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Abstract

A Generative Adversarial Network (GAN) with genera-
tor G trained to model the prior of images has been shown
to perform better than sparsity-based regularizers in ill-
posed inverse problems. Here, we propose a new method of
deploying a GAN-based prior to solve linear inverse prob-
lems using projected gradient descent (PGD). Our method
learns a network-based projector for use in the PGD algo-
rithm, eliminating expensive computation of the Jacobian of
G. Experiments show that our approach provides a speed-
up of 60-80x over earlier GAN-based recovery methods
along with better accuracy. Our main theoretical result is
that if the measurement matrix is moderately conditioned on
the manifold range(G) and the projector is 6-approximate,
then the algorithm is guaranteed to reach O(J) reconstruc-
tion errorin O(log(1/0)) steps in the low noise regime. Ad-
ditionally, we propose a fast method to design such mea-
surement matrices for a given G. Extensive experiments
demonstrate the efficacy of this method by requiring 5-10x
fewer measurements than random Gaussian measurement
matrices for comparable recovery performance. Because
the learning of the GAN and projector is decoupled from
the measurement operator, our GAN-based projector and
recovery algorithm are applicable without retraining to all
linear inverse problems, as confirmed by experiments on
compressed sensing, super-resolution, and inpainting.

1. Introduction

Many application such as computational imaging, and
remote sensing fall in the compressive sensing (CS)
paradigm. CS [9, 5] refers to projecting a high dimensional,
sparse or sparsifiable signal x € R" to a lower dimensional
measurement y € R™,m < n, using a small set of linear,
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Figure 1: Our network-based PGD solves the following inverse
problems: compressive sensing with 61 x compression, 4 X super-
resolution, scatterd inpaining with high noise (¢ = 40) and 50%
blocked inpainting with high noise.

non-adaptive frames. The noisy measurement model is:
y=Az+0v, AcR™" 0~ N(0,6°I) (1)

where the measurement matrix A is often a random matrix.
In this work, we are interested in the problem of recovering
the unknown natural signal x, from the compressed mea-
surement y, given the measurement matrix A. Tradition-
ally, for signal priors, natural images are considered sparse
in some fixed or learnable basis [1 1, 8, 36, 22,7, 38, 10, 21].
Instead of the sparse prior commonly adopted by CS lit-
erature, we turn to a learned prior. Neural network-
based inverse problem solvers have been explored recently
[14, 35, 31, 1, 12, 15, 25, 32, 22, 37, 26]. However,
[1, 12, 15, 25] use information about the measurement ma-
trix A while training the network. Thus, their algorithms
are limited to a particular set-up to solve specific inverse-
problem and usually cannot solve other problems without
retraining. Another line of work, [28, 29] jointly optimizes
the measurement matrix and recovery algorithm, again re-
sulting in algorithm limited to a particular inverse problem
and measurement matrix. Instead, in this paper the network
is trained independently of A and can be generalized across
different inverse problems. This aspect is shared by two
other neural-network-based solvers [35, 31], however, they
model the image prior only implicitly by training a denoiser
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or a proximal map, and perhaps for this reason appear to
require massive quantity of training samples. Importantly,
very little is known about why and when they perform well,
as even if the learned proximal map is assumed to be exact,
there is no theoretical convergence guarantee or bound on
the recovery error.

In this work, we leverage the success of generative adver-
sarial network (GAN) [13, 6,42, 39, 3, 20] in modeling the
distribution of data. Indeed, GAN-based priors for natural
images have been successfully employed to solve linear in-
verse problems [24, 4, 33]. However, in [24], the operator A
is integrated into training the GAN, limiting it to a particu-
lar inverse problem. We therefore focus on the recent papers
[4, 33] closest to our work, for extensive comparisons.
Bora et al. [4] do not have a guarantee on the convergence
of their algorithm for solving the non-convex optimization
problem, requiring several random initializations. Simi-
larly, in [33], the inner loop uses a gradient descent algo-
rithm to solve a non-convex optimization problem with no
guarantee of convergence to a global optimum. Further-
more, the conditions imposed in [33] on the random Gaus-
sian measurement matrix for convergence of their outer
iterative loop are unnecessarily stringent and cannot be
achieved with a moderate number of measurements. Impor-
tantly, both these methods require expensive computation
of the Jacobian V.G of the differentiable generator G with
respect to the latent input z. Since computing V.G involves
back-propagation through G at every iteration, these re-
construction algorithms are computationally expensive and
even when implemented on a GPU they are slow.

We propose a GAN-based projection network to solve com-
pressed sensing recovery problems using projected gradi-
ent descent (PGD). We are able to reconstruct the image
even with 61x compression ratio (i.e., with less than 1.6%
of a full measurement set) using a random Gaussian mea-
surement matrix. The proposed approach provides supe-
rior recovery accuracy over existing methods, simultane-
ously with a 60-80x speed-up, making the algorithm useful
for practical applications. We also provide theoretical re-
sults on the convergence of the reconstruction error, given
that the measurement matrix A satisfies certain conditions
when restricted to the range R(G) of the generator. We
complement the theory by proposing a method to design a
measurement matrix that satisfies these sufficient conditions
for guaranteed convergence. We assess these sufficient con-
ditions for both the random Gaussian measurement matrix
and the designed matrix for a given dataset. Both our anal-
ysis and experiments show that with the designed matrix,
5-10x fewer measurements suffice for robust recovery. Be-
cause the training of the GAN and projector is decoupled
from the measurement operator, we demonstrate that other
linear inverse problems like super-resolution and inpainting
can also be solved using our algorithm without retraining.

2. Problem Formulation

Let x* € R"™ denote a ground truth image, A a fixed
measurement matrix, and y = Ax* + v € R™ the noisy
measurement, with noise v ~ N(0,021). We assume that
the ground truth images lie in a non-convex set S = R(G),
the range of generator GG. The maximum likelihood estima-
tor (MLE) of z*, Z ;1 g, can be formulated as follows:

— arg min [}y — Az3
z€R(G)

Zypp = argmin — log p(y|x)
zE€R(G)

Bora et al. [4] (whose algorithm we denote by CSGM)
solve the optimization problem Z = argmin, g« ||y —
AG(2)||? + \||z||? in the latent space (z), and set & = G/(2).
Their gradient descent algorithm often gets stuck at local
optima. Since the problem is non-convex, the reconstruc-
tion is strongly dependent on the initialization of z and re-
quires several random initializations to converge to a good
point. To resolve this problem, Shah and Hegde [33] pro-
posed a projected gradient descent (PGD)-based method
(which we call PGD-GAN) to solve (2), shown in fig.2(a).
They perform gradient descent in the ambient (x)-space and
project the updated term onto R(G). This projection in-
volves solving another non-convex minimization problem
(shown in the second box in fig.2(a)) using the Adam opti-
mizer [17] for 100 iterations from a random initialization.
No convergence result is given for this iterative algorithm
to perform the non-linear projection, and the convergence
analysis for the PGD-GAN algorithm [33] only holds if one
assumes that the inner loop succeeds in finding the optimum
projection.

Our main idea in this paper is to replace this iterative
scheme in the inner-loop with a learning-based approach,
as it often performs better and does not fall into local op-
tima [42]. Another important benefit is that both earlier ap-
proaches require expensive computation of the Jacobian of
G, which is eliminated in the proposed approach.

3. Proposed Method

In this section, we introduce our methodology and archi-
tecture to train a projector using a pre-trained generator G
and how we use this projector to obtain the optimizer in (2).

3.1. Inner-Loop-Free Scheme

We show that by carefully designing a network architec-
ture with a suitable training strategy, we can train a projector
onto R(G), the range of the generator G, thereby removing
the inner-loop required in the earlier approach. The result-
ing iterative updates of our network-based PGD (NPGD)
algorithm are shown in fig.2(b). This approach eliminates
the need to solve the non-convex optimization problem in
the inner-loop, which depends on initialization and requires
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Figure 2: (a) Block diagram of PGD using inner-loop [33]. k
represents the outer loop iterators and Zj4; is the optimizer of
|G (2) — wg||* obtained by solving the inner-loop using Adam
optimizer. (b) Block diagram of our network-based PGD (NPGD)
with Pz = GG as a network based projector onto R(G). f(z) =
| Az — y||? is the cost function defined in (2)

Noise

~ NI :
o NQL G ;é > Gi() —>G(- ) —>

-

Pg(.)

A

Figure 3: Architecture to train a projector onto range(G)

several restarts. Furthermore, our method provides a signif-
icant speed-up by a factor of 30-40x on the CelebA dataset
for two major reasons: (i) since there is no inner-loop, the
total number of iterations required for convergence is sig-
nificantly reduced, (ii) doesn’t require computation of VG,
i.e. the Jacobian of the generator with respect to the input, z.
This expensive operation repeats back-propagation through
the network for T.¢ X #restarts(for [4]) or Ty X Tj, (for
[33]) times, where #,cstarts, Lour and 15, are number of
restarts, outer and inner iterations respectively.

3.2. Generator-based Projector

A GAN consists of two networks, generator and dis-
criminator, which follow an adversarial training strategy
to learn the data distribution. A well-trained generator
G : R¥ —» R(G) C R"k < n takes in a random la-
tent variable z ~ N(0,I;) and produces sharp looking
images imitating the training data distribution in R™. The
goal is to train a network that projects an image x € R"
onto R(G). The projector, Ps onto a set S should sat-
isfy two main properties: (i) Idempotence, for any point
x, Ps(Ps(x)) = Ps(x), (ii) Least distance, for a point Z,
Ps(%) = argmingg||lz — Z||?. Figure 3 shows the net-
work structure we used to train a projector using a GAN.
We define the multi-task loss to be:

£(6) =E., [ ‘G (Gg (G(2) + u)) . G(Z)m

, ©)
+E.. {/\ HG; (G(2) +v) — ZH }

where G is a generator obtained from the GAN trained on
a particular dataset. Operator GI) : R" — RF, parameter-

Algorithm 1 Network-based Projected Gradient Descent

Input: loss function f, A,y, G, GT
Parameter: step size (= %)
Output: an estimate & € R(G)
c Lett =0,29 = ATy.
while t < T do
wy = xy — AT (Azy — y)
Tr1 = G(GT(wy))
end while
return & = xp

A s

ized by 6, approximates a non-linear least squares pseudo-
inverse of G and v ~ N(0,1,,) indicates noise added to
the generator’s output for different z ~ N(0, I}) so that
the projector network denoted by Pz = GGg is trained
on points outside the range((G) and learns to project them
onto R(G). The objective function consists of two parts.
The first is similar to standard Encoder-Decoder frame-
work, however, the loss function is minimized over 6 — the
parameters of G, while keeping the parameters of G (ob-
tained by standard GAN training) fixed. This ensures that
R(G) doesn’t change and Pz = GG is a mapping onto
R(G). The second part is used to keep GT(G/(z)) close to
true z used to generate training image G(z). This second
term can be considered a regularizer for training the projec-
tor with A being the regularization constant.

4. Theoretical Study
4.1. Convergence Analysis

Let f(x) = ||Ax — y||2 denote the loss function of pro-
jected gradient descent. Algorithm (1) describes the pro-
posed network-based projected gradient descent (NPGD) to
solve equation (2).

Definition 1 (Restricted Eigenvalue Constraint (REC))
Let S C R™. For some parameters 0 < a < [, matrix
A € R™*™ s said to satisfy the REC(S,«, ) if the
Sfollowing holds for all x1, x4 € S.

allzy — o] < [|A(z1 — 22)|]? < Bllwr — ol (3)

Definition 2 (Approximate Projection using GAN) A
concatenated network G(G'(-)) : R* — R(G) is a
d-approximate projector, if the following holds for all
reR™

le = GG @)I? < min |z - GE)IP+5 @
Theorem 1 provides upper bounds on the cost function and

reconstruction error of our NPGD algorithm after n itera-
tions.
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Theorem 1 Let matrix A €  R™*™ satisfy the
REC(S,a, ) with /o < 2, and let the concate-
nated network G(G'(-)) be a d5-approximate projector.
Then for every z* € R(G) and measurement y = Ax*,
executing algorithm 1 with step size n = 1/, will yield
flzg) < (g — D™ f(xo) + %. Furthermore, the
algorithm achieves |z, — z*||? < (C + Qa/lﬁ)(;

after 27/15 Ta log("gz%)) steps. When n

[ = oo ||* <

— o0,
_ 4

2a/8—1"

Proof 1 Please refer to the appendix.

From theorem 1, one important factor is the ratio 3/c.
This ratio largely determines the speed of linear (“geo-
metric”’) convergence, as well as the reconstruction error
|#* — 250 ||* at convergence. We would like 3/« ratio as
close to 1 as possible and must have 3/« < 2 for conver-
gence. It has been shown in [2] that a random matrix A
with orthonormal rows will satisfy this condition with high
probability for m roughly linear in dimension k£ with log
factors dependent on the properties of the manifold, in this
case, R(G). However, as we demonstrate later (see figure
4), a random matrix often will not satisfy the desired con-
dition 8/a < 2 for small or moderate m. To extend into
such regimes, we propose next a fast heuristic method to
find a relatively good measurement matrix for an image set
S, given a fixed m.

4.2. Generator-based Measurement Matrix Design

There have been a few attempts to optimize the measure-
ment matrix based on the specific data distribution. Hegde
et al. [16] find a deterministic measurement matrix that sat-
isfies REC(S,1 — 05,1 + 0g) for a given finite set S of
size || , but their time complexity is O(n® + |S|*n?). Be-
cause the secant set .S (defined later) would be of cardinality
|S| = O(M?) for a training set of size M, with M >> n, the
time complexity would be infeasible even for fairly small
n-pixel images. Furthermore, the final number of required
measurements m, which is determined by the algorithm, de-
pends on the isometry constant dg, and cannot be specified
in advance. Kvinge et al. [18] introduced a heuristic itera-
tive algorithm to find a measurement matrix with orthonor-
mal rows that satisfies the REC with small 3/« ratio, but
their time complexity is O (n®) and the space complexity
is O(n?), which is infeasible for a high-dimensional image
dataset. Instead, our method, based on sampling from the
secant set, has time complexity O(Mn? + n?), and space
complexity O(n?), where M is a tiny fraction of |S]|.

Definition 3 (Secant Set) The normalized secant set of G
is defined as follows:

S(G) = { 172 pam e R(G)} (5)

|21 — 22|

and the associated distribution is denoted as 11, where

G(Zl) — G(Zz)

21,20 ~ N (0, 1), s = 7 ——— 7 ~ s (6)
1G(=21) = G(z2)|
Given S(G), the optimization over A is as follows:
max, As|]?

min = min es@ | ”2 ()

AER™Xn (¢ AERmMXn mlnbES(G) ||AS||
. 1

< min

< - 5 :( max min ||A5H2>
AAT =T, mines(q) HASH AAT=1,, seS(G)

The inequality is due to an additional constraint on A :
AAT = I,,,. This results in the largest singular value of A

. 2
being 1 and hence the numerator term, max,cs(c) || As||”,
is at most 1. As the minimization in (7) requires iterating
through the set S, we use the expected value over s ~ Ilg
as a surrogate objective

M
A = argmax Fy i, [HASHQ] A arg max L Z (| As;?
AAT=I,, AAT=r,, M =

(®)
The last approximation replaces the surrogate objective by
its empirical estimate obtained by sampling M > n secants
(s.,-)jM:1 according to IIg. For m and M large enough, this
designed measurement matrix would satisfy the condition
B/a < 2 for most of the secants in R(G). Constructing an

n x M matrix D = [s1]s2] ... |sa], (8) reduces to:

A* = argmax |AD||% st. AAT =1, ©)
A

The optimal A* in (9) has rows equal to the m leading

eigenvectors DDT. We compute DDT = Zj\il

5 sz and
its eigenvalue decomposition at time complexity O(Mn? +
n?) and space complexity O(n?).

Our approach to the design of A is related to one of the
steps described by [18], however by using the sampling-
based estimates per (6) and (8) rather than the secant set for
the entire training set, we reduce the computational cost by

orders of magnitude to a modest level.

4.2.1 REC Histogram for A

We analyze the REC' conditions by plotting the histogram
of ||As|| values for different measurement matrices A €
R™>™ in figure 4 where s € S, the secant set of the sam-
ples from G trained on MNIST dataset. The left column
shows the histograms for the random and G-based designed
matrix. For random A, the spread of || As|| is clearly wider
for few measurements m, resulting in 8/« «£ 2. For the de-
signed A, the histogram is more concentrated. Even with as
few as m = 20 measurements (for MNIST), the designed
A satisfies the sufficient condition 5/« < 2 for conver-
gence of the PGD algorithm, thus ensuring stable recovery.
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Figure 4: Distribution of || As|| with different A. Left: Random
(cyan) and Designed matrix (orange) with different m. Middle:
Downsampling matrix (green) with different f. Right: Inpainting
matrix (red) with different mask size.

The middle columns shows the histograms corresponding
to the downsampling A that takes the spatial averages of
fxf, f=2,3,4,5, pixel values to generate low-resolution
images. The right column shows the histograms for the
inpainting A that masks out a centered square of various
sizes. As expected, with more difficult recovery problems
the spread increases. However, for each inverse problem
(defined by a matrix A), the ratio 3/« can be estimated for
e.g., 99.9% of the samples, providing, in combination with
Theorem 1, an explicit quantitative guarantee.

5. Experiments

Network Architecture: We implement two GAN ar-
chitectures: (i) Deep convolutional GAN (DCGAN) [30]
for MNIST and CelebA, (i7) Self-attention GAN (SAGAN)
[41] for LSUN church-outdoor dataset. DCGAN builds
on multiple convolution, transpose convolution, and ReLLU
layers, and uses batch normalization and dropout for bet-
ter generalization, whereas SAGAN combines convolutions
with self-attention mechanisms in both, generator and dis-
criminator, allowing for long-range dependency modeling
to generate images with high-resolution details. For DC-
GAN, we have used standard objective function of the
adversarial loss, whereas for SAGAN, we minimized the
hinge version of the adversarial loss [27]. The architecture
of the model G is similar to that of the discriminator D
in the GAN and only differs in the final layer, where we
add a fully-connected layer with output size same as the la-
tent variables dimension k. For training G', we used the
architecture shown in Fig. 3 and objective defined in (2),
while keeping the pre-trained G fixed. We found that using
A = 0.1, 1in (2), gave the best performance. The noise v used
for perturbing the training images G|(z) follows A/ (0, o%1).
We observed that training with low ¢ results in a projec-
tor similar to an identity operator and hence only projecting
close-by points onto R(G), whereas for large o the projec-
tor violates idempotence. We empirically set 0 = 1. We

Recovered Recovered Recovered
Blocked (Inpainting) Low-Res (High-Res) (CS)

Original

Figure 5: Recovery of LSUN church-outdoor images in inpainting
(mask size = 20), super-resolution (4x) and Compressed Sensing
(CS, m = 1000) tasks.

then obtain a projection network P = GG that approxi-
mately projects images lying outside R(G) onto R(G). We
empirically pick latent variable dimension k& = 100.
MNIST dataset [19] consists of 28 x 28 greyscale images
of digits with 50, 000 training and 10, 000 test samples. We
pre-train the GAN consisting of 4 transposed convolution
layers for G and 4 convolution layers in the discriminator
D using rescaled images lying between [—1,1]. We use
z ~ N(0,I}) as the G’s input. The GAN is trained using
the Adam optimizer with learning rate 0.0001, mini-batch
size of 128 for 40 epochs. For training the pseudo-inverse
of G i.e. G, we minimize the objective (2), using samples
generated from G(z), and with the same hyper-parameters
used for the GAN.

CelebA dataset [23] consists of more than 200,000
celebrity images. We use the aligned and cropped version,
which preprocesses each image to a size of 64 x 64 x 3 and
scaled between [—1, 1]. We randomly pick 160, 000 images
for training the GAN. Images from the 40, 000 held-out set
are used for evaluation. The GAN consists of 5 transposed
convolution layers in the G and 5 convolution layers in D.
GAN is trained for 35 epochs using Adam optimizer with
learning rate 0.00015 and mini-batch size 128. G is trained
in the same way as for the MNIST dataset.

LSUN church-outdoor dataset [40] consists of more than
126, 000 cropped and aligned images of size 64 x 64 x 3
scaled between [—1, 1]. DCGAN generates high-resolution
details using spatially local points in lower-resolution fea-
ture maps, whereas in SAGAN, details can be generated
using information from many feature locations making it
a natural choice for diverse dataset such as LSUN. The
SAGAN consists of 4 transposed convolution layers and 2
self-attention modules at different scales in G and 4 con-
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volution layers and 2 self-attention modules in D. Each
self-attention module consists of 3 convolution layers and
are added at the 3rd and 4th layers of the two networks.
SAGAN uses conditional batch normalization in G and pro-
jection in D. Spectral normalization is used for the layers in
both G and D. We use ADAM optimizer with 3; = 0 and
B2 = 0.9, learning rate 0.0001 and mini-batch size 64 for
the GAN training. GT, consisting of self-attention mecha-
nism similar to D, is trained using the objective 2 using the
ADAM optimizer with 8; = 0.9 and #> = 0.999, learning
rate 0.001 and mini-batch size of 64 for 100 epochs.

We compare the performance of our algorithm on
MNIST and CelebA with other GAN-prior solvers ([4, 33])
and sparsity-based methods, Lasso with discrete cosine
transform (DCT) basis [34] and total variation minimization
method (TVAL3) [21] for linear inverse problems, namely
compressed sensing (CS), super-resolution and inpainting.
For CS, we extensively evaluate the reconstruction perfor-
mance with the random Gaussian and designed measure-
ment matrices. Furthermore, we demonstrate the recovery
of LSUN church-outdoor dataset images using the proposed
method for the different problems in Fig. 5.

5.1. Compressed Sensing
5.1.1 Recovery with random Gaussian matrix

In this set-up, we use the same measurement matrix A as
([4, 33] ie. A;; ~ N(0,1/m) where m is the number
of measurements. For MNIST, the measurement matrix
A € R™ 84 with m = 20,50,100,200, whereas for
CelebA, A € R™*12288 with m = 200, 500, 1000, 2000.
Figure 6 shows the recovery results for MNIST images from
the test set. Our NPGD algorithm performs better than oth-
ers and avoids local optima. Figure 7 shows the reconstruc-
tion of eight test images from CelebA. Our algorithm out-
performs the other three methods visually as it is able to
preserve detailed facial features such as sunglasses, hair and
has accurate color tones. Figures 8a and 8c provide a quan-
titative comparison for MNIST and CelebA, respectively.

5.1.2 Recovery with the designed matrix

In this set-up, we use the G-based designed A described
in the section 4.2. We observe that recovery with the de-
signed A is possible for much fewer measurements m. This
corroborates our assessment based on Figure 4 that the de-
signed matrix satisfies the desired REC condition with high
probability for most of the secants, for smaller m. Figures
8a, 8c show that our algorithm consistently outperforms
other approaches in terms of reconstruction error and struc-
tural similarity index (SSIM) for a random A. Furthermore,
with the designed A, we are able to get performance on-par
with the random matrix using 5-10x smaller m. Figures
8b,8d show the recovered images with the designed and a

ICode of Shah er al. (PGD-GAN) for MNIST not available

Lasso

NPGD CSGM TVAL3 (DCT) Original

056?1?‘-{5

Figure 6: Reconstruction using Gaussian matrix with m = 100. '

Lasso

PGD-
NPGD CSGM GAN TVAL3(DCT)OHwnm

Figure 7: Reconstruction using Gaussian matrix with m = 1000.

random A using our algorithm for different m. Clearly, re-
covery with the random A requires much bigger m than the
designed one to achieve similar performance.

5.2. Super-resolution

Super-resolution refers to recovering the high-resolution
image from a single low-resolution image, often mod-
eled as a blurred and downsampled image of the original.
This super-resolution problem is just a special case in our
framework of linear measurements. We simulate the blur-
ring+downsampling by taking the spatial averages of f x f
pixel values (in RGB color space), where f is the ratio of
downsampling. This corresponds to blurring by an f X f
box impulse response, followed by downsampling. We test
our algorithm with f = 2, 3,4, corresponding to 4x, 9x
and 16x-smaller image sizes, respectively. We note that
for higher f, the measurement matrix A may not satisfy
the desired REC(S, «, 8) with g < 2 (see figure 4) re-
quired for convergence of our algorithm and, consequently,
our theorem might not be applicable. Results for MNIST
in figure 9a-9c¢ shows that recovery performance indeed de-
grades with increasing f, however, our NPGD algorithm,
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Figure 8: (a) Relative error ||z* — 2||?/||=*||* and SSIM of reconstruction algorithms for MNIST dataset with m = 20, 50, 100, 200
measurements. (b) MNIST reconstructions with a random Gaussian (middle row) and the designed matrix with orthonormal rows based
on GG (bottom row) using different m. (c) Relative error and SSIM for CelebA dataset with m = 200, 500, 1000, 2000 measurements. (d)

CelebA reconstructions, as in (b).
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Figure 9: Super-resolution on MNIST dataset. Row 1: original im-
age . Row 2: low-resolution images y, upsampled using constant
padding, Row 3: high resolution image recovered by [4]. Row 4:

high-resolution image recovered by our method.
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Figure 10: Inpainting in MNIST dataset. Row 1: original image
z. Row 2: image y with center block missing. Row 3: image
recovered by [4]. Row 4: image recovered by our method.

gives better reconstructions than Bora et al. [4].

5.3. Inpainting

Inpainting refers to recovering the entire image from a
partly occluded version. In this case, y is an image with

masked regions and A is the linear operation applying a
pixel-wise mask to the original image x. Again, this is a
special case of linear measurements where each measure-
ment corresponds to an observed pixel. For experiments
on the MNIST dataset, we apply a centered square mask of
size 6, 10, 14. Recovery results in figure 10a-10c show that
our method consistently outperforms [4] and recovers al-
most perfectly for mask-size less than 10. The results align
with the REC histogram for inpainting (figure 4), which
shows that for higher mask-size, the desired REC' condi-
tion for guaranteed convergence may not be satisfied.

5.4. Comparison of Run-time for Recovery

Table | compares the run times of our network-based al-
gorithm NPGD and other recovery algorithms. We record
the average run time to recover a single image from its com-
pressed sensing measurements over 10 different images. All
three algorithms were run on the same workstation with i7-
4770K CPU, 32GB RAM and GeForce Titan X GPU.

5.5. Analysis: Error in Projector

Figure 11 illustrates the idempotence error of the pro-
jector for different k. Three different categories of images
are tested, namely, MNIST training samples, MNIST test

2Run time includes 2 initializations, as implemented by the authors,
for CelebA. The same number of initializations for CelebA (and 10 for
MNIST) has been used to produce results in figures 6, 7, 8, and 9. Our
NPGD algorithm uses only one, deterministic initialization, xo = ATy.
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m | CSGM? | PGD-GAN | NPGD
200 5.8 66 0.09 (64x)
500 6.6 60 0.10 (66x)
1000 8.0 63 0.11 (72x)
2000 | 112 61 0.14 (80x)

Table 1: Comparison of execution time ([sec.]) of recovery algo-
rithms on the CelebA dataset. The relative speedup of our NPGD
over the CSGM algorithm of Bora e? al. is shown in parenthesis.
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Figure 11: Idempotence Error

samples, and samples G(z) generated using the pre-trained
G. We use clean images from the three sources and plot the
relative idempotence error ||z — Pg(x)|?/||z||?. The error
decreases with increasing k and saturates around & = 100.
The idemopotence errors for MNIST training and test sam-
ples are very close, indicating negligible generalization er-
ror. On the other hand, samples generated by G(z) give
much lower errors, which indicates representation error in
the GAN. Thus we expect that a more flexible generator
(deeper network) will lead to a better projector on the ac-
tual dataset and hence improve performance.

6. Conclusion

In this work, we propose a GAN based projection net-
work for faster recovery in linear inverse problems. Our
method demonstrates superior performance and also pro-
vides a speed-up of 60-80x over existing GAN-based meth-
ods, eliminating the expensive computation of the Jacobian
matrix every iteration. We provide a theoretical bound on
the reconstruction error for a moderately-conditioned mea-
surement matrix. To help design such a matrix for com-
pressed sensing, we propose a method which enables recov-
ery using 5-10x fewer measurements than using a random
Gaussian matrix. Our experiments on compressed sensing,
super-resolution, and inpainting demonstrate that generic
linear inverse problems can be solved with the proposed
method without requiring retraining. In the future, deriving
a bound for the projection error ¢ and an associated perfor-
mance guarantee is a interesting direction.

A. Appendix: Proof of Theorem 1

By the assumption of §-approximate projection,
e = zenl” = lwe = GG (w))II? < Jla* —wil|* +0

(10)
where from the gradient update step, we have
wy; = xp — AT (Azy —y) = 2 — nAT A(zy — %)
Substituting w; into (10) yields
lesr1 — xt||22— 2n <mt+1 — 4, ATA (2 — a:t)>
< o =zl — 2] A(2* — @)1 + 9
Rearranging the terms we have
2 <.’Et — Tt41, ATA (.’IJ* — :Et)>
1, . 1 0
< S la = ml® = 2f (@) = = llwpr — 2l* + -
Ui n Ui
1 1 0 11
= (7 B 2>f(xt) = = e — @® + =
no Ui Ui
1 1 )
§ (7 — 2>f($t) - — ||A.’£t+1 - AfEt“Z + -
na ns U

where the last two inequalities follow from REC(S, a, 5).
Now the LHS can be rewritten as:

2 <th — Tt+1, ATA (1‘* — J?t)>
= [[Az" — Azp||* — [|[Az” — Azy||* — [ Azypr — Ay

= f(weg1) = fme) = [|[Amppr — Ay (12)
Combining (11) and (12), and rearranging the terms, we
have:

faenn) < (5 1) (1= 5) IAr — Ardle

no
and sincen = 1/,
B
f(ze41) < (a - 1>f(37t) + B0
For simplicity, we substitute x = 3/« in the following:

Fn) < (5= 1) £ (20) + 85 (5 — 1)F
k=0

= (n—l)nf(xo)-i-—ﬁ(l_z(f;l)n)(s

For convergence, we require 1 < k = 8/a < 2. When n

reaches 7 log (féi%) ), we have
_ * |2
fe! a
nf(@o) BA-(x—1)")
< —
<(k—-1) " + a2 —r) )
< — < -
<(r=1) «@ +2/H—1*<C+2//1—1)6

Finally, when n — oo, we have (k — 1)" 7]6(20) —0
) 0

< =

—2/k—1 2a/f-1
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