main goal is to convert ZSL to a tradi-

tional supervised learning problem. Secondly, the pseudo-

labels are assigned to unlabeled target data during transduc-

tive settings of ZSL/GZSL [7, 29, 34]. The goal is to convert

ZSL to a domain adaptation problem. These approaches try

to match the distribution of training and test data. Since

we consider a transductive setting, current work follows the

second scenario but in the context of the ZSD task. Differ-

ent from previous works, we adopt a hybrid pseudo-labeling

approach that combines fixed and dynamic updates to ob-

tain more accurate detections in a transductive setting.

Zero-shot object detection (ZSD): The traditional ob-

ject detection task has been well-explored, e.g., two-stage

detectors like FasterRCNN [26], RFCN [10] and single-

stage detectors like SSD [18], YOLO [25] and RetinaNet

[15]) have been proposed. In comparison, ZSD has emerged

as a relatively new research area [1, 3, 24, 38, 22]. Among

them, [3, 38] build their architecture on YOLO, [24] on

FasterRCNN and [22] on RetinaNet. [1] proposed a

background-aware approach for ZSD based on EdgeBox-

style object proposals without relying on any end-to-end

framework. However, none of the ZSD methods ever con-

sidered a transductive setting of this problem. In this pa-

per, we attempt to address this problem in a fully trainable

pipeline. We built on top of the RetinaNet architecture for

ZSD proposed in [22] as it reports the best performance in

this area.

3. Transductive Zero-Shot Detection

Given a limited amount of seen data, ZSL aims to gen-

eralize to a highly diverse set of unseen objects. In reality,

the data distribution of unseen (target) is significantly dif-

ferent to that of seen (source). This problem is called the

‘domain-shift problem’ and poses a significant challenge to

generalization of a ZSL approach [5]. To address this, we

adopt the transductive setting for ZSL, i.e., using unlabeled

test data during training.

During the training stage, a ZSL model observes only

seen instances that makes the trained model biased to-

wards only seen classes. In generalized zero-shot learn-

ing (GZSL), where both seen and unseen examples ap-

pear during the inference stage, this behavior causes seri-

ous problems [28]. In most of the cases, a biased trained
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model predicts only seen categories irrespective of the in-

put. To address this issue, we propose a pseudo-labeling

scheme that not only maximizes the prediction score of the

pseudo-ground truth class but also maximizes unseen scores

in transductive settings. Remarkably, while previous works

on ZSL only addressed zero shot recognition (ZSR) tasks

to solve the problems above, we focus on a more challeng-

ing zero-shot detection (ZSD) task. Next, we elaborate the

differences between our and previously considered settings

and highlight the challenges it presents.

Transductive ZSR vs. ZSD: These two tasks are funda-

mentally different. Firstly, during training with unlabeled

data in transductive ZSR, as only one object is present per

image, a model knows which images are coming from seen

and which from unseen data. This provides an important

supervision signal during training. However, in ZSD, one

image can contain multiple seen or unseen objects. For

example, MSCOCO [16] contains 7.7 object instances per

image. Therefore in a transductive ZSD, we know a test

image may contain one or more unseen objects, but dur-

ing training, both seen and unseen object annotations (la-

bel and bounding box) for test data are not present. Sec-

ondly, training of transductive ZSR often follows iterative

joint learning by considering seen and unseen data sepa-

rately [7, 11, 36, 32]. Such approaches generally work on

top of fixed deep features and are not end-to-end trainable.

In contrast, for transductive ZSD, we believe an end-to-end

model can improve the performance due to the complexity

of joint classification and localization.

Transductive GZSR vs GZSD: Using unseen data as un-

labeled during training creates a problem for Generalized

ZSR (GZSR) in transductive settings. This is because a

GZSR method has a high-level supervision signal showing

which objects are unseen (a single category is present in

each image). Therefore a GZSR approach precisely knows

which ones are seen objects and which examples belong to

the unseen distribution. Due to this reason, existing trans-

ductive ZSR methods are not extendable to the GZSD set-

ting. Song et al. [28] identify this problem and address it by

dividing the unlabeled data in two halves to use one half in

training and the other for testing. In this manner, although

seen/unseen level supervision is available for the first half,

the model does not exactly know the seen/unseen label for

the test set.

In this paper, we deal with transductive GZSD in a way

that no seen/unseen level supervision is available during

training. Furthermore, a key challenge for ZSD is how

to differentiate between background bounding boxes and

unseen ones during training. As we explain next, our ap-

proach uses a hybrid pseudo-labeling strategy to approach

this problem.
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Figure 2: Statistics of average projection scores for similar and

dissimilar unseen classes. Transductive learning provides higher

and lower projection scores for similar and dissimilar classes re-

spectively than inductive learning. Moreover, the gap between

similar and dissimilar projection scores is increased from induc-

tive to transductive learning.

3.1. Our Approach

Problem Formulation: Suppose, we have S seen and U
unseen classes with a total of C = S+U classes. For each

class, we have an associated d-dimensional semantic vector

acquired in a supervised (manual attributes) or unsupervised

manner (e.g., word2vec, GloVe). We represent the set of all

semantic vectors using W = [WS,WU] ∈ R
d×C, where

WS ∈ R
d×S and WU ∈ R

d×U are the collection of seen

and unseen semantic vectors, respectively. We have a set

Xtr consisting of Ntr training images where each image

contains one or more seen objects. Each seen object has

a ground-truth label ytr and bounding box coordinates btr.

Similarly, we have Nts images in the test set Xts, where

each image can have one or more objects from both seen

and unseen categories. For each object in the test set, we

denote the ground-truth label as yts and the true bounding

box as bts.

Given the semantics W, the set Xtr along with ground-

truth labels Ytr and the test image set Xts, we address

the following two problems: (a) Transductive ZSD: Pre-

dict category labels yts and object locations bts for only

‘unseen’ classes present in the set Xts. (b) Transductive

GZSD: Predict category labels yts and object locations bts

for both ‘seen and unseen’ classes present in the set Xts.

Below, we first outline the inductive ZSD setting

(Sec. 3.1.1) that acts as a precursor to our transductive ZSD

approach (Sec. 3.1.2).

3.1.1 Inductive ZSD

Given an input image I , an object detector model gener-

ates K anchor boxes {bi}
K
i=1

. We represent D-dimensional

visual feature vectors for each box, b as f ∈ R
D. The clas-

sification branch of the detector generates prediction scores,

p as follows:

p = σ(fTUW) (1)
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where, U ∈ R
D×d are learnable parameters and σ repre-

sents a sigmoid/softmax activation. The above relation in-

corporates semantic information (word vectors) within deep

networks that is necessary to perform zero-shot learning.

The learned projection U helps in aligning the feature vec-

tor f with the word vector of its corresponding seen class,

wy ∈WS. Another advantage of such prediction scoring is

that it treats visual to semantic (fTU onto W) and seman-

tic to visual (UW onto f ) domain projection in an identical

manner. We visualize the scores in Fig. 2. One can use

these scores while calculating standard focal loss to train

the detector in an end-to-end manner [15]:

FL(p, y) = −αt(1− pt)
γ log pt, pt =

{

p, if y = 1

1− p, otherwise.

where, p ∈ p represents an individual score, α and γ
are focal loss hyper-parameters. Depending on the con-

sidered setting, unseen word vectors may or may not be

present during training. Therefore, for clarity, we present

seen and unseen prediction scores as s = σ(fTUWS) and

u = σ(fTUWU) respectively. For later discussion, s and

u represent individual scores in s and u, respectively.

3.1.2 Transductive ZSD

The above scheme deals with conventional zero-shot de-

tection. In transductive learning, data for unseen classes

is available without any corresponding annotations. There-

fore, after a detector is trained on all available seen data,

we propose an intelligent pseudo-labeling scheme for these

extra unlabeled samples that can provide a valuable super-

visory signal for appropriate model training.

Our proposed approach has two complimentary compo-

nents, namely fixed and dynamic pseudo-labeling. The first

component aims to retain the previously acquired knowl-

edge on seen classes and use it to disentangle ‘seen’ objects

from the ‘unseen’ in the given unlabeled set. To this end, it

only assigns seen class pseudo-labels. The second compo-

nent aims to dynamically update the features and classifier

based on the unlabeled dataset. In this pursuit, it assigns

both ‘seen’ and ‘unseen’ object labels that continue updat-

ing as the learning progresses. In this manner, the model

starts with the easily classified samples to update its knowl-

edge about the unseen and gradually builds on initial con-

cepts to improve its performance.

Our unlabeled set can contain examples of both seen and

unseen classes, which makes ours a more challenging set-

ting since we do not explicitly know which samples are un-

seen. To address this challenging problem, we propose fixed

and dynamic pseudo-labeling techniques given the training

is already done on only seen data. Next, we explain both

pseudo-labeling approaches in detail.

(a) Fixed pseudo-labeling: Based on inductive learning

described in Sec. 3.1.1, we apply the trained detector on

unlabeled test data to detect seen objects. We use the de-

tected seen labels and bounding boxes as pseudo-labels and

keep this labeling as fixed throughout the transductive train-

ing. Since our proposed transductive ZSD setting does not

consider labeled seen data (in the unlabeled test set), such

pseudo-labeling can serve as a ground-truth label during the

transductive training. One may argue that a fixed pseudo-

labeling will hinder the training process, and an optimal

pseudo-labeling should be adaptive during training i.e., it

must continually update during the learning process. While

a dynamic sub-component of our approach will be intro-

duced in the next section, we note that it alone does not

work and a fixed pseudo-labeling is a vital component of our

transductive formulation. In fact, our fixed pseudo-labeling

scheme helps us preserve the initial learning acquired by the

model on seen examples where ground-truths were known.

Therefore, this labeling scheme seeks to achieve learning

without forgetting [13] and the fixed labels work as a distil-

lation term [9].

As mentioned above, after completing the inductive

phase of learning (Sec. 3.1.1), we perform fixed pseudo-

labeling on unlabeled test data to improve our learned

model. Then, we initialize our transductive model with the

weights of the pre-trained inductive model. At each iter-

ation, we calculate fixed pseudo-labeling loss. Suppose,

ŷ is the fixed pseudo-label of seen bounding boxes. Dur-

ing transductive training, we can calculate a fixed pseudo-

labeling based focal loss as follows:

Lf = −αt(1− ŝt)
γ log ŝt, ŝt =

{

s, if ŷ = 1

1−s, otherwise.
(2)

Fixed pseudo-labeling assigns only seen pseudo-labels to

images as the inductive training did not observe any unseen

information (both image and word vectors). Therefore, dur-

ing the transductive training, we want to update the fixed

seen pseudo labels as well as assign newly available unseen

pseudo-labels in a dynamic way. In this pursuit, we propose

dynamic pseudo-labeling which is introduced next.

(b) Dynamic pseudo-labeling: We propose a dynamic

pseudo-labeling technique based on seen and unseen pre-

diction scores, that keeps progressively updating in differ-

ent iterations. It has three components respectively for seen

prediction (Ld(s)), unseen prediction (Ld(u)) and unseen

prediction maximization (L′

d(u)),

Ld = Ld(s) + Ld(u) + L′

d(u). (3)

In each iteration, if a seen prediction s gets a score higher

than a pre-defined threshold (th), we assign a dynamic

pseudo-label to the corresponding seen class. The loss as-
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Figure 3: Network architecture. Green and red layers represent

U and W of Eq. 1.

sociated with the seen pseudo-label is given by,

Ld(s) = −αt(1− st)
γ log st, st =

{

s, if s > th

1− s, otherwise.

Similarly, in the same iteration, if an unseen prediction u
gets a score higher than th, we assign a dynamic pseudo-

label to the corresponding unseen class. The loss associated

with the unseen pseudo-label is given by,

Ld(u) = −βt(1− ut)
η log ut, ut =

{

u, if u > th

1− u, otherwise.

The underlying intuition behind dynamic pseudo-labeling is

to leverage the training so far to steadily improve the detec-

tion of unlabeled data. Note that our transductive training

begins with a pre-trained model on seen data. Therefore,

such pseudo-labeling is not random but important for fur-

ther training. Additionally, as the pre-training is based on

purely seen data, prediction scores become biased towards

seen classes i.e. seen scores are relatively higher than un-

seen ones. To avoid such biased predictions, we propose a

regularization term in the loss function that seeks to directly

maximize the unseen predictions.

L′

d(u) = −βt(1− ut)
η log u (4)

We note that pushing unseen predictions towards higher

values in fact avoids unseen classes being mapped to seen

classes [28]. We add all these three parts together to cal-

culate dynamic pseudo-label based loss. We merge Ld(u)
and L′

d(u) together in Eq. 5 because both work on the same

prediction score u.

Ld = −αt(1− st)
γ log st − βt(1− ut)

η log(uut). (5)

Overall transductive loss: Our final loss for transductive

training is a combination of both fixed (Lf ) and dynamic

Algorithm 1: Transductive zero-shot detection

Input: Ntr, Nts, Xtr, ytr, btr, Xts, WS, WU

Output: A trained model Mtns to find yts, bts for all

Xts

Inductive training phase

1 Mind ← Train an inductive model using only seen

data: Ntr, Xtr, ytr, btr, WS

Transductive training phase

Initialize inductive model, Mtns ←Mind

2 ŷts ← Use Mind assign fixed pseudo-labels to unseen

test images, Xts

repeat

for ∀I ∈ Xts do

3 Calculate fixed pseudo-labeling loss Lf

4 Calculate dynamic pseudo-labeling loss Ld

5 Calculate overall transductive loss using 6

6 Back-propagate and update Mtns

until convergence;

Return: Using Mtns find yts, bts for all Xts

(Ld) pseudo-labeling loss terms. A hyper-parameter λ ∈
[0, 1] controls the trade-off between both loss terms.

L = λLf + (1− λ)Ld. (6)

The Ld and Lf in Eq. 6 are given by Eq. 5 and Eq. 2,

respectively. Note that we use the same hyper-parameters α
and γ for focal loss calculation on the seen prediction score

and β and η for the unseen scores. We illustrate the overall

process in Algorithm 1.

3.2. Training and Inference

Network Architecture: We choose a variant of the pop-

ular RetinaNet architecture [15, 22] with Feature Pyramid

Network (FPN) [14] as the backbone, keeping ResNet50

[8] as a feature generator, to perform our transductive train-

ing. The overall architecture is shown in Fig. 3. An input

image is passed through a ResNet50 [8] to generate a con-

volutional feature pyramid. Then FPN performs bottom-

up and top-down processing to construct a rich and multi-

scale discriminative feature space. Each pyramid level is

then connected to two branches: classification and box re-

gression subnets. Similar to the original recommendation,

our anchors are at {1:2, 1:1, 2:1} aspect ratios with sizes

{20, 21/3, 22/3}, totaling to A=9 anchors per level. If an

anchor box gets an overlap > 0.5 in terms of intersection-

over-union (IoU) with the ground-truth bonding box, we

consider it as a valid object box prediction.

Plugging semantics into RetinaNet: We modify the

penultimate layer of all branches to incorporate word vec-

tors as mentioned in Eq. 1. In the classification subnet, ini-

tially four 3× 3 convolution layers with ReLU are applied.
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The output after this operation is a set of image features

{fi ∈ R
d} for all W ×H locations in an image, where W

and H represent the height and width of the convolutional

feature map. Then, we add another 3× 3 convolution layer

with d×A filters. The trainable weights of this layer imple-

ment U of Eq. 1. After that, we place a non-trainable cus-

tom layer having word vectors as fixed weights followed by

a sigmoid activation to produce prediction scores. The last

two layers can be summarized as Eq. 1. In the regression

subnet, we again apply a similar strategy to plug seman-

tics in to the pipeline. After producing the convolutional

features map, we add a 3 × 3 convolution layer with d fil-

ters. Then, a custom layer with non-trainable word vectors

as weights are used to produce S + U dimensional outputs.

Finally, another convolution layer with 4A filters is used to

generate bounding box parameters for each anchor at each

spatial location. As suggested in [15], the classification and

regression subnets do not share any parameters. During in-

ductive training, we learn the network using the sum of the

losses from the classification and regression subnets. The

regression subnet branch is trained with the standard L1

smooth loss. During transductive training, we calculate the

loss from the classification subnet only because we assign

pseudo-labels to the predictions of anchor boxes scores. We

normalize each part of the loss by the total number of posi-

tive boxes during fixed and dynamic pseudo-labeling.

Inference: After a forward pass with a test image Iu,

the classification and regression subnets produce class la-

bels and bounding boxes, respectively, for all anchor boxes.

Suppose, fu is the image feature for an anchor box. We

calculate seen scores using the following equation,

s = σ(fTu UWS). (7)

For unseen scores, we apply the following equation:

p = σ(fTu UW), u = p′W′TWU
T (8)

Where, p′ denotes top-T (e.g. T=5) predicted scores in p

and W′ is the corresponding word vectors of top predic-

tions. We select the 100 top scoring bounding boxes and

apply a Non-Maximal Suppression (NMS) with IoU=0.5 on

the selected boxes. Finally, boxes that score higher than a

specified threshold are chosen as the final detection.

Our proposed transductive solution has no additional pa-

rameters to train in comparison to inductive solution. Af-

ter finishing the inductive training, we perform a few more

epochs of training with unlabeled test data. Therefore the

overall training time is relatively higher, but the inference

time performance remains the same as the inductive case.

4. Experiments

4.1. Setup

Dataset: We have used the challenging MSCOCO-2014

dataset to test our approach. In the ZSD literature, two dif-

ferent types of seen/unseen split settings are available: the

48/17 and the 65/15 seen/unseen split by Bansal et al. [1]

and Rahman et al. [22], respectively. In this paper, we

choose the Rahman et al. [22] setting over [1] because

it considers all 80 object classes of MSCOCO. The train-

ing set includes 62,300 images containing 51,782 bounding

boxes from 65 seen classes. The test set for ZSD and GZSD

includes 10,098 images having 16,388 bounding boxes. Be-

sides, to test traditional detection task on seen classes, it

provides a list of 38,096 images. To relate seen and unseen

classes, we use 300-dimensional word2vec vectors [21].

Evaluation: To evaluate ZSD, [1] and [22] proposed to

use recall@100 and mean average precision (mAP) with

IoU=0.5 respectively. We report overall results on both

evaluation metrics. However, for validation and ablation

studies, we use mAP only because recall does not penalize

wrong bounding box prediction. For GZSD, we report the

harmonic-mean (HM) of seen and unseen performance.

Implementation details: We re-scale each image to

make its smallest side 800px. During training, we ignore

bounding boxes with IOU within [.4, .5) and we consider

those boxes with IOU within [0, 0.4) as background. We

first train a traditional RetinaNet architecture for 50 epochs

(10K iterations/epoch) with only 65 seen classes and corre-

sponding annotations. Using this pre-trained model, we per-

form an inductive training on the same data for 50 epochs

(10K iterations/epoch). Finally, we conduct our proposed

transductive learning for three epochs (30K iterations). In

each iteration, we process only one image at a time. As

we use 10,098 unlabeled images, the transductive learning

observes each unlabeled image three times. During trans-

ductive training, we only train the classification branch by

freezing the rest of the network. We also report comparison

when the rest of the network is also tuned, that results in

lower performance. We use Adam optimizer with a learn-

ing rate 10−5, β1 = 0.9 and β2 = 0.999. We implement

our method in the Keras library.

Validation experiments: The hyper-parameters of our

methods are α, γ, β, η, λ and th. Among them, α and γ are

focal loss [15] hyper-parameters. We use α = 0.25 and

γ = 2 as suggested in [15] for all of our experiments. For

tuning the rest of hyper-parameters, we used the validation

set comprising of images with seen objects for the tradi-

tional detection task. We report the validation performance

in the supplementary material.

4.2. Main Results

Compared methods: We compare our results with in-
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Metric Method
Seen/

ZSD
GZSD

Unseen seen unseen HM

mAP

SB [1] 48/17 0.70 - - -

DSES [1] 48/17 0.54 - - -

FL-48 [22] 48/17 5.91 36.57 2.64 4.93

FL-65 [22] 65/15 10.80 37.56 10.80 16.77

FL-80 [22] 65/15 10.73 40.60 10.28 16.40

Baseline 65/15 12.40 29.52 11.91 16.97

Ours 65/15 14.57 28.79 14.05 18.89

RE

SB [1] 48/17 24.39 - - -

DSES [1] 48/17 27.19 15.02 15.32 15.17

FL-48 [22] 48/17 18.67 42.21 17.60 24.84

FL-65 [22] 65/15 22.18 40.29 22.14 28.57

FL-80 [22] 65/15 22.25 59.19 19.43 29.25

Baseline 65/15 48.06 54.89 33.38 41.52

Ours 65/15 48.15 54.14 37.16 44.07

Table 1: Overall performance in mAP and recall (RE). For fair

comparison, we compare our method with focal loss and no ex-

ternal information is used in the case of [22]. We get ‘relative’

improvements of 34.9% and 77.1% in terms of mAP and RE over

the best inductive model.

Figure 4: Qualitative results of ZSD (top row) and GZSD (bottom

row). Red and green bounding boxes represent unseen and seen

classes respectively.

ductive methods (SB, DSES, FL-48, FL-65 and FL-80) and

a transductive baseline. SB and DSES are not end-to-end

trainable since they use proposals drawn from EdgeBox

[39] for ZSD. FL-48, FL-65, and FL-80 are the inductive

approaches. FL-80 observes unseen word vectors (in ad-

dition to seen), but FL-48/FL-65 only observes 48/65 seen

vectors based on the split settings. The transductive base-

line method uses FL-65 as a pre-trained model and contin-

ues transductive learning without considering unseen word

vectors i.e. Ld(u) = 0 and L′

d(u) = 0.

Analysis: We present the overall results in Table 1. In

48/17 split settings, FL-48 [22] outperforms SB/DSES [1]

with a large margin in mAP. Being dependent on exter-

nal proposals, SB/DSES suffers significantly. However,

SB/DSES achieves a high recall because the recall metric

.1 .2 .3 .5 .7 .9 1
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Figure 5: (a)

Effect of vary-

ing λ with our

method, (b)

mAP scores

with different

IoU.

does not penalize for wrong bounding box predictions. It

shows that the end-to-end models in [22] are better than

feature based models in [1]. In 65/15 split settings, FL-

65 performs marginally better in mAP than FL-80 in both

ZSD and GZSD tasks. The reason is FL-80 considers un-

seen vectors to calculate predictions scores in the last layer,

but it does not perform any processing on unseen scores. It

makes the model biased towards seen classes which results

in a decrease in mAP. However, with the recall based metric,

we notice an opposite scenario because it ignores the effect

of false positives. Our transductive baseline beats all induc-

tive methods as it uses unlabeled data by considering fixed

and dynamic pseudo-labeling on only seen classes. Finally,

our proposed model outperforms the transductive baseline

in both ZSD and GZSD tasks because it uses both seen and

unseen pseudo-labeling in the loss function. As recall is a

less comprehensive measure than mAP, the improvement on

recall is higher than mAP based evaluation. However, one

can notice transductive methods lose some performance in

GZSD-seen to achieve a balance between seen and unseen

scores. In Fig. 5(a), we vary λ to see the impact of fixed and

dynamic pseudo-labeling. We notice that our experimen-

tally validated λ = .2 brings an ideal balance between both

both pseudo-labeling methods. In Fig. 5(b), we illustrate

the comparison of the baseline and our method with differ-

ent IoU settings. For more strict IOU thresholds, the perfor-

mance of both approaches gradually decreases. In Table 2,

we compare per-class AP of unseen classes between the in-

ductive and our proposed transductive approach. Here, we

notice our proposed method achieves higher mAP in most

of the unseen classes than the inductive method. We have

also shown some qualitative results in Fig. 4.

4.3. Ablation Studies

Dynamic pseudo-labeling: Our proposed transductive

ZSD method works with fixed and dynamic pseudo-labeling

techniques. We argue that the fixed part is the most impor-

tant in this approach because it tries to retain the knowledge

obtained from inductive training. The addition of dynamic

pseudo-labeling tries to improve the inductive performance

and reduce domain-shift leveraging the unlabeled data. It

has three components: Ld(s), Ld(u) and L′

d(u). For the ab-

lation study in Table 3, we explore different combinations of
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Inductive 10.80 6.23 50.01 2.61 34.58 0.0 10.93 13.62 20.91 10.96 9.57 0.77 0.64 0.14 1.04 0.0

Ours 14.57 19.75 63.40 3.65 43.18 3.68 13.78 12.81 24.24 12.61 9.65 5.99 1.54 2.26 2.03 0.0

Table 2:
Per-class AP

of unseen

classes in

MSCOCO

dataset.

Ld ZSD
GZSD

seen unseen HM

Baseline, Ld(s) 12.40 29.52 11.91 16.97

Ld(u) 10.97 29.69 9.77 14.70

L′

d(u) 9.47 30.65 7.98 12.67

Ld(u) + L′

d(u) 12.41 29.32 10.97 15.96

Ld(s) + L′

d(u) 12.60 28.65 12.05 16.96

Ld(s) + Ld(u) 13.22 28.94 12.78 17.73

Ld(s) + Ld(u) + L′

d(u) 14.57 28.79 14.05 18.89

Table 3: mAP for using different dynamic pseudo-labelling.

Freezing weights

Yes No

5

10

15

m
A

P

baseline
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Figure 6: Freezing ef-

fect: When the classifi-

cation subnet is trained

keeping the rest of the

network fixed, our ap-

proach performs better.

these components keeping the same fixed labeling. Among

these components, Ld(s) works on seen, while Ld(u) and

L′

d(u) on unseen prediction scores. As an individual com-

ponent, Ld(s) does not use any unseen predictions, thus it

achieved an improvement over inductive learning (10.8 to

12.4 for ZSD). However, Ld(u) or L′

d(u) could not work

well alone as a dynamic component because Ld(u) still suf-

fers from the model-bias problem of inductive learning and

L′

d(u) tries to solve the bias but cannot pseudo-label the an-

chors. Therefore, the combination Ld(s) + Ld(u) jointly

improves the performance to the level of Ld(s). In gen-

eral, we notice that our transductive learning achieves rel-

atively less mAP when dynamic labeling is based on only

seen (Ld(s)) or unseen (Ld(u)/L
′

d(u)) predictions. In con-

trast, when both seen and unseen predictions are used, we

notice a clear improvement in performance. For example,

Ld(s) + L′

d(u) and Ld(s) + Ld(u) got 12.60 and 13.22 on

ZSD, and 16.96 and 17.73 on GZSD tasks. Our final model

outperforms all others because as it takes advantage of all

three proposed components Ld(s), Ld(u) and L′

d(u).

Freezing effect: As mentioned earlier in Sec. 3.2, dur-

ing our transductive training, we only fine-tune the classifi-

cation subnet because our pseudo-labeling process only as-

signs class labels. In Fig. 6, we report the effect of freez-

ing the rest of the network (i.e., other than the classification

branch). We notice that in both baseline and our method’s

case, this idea helps to improve the performance signifi-

cantly. Unlike many traditional transductive approaches,

Method
ZSD

GZSD

seen unseen HM

(mAP/RE) (mAP/RE) (mAP/RE) (mAP/RE)

FL-80 10.36/34.29 36.69/39.53 10.33/36.62 16.12/36.34

Baseline 11.05/43.20 29.82/55.05 11.09/30.31 16.17/39.09

Ours 12.87/47.46 29.93/55.98 12.19/31.22 17.32/40.09

Table 4:
Results

with

GloVe

vectors.

Method Avg. car dog sofa train

[3] 54.5 55.0 82.0 55.0 26.0

[22] 62.1 63.7 87.2 53.2 44.1

Ours 66.6 64.4 77.9 70.5 53.6

Table 5: PASCAL

VOC experiment

using the split in

[3].

our entire learning is based on pseudo-labels. Therefore,

allowing the whole network to update its weights can mis-

lead the learning process (as pseudo-labels can be noisy)

and therefore result in lower performance.

GloVe embedding: Our method can work equally with

other semantics apart from word2vec. In Table 4, we ex-

periment with GloVe as semantic embedding. Our method

successfully outperforms the inductive version (FL-80) and

the transductive baseline in both ZSD and GZSD tasks with

mAP and Recall (RE) based evaluation metrics.

Beyond MSCOCO: Using the setup in [3], we perform

additional experiments with the Pascal VOC 2007/2012

dataset. In Table 5, we report ZSD mAP of unseen classes

with the standard 16/4 split. Our transductive solution suc-

cessfully outperforms the recent methods of [3] and [22].

5. Conclusion

Recently, zero-shot detection has received considerable

attention from the research community. To address the do-

main shift and bias problem of inductive learning models, in

this paper, we propose a transductive solution for ZSD. We

leverage unlabeled testing data during transductive learn-

ing by employing fixed and dynamic pseudo-labeling based

loss functions. Unlike the traditional transductive method,

we do not use seen/unseen label supervision for unlabeled

data. Moreover, most transductive learning-based recogni-

tion methods lack the end-to-end trainable solutions. How-

ever, our approach is end-to-end trainable with the pro-

posed loss functions. In our experiments on the challeng-

ing MSCOCO dataset, we show that our method provides

performance gains for both ZSD and GZSD problems.
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