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Abstract

A Generative Adversarial Network (GAN) with genera-

tor G trained to model the prior of images has been shown

to perform better than sparsity-based regularizers in ill-

posed inverse problems. Here, we propose a new method of

deploying a GAN-based prior to solve linear inverse prob-

lems using projected gradient descent (PGD). Our method

learns a network-based projector for use in the PGD algo-

rithm, eliminating expensive computation of the Jacobian of

G. Experiments show that our approach provides a speed-

up of 60-80× over earlier GAN-based recovery methods

along with better accuracy. Our main theoretical result is

that if the measurement matrix is moderately conditioned on

the manifold range(G) and the projector is δ-approximate,

then the algorithm is guaranteed to reach O(δ) reconstruc-

tion error in O(log(1/δ)) steps in the low noise regime. Ad-

ditionally, we propose a fast method to design such mea-

surement matrices for a given G. Extensive experiments

demonstrate the efficacy of this method by requiring 5-10×
fewer measurements than random Gaussian measurement

matrices for comparable recovery performance. Because

the learning of the GAN and projector is decoupled from

the measurement operator, our GAN-based projector and

recovery algorithm are applicable without retraining to all

linear inverse problems, as confirmed by experiments on

compressed sensing, super-resolution, and inpainting.

1. Introduction

Many application such as computational imaging, and

remote sensing fall in the compressive sensing (CS)

paradigm. CS [9, 5] refers to projecting a high dimensional,

sparse or sparsifiable signal x ∈ R
n to a lower dimensional

measurement y ∈ R
m,m ≪ n, using a small set of linear,
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Figure 1: Our network-based PGD solves the following inverse

problems: compressive sensing with 61× compression, 4× super-

resolution, scatterd inpaining with high noise (σ = 40) and 50%

blocked inpainting with high noise.

non-adaptive frames. The noisy measurement model is:

y = Ax+ v,A ∈ R
m×n, v ∼ N (0, σ2I) (1)

where the measurement matrix A is often a random matrix.

In this work, we are interested in the problem of recovering

the unknown natural signal x, from the compressed mea-

surement y, given the measurement matrix A. Tradition-

ally, for signal priors, natural images are considered sparse

in some fixed or learnable basis [11, 8, 36, 22, 7, 38, 10, 21].

Instead of the sparse prior commonly adopted by CS lit-

erature, we turn to a learned prior. Neural network-

based inverse problem solvers have been explored recently

[14, 35, 31, 1, 12, 15, 25, 32, 22, 37, 26]. However,

[1, 12, 15, 25] use information about the measurement ma-

trix A while training the network. Thus, their algorithms

are limited to a particular set-up to solve specific inverse-

problem and usually cannot solve other problems without

retraining. Another line of work, [28, 29] jointly optimizes

the measurement matrix and recovery algorithm, again re-

sulting in algorithm limited to a particular inverse problem

and measurement matrix. Instead, in this paper the network

is trained independently of A and can be generalized across

different inverse problems. This aspect is shared by two

other neural-network-based solvers [35, 31], however, they

model the image prior only implicitly by training a denoiser
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or a proximal map, and perhaps for this reason appear to

require massive quantity of training samples. Importantly,

very little is known about why and when they perform well,

as even if the learned proximal map is assumed to be exact,

there is no theoretical convergence guarantee or bound on

the recovery error.

In this work, we leverage the success of generative adver-

sarial network (GAN) [13, 6, 42, 39, 3, 20] in modeling the

distribution of data. Indeed, GAN-based priors for natural

images have been successfully employed to solve linear in-

verse problems [24, 4, 33]. However, in [24], the operator A
is integrated into training the GAN, limiting it to a particu-

lar inverse problem. We therefore focus on the recent papers

[4, 33] closest to our work, for extensive comparisons.

Bora et al. [4] do not have a guarantee on the convergence

of their algorithm for solving the non-convex optimization

problem, requiring several random initializations. Simi-

larly, in [33], the inner loop uses a gradient descent algo-

rithm to solve a non-convex optimization problem with no

guarantee of convergence to a global optimum. Further-

more, the conditions imposed in [33] on the random Gaus-

sian measurement matrix for convergence of their outer

iterative loop are unnecessarily stringent and cannot be

achieved with a moderate number of measurements. Impor-

tantly, both these methods require expensive computation

of the Jacobian ∇zG of the differentiable generator G with

respect to the latent input z. Since computing ∇zG involves

back-propagation through G at every iteration, these re-

construction algorithms are computationally expensive and

even when implemented on a GPU they are slow.

We propose a GAN-based projection network to solve com-

pressed sensing recovery problems using projected gradi-

ent descent (PGD). We are able to reconstruct the image

even with 61× compression ratio (i.e., with less than 1.6%
of a full measurement set) using a random Gaussian mea-

surement matrix. The proposed approach provides supe-

rior recovery accuracy over existing methods, simultane-

ously with a 60-80× speed-up, making the algorithm useful

for practical applications. We also provide theoretical re-

sults on the convergence of the reconstruction error, given

that the measurement matrix A satisfies certain conditions

when restricted to the range R(G) of the generator. We

complement the theory by proposing a method to design a

measurement matrix that satisfies these sufficient conditions

for guaranteed convergence. We assess these sufficient con-

ditions for both the random Gaussian measurement matrix

and the designed matrix for a given dataset. Both our anal-

ysis and experiments show that with the designed matrix,

5-10× fewer measurements suffice for robust recovery. Be-

cause the training of the GAN and projector is decoupled

from the measurement operator, we demonstrate that other

linear inverse problems like super-resolution and inpainting

can also be solved using our algorithm without retraining.

2. Problem Formulation

Let x∗ ∈ R
n denote a ground truth image, A a fixed

measurement matrix, and y = Ax∗ + v ∈ R
m the noisy

measurement, with noise v ∼ N (0, σ2I). We assume that

the ground truth images lie in a non-convex set S = R(G),
the range of generator G. The maximum likelihood estima-

tor (MLE) of x∗, x̂MLE , can be formulated as follows:

x̂MLE = argmin
x∈R(G)

− log p(y|x) = argmin
x∈R(G)

‖y −Ax‖22

Bora et al. [4] (whose algorithm we denote by CSGM)

solve the optimization problem ẑ = argminz∈Rk ‖y −
AG(z)‖2+λ‖z‖2 in the latent space (z), and set x̂ = G(ẑ).
Their gradient descent algorithm often gets stuck at local

optima. Since the problem is non-convex, the reconstruc-

tion is strongly dependent on the initialization of z and re-

quires several random initializations to converge to a good

point. To resolve this problem, Shah and Hegde [33] pro-

posed a projected gradient descent (PGD)-based method

(which we call PGD-GAN) to solve (2), shown in fig.2(a).

They perform gradient descent in the ambient (x)-space and

project the updated term onto R(G). This projection in-

volves solving another non-convex minimization problem

(shown in the second box in fig.2(a)) using the Adam opti-

mizer [17] for 100 iterations from a random initialization.

No convergence result is given for this iterative algorithm

to perform the non-linear projection, and the convergence

analysis for the PGD-GAN algorithm [33] only holds if one

assumes that the inner loop succeeds in finding the optimum

projection.

Our main idea in this paper is to replace this iterative

scheme in the inner-loop with a learning-based approach,

as it often performs better and does not fall into local op-

tima [42]. Another important benefit is that both earlier ap-

proaches require expensive computation of the Jacobian of

G, which is eliminated in the proposed approach.

3. Proposed Method

In this section, we introduce our methodology and archi-

tecture to train a projector using a pre-trained generator G
and how we use this projector to obtain the optimizer in (2).

3.1. Inner­Loop­Free Scheme

We show that by carefully designing a network architec-

ture with a suitable training strategy, we can train a projector

onto R(G), the range of the generator G, thereby removing

the inner-loop required in the earlier approach. The result-

ing iterative updates of our network-based PGD (NPGD)

algorithm are shown in fig.2(b). This approach eliminates

the need to solve the non-convex optimization problem in

the inner-loop, which depends on initialization and requires
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(a) PGD with inner-loop

(b) Network-based PGD (NPGD)

Figure 2: (a) Block diagram of PGD using inner-loop [33]. k
represents the outer loop iterators and ẑk+1 is the optimizer of

‖G(z) − wk‖
2 obtained by solving the inner-loop using Adam

optimizer. (b) Block diagram of our network-based PGD (NPGD)

with PG = GG† as a network based projector onto R(G). f(x) =
‖Ax− y‖2 is the cost function defined in (2)

(⋅)G

†

θ

G( ⋅ )G( ⋅ )

(. )P

G

z ∼ N(0, I)

Noise

Figure 3: Architecture to train a projector onto range(G)

several restarts. Furthermore, our method provides a signif-

icant speed-up by a factor of 30-40× on the CelebA dataset

for two major reasons: (i) since there is no inner-loop, the

total number of iterations required for convergence is sig-

nificantly reduced, (ii) doesn’t require computation of ∇Gz

i.e. the Jacobian of the generator with respect to the input, z.

This expensive operation repeats back-propagation through

the network for Tout ×#restarts(for [4]) or Tout ×Tin (for

[33]) times, where #restarts, Tout and Tin are number of

restarts, outer and inner iterations respectively.

3.2. Generator­based Projector

A GAN consists of two networks, generator and dis-

criminator, which follow an adversarial training strategy

to learn the data distribution. A well-trained generator

G : R
k → R(G) ⊂ R

n, k ≪ n takes in a random la-

tent variable z ∼ N (0, Ik) and produces sharp looking

images imitating the training data distribution in R
n. The

goal is to train a network that projects an image x ∈ R
n

onto R(G). The projector, PS onto a set S should sat-

isfy two main properties: (i) Idempotence, for any point

x, PS(PS(x)) = PS(x), (ii) Least distance, for a point x̃,

PS(x̃) = argminx∈S‖x − x̃‖2. Figure 3 shows the net-

work structure we used to train a projector using a GAN.

We define the multi-task loss to be:

L(θ) = Ez,ν

[

∥

∥

∥
G

(

G
†
θ
(G(z) + ν)

)

−G(z)
∥

∥

∥

2
]

+ Ez,ν

[

λ

∥

∥

∥
G

†
θ
(G(z) + ν)− z

∥

∥

∥

2
]

(2)

where G is a generator obtained from the GAN trained on

a particular dataset. Operator G†
θ : Rn → R

k, parameter-

Algorithm 1 Network-based Projected Gradient Descent

Input: loss function f , A, y,G,G†

Parameter: step size η(= 1
β )

Output: an estimate x̂ ∈ R(G)

1: Let t = 0, x0 = AT y.

2: while t < T do

3: wt := xt − ηAT (Axt − y)
4: xt+1 := G(G†(wt))
5: end while

6: return x̂ = xT

ized by θ, approximates a non-linear least squares pseudo-

inverse of G and ν ∼ N (0, In) indicates noise added to

the generator’s output for different z ∼ N (0, Ik) so that

the projector network denoted by PG = GG†
θ is trained

on points outside the range(G) and learns to project them

onto R(G). The objective function consists of two parts.

The first is similar to standard Encoder-Decoder frame-

work, however, the loss function is minimized over θ – the

parameters of G†, while keeping the parameters of G (ob-

tained by standard GAN training) fixed. This ensures that

R(G) doesn’t change and PG = GG† is a mapping onto

R(G). The second part is used to keep G†(G(z)) close to

true z used to generate training image G(z). This second

term can be considered a regularizer for training the projec-

tor with λ being the regularization constant.

4. Theoretical Study

4.1. Convergence Analysis

Let f(x) = ‖Ax − y‖22 denote the loss function of pro-

jected gradient descent. Algorithm (1) describes the pro-

posed network-based projected gradient descent (NPGD) to

solve equation (2).

Definition 1 (Restricted Eigenvalue Constraint (REC))

Let S ⊂ R
n. For some parameters 0 < α < β, matrix

A ∈ R
m×n is said to satisfy the REC(S, α, β) if the

following holds for all x1, x2 ∈ S.

α‖x1 − x2‖
2 ≤ ‖A(x1 − x2)‖

2 ≤ β‖x1 − x2‖
2. (3)

Definition 2 (Approximate Projection using GAN) A

concatenated network G(G†(·)) : R
n → R(G) is a

δ-approximate projector, if the following holds for all

x ∈ R
n:

‖x−G(G†(x))‖2 ≤ min
z∈Rk

‖x−G(z)‖2 + δ (4)

Theorem 1 provides upper bounds on the cost function and

reconstruction error of our NPGD algorithm after n itera-

tions.
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Theorem 1 Let matrix A ∈ R
m×n satisfy the

REC(S, α, β) with β/α < 2, and let the concate-

nated network G(G†(·)) be a δ-approximate projector.

Then for every x∗ ∈ R(G) and measurement y = Ax∗,

executing algorithm 1 with step size η = 1/β, will yield

f(xn) ≤ ( βα − 1)nf(x0) + βδ
2−β/α . Furthermore, the

algorithm achieves ‖xn − x∗‖2 ≤
(

C + 1
2α/β−1

)

δ

after 1
2−β/α log

( f(x0)
Cαδ

)

steps. When n → ∞,

‖x∗ − x∞‖2 ≤ δ
2α/β−1 .

Proof 1 Please refer to the appendix.

From theorem 1, one important factor is the ratio β/α.

This ratio largely determines the speed of linear (”geo-

metric”) convergence, as well as the reconstruction error

‖x∗ − x∞‖2 at convergence. We would like β/α ratio as

close to 1 as possible and must have β/α < 2 for conver-

gence. It has been shown in [2] that a random matrix A
with orthonormal rows will satisfy this condition with high

probability for m roughly linear in dimension k with log

factors dependent on the properties of the manifold, in this

case, R(G). However, as we demonstrate later (see figure

4), a random matrix often will not satisfy the desired con-

dition β/α < 2 for small or moderate m. To extend into

such regimes, we propose next a fast heuristic method to

find a relatively good measurement matrix for an image set

S, given a fixed m.

4.2. Generator­based Measurement Matrix Design

There have been a few attempts to optimize the measure-

ment matrix based on the specific data distribution. Hegde

et al. [16] find a deterministic measurement matrix that sat-

isfies REC(S, 1 − δS , 1 + δS) for a given finite set S of

size |S| , but their time complexity is O(n3 + |S|2n2). Be-

cause the secant set S (defined later) would be of cardinality

|S| = O(M2) for a training set of size M , with M ≫ n, the

time complexity would be infeasible even for fairly small

n-pixel images. Furthermore, the final number of required

measurements m, which is determined by the algorithm, de-

pends on the isometry constant δS , and cannot be specified

in advance. Kvinge et al. [18] introduced a heuristic itera-

tive algorithm to find a measurement matrix with orthonor-

mal rows that satisfies the REC with small β/α ratio, but

their time complexity is O
(

n5
)

and the space complexity

is O(n3), which is infeasible for a high-dimensional image

dataset. Instead, our method, based on sampling from the

secant set, has time complexity O(Mn2 + n3), and space

complexity O(n2), where M is a tiny fraction of |S|.

Definition 3 (Secant Set) The normalized secant set of G
is defined as follows:

S(G) =
{ x1 − x2

‖x1 − x2‖
: x1, x2 ∈ R(G)

}

(5)

and the associated distribution is denoted as ΠS , where

z1, z2 ∼ N (0, Ik), s =
G(z1)−G(z2)

‖G(z1)−G(z2)‖
∼ ΠS (6)

Given S(G), the optimization over A is as follows:

min
A∈Rm×n

β

α
= min

A∈Rm×n

maxs∈S(G) ‖As‖2

mins∈S(G) ‖As‖2
(7)

≤ min
AAT=Im

1

mins∈S(G) ‖As‖2
=

(

max
AAT=Im

min
s∈S(G)

‖As‖2
)−1

The inequality is due to an additional constraint on A :
AAT = Im. This results in the largest singular value of A
being 1 and hence the numerator term, maxs∈S(G) ‖As‖

2
,

is at most 1. As the minimization in (7) requires iterating

through the set S, we use the expected value over s ∼ ΠS

as a surrogate objective

A = argmax
AAT=Im

Es∼ΠS

[

‖As‖2
]

≈ argmax
AAT=Im

1

M

M
∑

j=1

‖Asj‖
2

(8)

The last approximation replaces the surrogate objective by

its empirical estimate obtained by sampling M ≫ n secants

(sj)
M
j=1 according to ΠS . For m and M large enough, this

designed measurement matrix would satisfy the condition

β/α < 2 for most of the secants in R(G). Constructing an

n×M matrix D = [s1|s2| . . . |sM ], (8) reduces to:

A∗ = argmax
A

‖AD‖2F s.t. AAT = Im (9)

The optimal A∗ in (9) has rows equal to the m leading

eigenvectors DDT . We compute DDT =
∑M

j=1 sjs
T
j and

its eigenvalue decomposition at time complexity O(Mn2+
n3) and space complexity O(n2).

Our approach to the design of A is related to one of the

steps described by [18], however by using the sampling-

based estimates per (6) and (8) rather than the secant set for

the entire training set, we reduce the computational cost by

orders of magnitude to a modest level.

4.2.1 REC Histogram for A

We analyze the REC conditions by plotting the histogram

of ‖As‖ values for different measurement matrices A ∈
Rm×n in figure 4 where s ∈ S, the secant set of the sam-

ples from G trained on MNIST dataset. The left column

shows the histograms for the random and G-based designed

matrix. For random A, the spread of ‖As‖ is clearly wider

for few measurements m, resulting in β/α 6< 2. For the de-

signed A, the histogram is more concentrated. Even with as

few as m = 20 measurements (for MNIST), the designed

A satisfies the sufficient condition β/α < 2 for conver-

gence of the PGD algorithm, thus ensuring stable recovery.
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Figure 4: Distribution of ‖As‖ with different A. Left: Random

(cyan) and Designed matrix (orange) with different m. Middle:

Downsampling matrix (green) with different f . Right: Inpainting

matrix (red) with different mask size.

The middle columns shows the histograms corresponding

to the downsampling A that takes the spatial averages of

f×f , f = 2, 3, 4, 5, pixel values to generate low-resolution

images. The right column shows the histograms for the

inpainting A that masks out a centered square of various

sizes. As expected, with more difficult recovery problems

the spread increases. However, for each inverse problem

(defined by a matrix A), the ratio β/α can be estimated for

e.g., 99.9% of the samples, providing, in combination with

Theorem 1, an explicit quantitative guarantee.

5. Experiments

Network Architecture: We implement two GAN ar-

chitectures: (i) Deep convolutional GAN (DCGAN) [30]

for MNIST and CelebA, (ii) Self-attention GAN (SAGAN)

[41] for LSUN church-outdoor dataset. DCGAN builds

on multiple convolution, transpose convolution, and ReLU

layers, and uses batch normalization and dropout for bet-

ter generalization, whereas SAGAN combines convolutions

with self-attention mechanisms in both, generator and dis-

criminator, allowing for long-range dependency modeling

to generate images with high-resolution details. For DC-

GAN, we have used standard objective function of the

adversarial loss, whereas for SAGAN, we minimized the

hinge version of the adversarial loss [27]. The architecture

of the model G† is similar to that of the discriminator D
in the GAN and only differs in the final layer, where we

add a fully-connected layer with output size same as the la-

tent variables dimension k. For training G†, we used the

architecture shown in Fig. 3 and objective defined in (2),

while keeping the pre-trained G fixed. We found that using

λ = 0.1, in (2), gave the best performance. The noise ν used

for perturbing the training images G(z) follows N (0, σ2I).
We observed that training with low σ results in a projec-

tor similar to an identity operator and hence only projecting

close-by points onto R(G), whereas for large σ the projec-

tor violates idempotence. We empirically set σ = 1. We

Figure 5: Recovery of LSUN church-outdoor images in inpainting

(mask size = 20), super-resolution (4×) and Compressed Sensing

(CS, m = 1000) tasks.

then obtain a projection network PG = GG† that approxi-

mately projects images lying outside R(G) onto R(G). We

empirically pick latent variable dimension k = 100.

MNIST dataset [19] consists of 28× 28 greyscale images

of digits with 50, 000 training and 10, 000 test samples. We

pre-train the GAN consisting of 4 transposed convolution

layers for G and 4 convolution layers in the discriminator

D using rescaled images lying between [−1, 1]. We use

z ∼ N (0, Ik) as the G’s input. The GAN is trained using

the Adam optimizer with learning rate 0.0001, mini-batch

size of 128 for 40 epochs. For training the pseudo-inverse

of G i.e. G†, we minimize the objective (2), using samples

generated from G(z), and with the same hyper-parameters

used for the GAN.

CelebA dataset [23] consists of more than 200, 000
celebrity images. We use the aligned and cropped version,

which preprocesses each image to a size of 64× 64× 3 and

scaled between [−1, 1]. We randomly pick 160, 000 images

for training the GAN. Images from the 40, 000 held-out set

are used for evaluation. The GAN consists of 5 transposed

convolution layers in the G and 5 convolution layers in D.

GAN is trained for 35 epochs using Adam optimizer with

learning rate 0.00015 and mini-batch size 128. G† is trained

in the same way as for the MNIST dataset.

LSUN church-outdoor dataset [40] consists of more than

126, 000 cropped and aligned images of size 64 × 64 × 3
scaled between [−1, 1]. DCGAN generates high-resolution

details using spatially local points in lower-resolution fea-

ture maps, whereas in SAGAN, details can be generated

using information from many feature locations making it

a natural choice for diverse dataset such as LSUN. The

SAGAN consists of 4 transposed convolution layers and 2
self-attention modules at different scales in G and 4 con-
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volution layers and 2 self-attention modules in D. Each

self-attention module consists of 3 convolution layers and

are added at the 3rd and 4th layers of the two networks.

SAGAN uses conditional batch normalization in G and pro-

jection in D. Spectral normalization is used for the layers in

both G and D. We use ADAM optimizer with β1 = 0 and

β2 = 0.9, learning rate 0.0001 and mini-batch size 64 for

the GAN training. G†, consisting of self-attention mecha-

nism similar to D, is trained using the objective 2 using the

ADAM optimizer with β1 = 0.9 and β2 = 0.999, learning

rate 0.001 and mini-batch size of 64 for 100 epochs.

We compare the performance of our algorithm on

MNIST and CelebA with other GAN-prior solvers ([4, 33])

and sparsity-based methods, Lasso with discrete cosine

transform (DCT) basis [34] and total variation minimization

method (TVAL3) [21] for linear inverse problems, namely

compressed sensing (CS), super-resolution and inpainting.

For CS, we extensively evaluate the reconstruction perfor-

mance with the random Gaussian and designed measure-

ment matrices. Furthermore, we demonstrate the recovery

of LSUN church-outdoor dataset images using the proposed

method for the different problems in Fig. 5.

5.1. Compressed Sensing

5.1.1 Recovery with random Gaussian matrix

In this set-up, we use the same measurement matrix A as

([4, 33]) i.e. Ai,j ∼ N(0, 1/m) where m is the number

of measurements. For MNIST, the measurement matrix

A ∈ Rm×784, with m = 20, 50, 100, 200, whereas for

CelebA, A ∈ Rm×12288, with m = 200, 500, 1000, 2000.

Figure 6 shows the recovery results for MNIST images from

the test set. Our NPGD algorithm performs better than oth-

ers and avoids local optima. Figure 7 shows the reconstruc-

tion of eight test images from CelebA. Our algorithm out-

performs the other three methods visually as it is able to

preserve detailed facial features such as sunglasses, hair and

has accurate color tones. Figures 8a and 8c provide a quan-

titative comparison for MNIST and CelebA, respectively.

5.1.2 Recovery with the designed matrix

In this set-up, we use the G-based designed A described

in the section 4.2. We observe that recovery with the de-

signed A is possible for much fewer measurements m. This

corroborates our assessment based on Figure 4 that the de-

signed matrix satisfies the desired REC condition with high

probability for most of the secants, for smaller m. Figures

8a, 8c show that our algorithm consistently outperforms

other approaches in terms of reconstruction error and struc-

tural similarity index (SSIM) for a random A. Furthermore,

with the designed A, we are able to get performance on-par

with the random matrix using 5-10× smaller m. Figures

8b,8d show the recovered images with the designed and a

1Code of Shah et al. (PGD-GAN) for MNIST not available

Figure 6: Reconstruction using Gaussian matrix with m = 100. 1

Figure 7: Reconstruction using Gaussian matrix with m = 1000.

random A using our algorithm for different m. Clearly, re-

covery with the random A requires much bigger m than the

designed one to achieve similar performance.

5.2. Super­resolution

Super-resolution refers to recovering the high-resolution

image from a single low-resolution image, often mod-

eled as a blurred and downsampled image of the original.

This super-resolution problem is just a special case in our

framework of linear measurements. We simulate the blur-

ring+downsampling by taking the spatial averages of f × f
pixel values (in RGB color space), where f is the ratio of

downsampling. This corresponds to blurring by an f × f
box impulse response, followed by downsampling. We test

our algorithm with f = 2, 3, 4, corresponding to 4×, 9×
and 16×-smaller image sizes, respectively. We note that

for higher f , the measurement matrix A may not satisfy

the desired REC(S, α, β) with β
α < 2 (see figure 4) re-

quired for convergence of our algorithm and, consequently,

our theorem might not be applicable. Results for MNIST

in figure 9a-9c shows that recovery performance indeed de-

grades with increasing f , however, our NPGD algorithm,
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(a) (b)

(c) (d)

Figure 8: (a) Relative error ‖x∗ − x̂‖2/‖x∗‖2 and SSIM of reconstruction algorithms for MNIST dataset with m = 20, 50, 100, 200
measurements. (b) MNIST reconstructions with a random Gaussian (middle row) and the designed matrix with orthonormal rows based

on G (bottom row) using different m. (c) Relative error and SSIM for CelebA dataset with m = 200, 500, 1000, 2000 measurements. (d)

CelebA reconstructions, as in (b).

(a) 4× low-res (b) 9× low-res (c) 16× low-res

Figure 9: Super-resolution on MNIST dataset. Row 1: original im-

age x. Row 2: low-resolution images y, upsampled using constant

padding, Row 3: high resolution image recovered by [4]. Row 4:

high-resolution image recovered by our method.

(a) Mask size = 6 (b) Mask size = 10 (c) Mask size = 14

Figure 10: Inpainting in MNIST dataset. Row 1: original image

x. Row 2: image y with center block missing. Row 3: image

recovered by [4]. Row 4: image recovered by our method.

gives better reconstructions than Bora et al. [4].

5.3. Inpainting

Inpainting refers to recovering the entire image from a

partly occluded version. In this case, y is an image with

masked regions and A is the linear operation applying a

pixel-wise mask to the original image x. Again, this is a

special case of linear measurements where each measure-

ment corresponds to an observed pixel. For experiments

on the MNIST dataset, we apply a centered square mask of

size 6, 10, 14. Recovery results in figure 10a-10c show that

our method consistently outperforms [4] and recovers al-

most perfectly for mask-size less than 10. The results align

with the REC histogram for inpainting (figure 4), which

shows that for higher mask-size, the desired REC condi-

tion for guaranteed convergence may not be satisfied.

5.4. Comparison of Run­time for Recovery

Table 1 compares the run times of our network-based al-

gorithm NPGD and other recovery algorithms. We record

the average run time to recover a single image from its com-

pressed sensing measurements over 10 different images. All

three algorithms were run on the same workstation with i7-

4770K CPU, 32GB RAM and GeForce Titan X GPU.

5.5. Analysis: Error in Projector

Figure 11 illustrates the idempotence error of the pro-

jector for different k. Three different categories of images

are tested, namely, MNIST training samples, MNIST test

2Run time includes 2 initializations, as implemented by the authors,

for CelebA. The same number of initializations for CelebA (and 10 for

MNIST) has been used to produce results in figures 6, 7, 8, and 9. Our

NPGD algorithm uses only one, deterministic initialization, x0 = AT y.
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m CSGM 2 PGD-GAN NPGD

200 5.8 66 0.09 (64x)

500 6.6 60 0.10 (66x)

1000 8.0 63 0.11 (72x)

2000 11.2 61 0.14 (80x)

Table 1: Comparison of execution time ([sec.]) of recovery algo-

rithms on the CelebA dataset. The relative speedup of our NPGD

over the CSGM algorithm of Bora et al. is shown in parenthesis.

Figure 11: Idempotence Error

samples, and samples G(z) generated using the pre-trained

G. We use clean images from the three sources and plot the

relative idempotence error ‖x − PG(x)‖
2/‖x‖2. The error

decreases with increasing k and saturates around k = 100.

The idemopotence errors for MNIST training and test sam-

ples are very close, indicating negligible generalization er-

ror. On the other hand, samples generated by G(z) give

much lower errors, which indicates representation error in

the GAN. Thus we expect that a more flexible generator

(deeper network) will lead to a better projector on the ac-

tual dataset and hence improve performance.

6. Conclusion

In this work, we propose a GAN based projection net-

work for faster recovery in linear inverse problems. Our

method demonstrates superior performance and also pro-

vides a speed-up of 60-80× over existing GAN-based meth-

ods, eliminating the expensive computation of the Jacobian

matrix every iteration. We provide a theoretical bound on

the reconstruction error for a moderately-conditioned mea-

surement matrix. To help design such a matrix for com-

pressed sensing, we propose a method which enables recov-

ery using 5-10× fewer measurements than using a random

Gaussian matrix. Our experiments on compressed sensing,

super-resolution, and inpainting demonstrate that generic

linear inverse problems can be solved with the proposed

method without requiring retraining. In the future, deriving

a bound for the projection error δ and an associated perfor-

mance guarantee is a interesting direction.

A. Appendix: Proof of Theorem 1

By the assumption of δ-approximate projection,

‖wt − xt+1‖
2 = ‖wt −G(G†(wt))‖

2 ≤ ‖x∗ − wt‖
2 + δ

(10)

where from the gradient update step, we have

wt = xt − ηAT (Axt − y) = xt − ηATA(xt − x∗)

Substituting wt into (10) yields

‖xt+1 − xt‖
2 − 2η

〈

xt+1 − xt, A
TA (x∗ − xt)

〉

≤ ‖x∗ − xt‖
2 − 2η‖A(x∗ − xt)‖

2 + δ

Rearranging the terms we have

2
〈

xt − xt+1, A
TA (x∗ − xt)

〉

≤
1

η
‖x∗ − xt‖

2 − 2f (xt)−
1

η
‖xt+1 − xt‖

2
+

δ

η

≤
( 1

ηα
− 2

)

f(xt)−
1

η
‖xt+1 − xt‖

2
+

δ

η

≤
( 1

ηα
− 2

)

f (xt)−
1

ηβ
‖Axt+1 −Axt‖

2
+

δ

η

(11)

where the last two inequalities follow from REC(S, α, β).
Now the LHS can be rewritten as:

2
〈

xt − xt+1, A
TA (x∗ − xt)

〉

= ‖Ax∗ −Axt+1‖
2 − ‖Ax∗ −Axt‖

2 − ‖Axt+1 −Axt‖
2

= f(xt+1)− f(xt)− ‖Axt+1 −Axt‖
2 (12)

Combining (11) and (12), and rearranging the terms, we

have:

f(xt+1) ≤
( 1

ηα
−1

)

f(xt)+
(

1−
1

ηβ

)

‖Axt+1 −Axt‖
2
2+

δ

η

and since η = 1/β,

f(xt+1) ≤
(β

α
− 1

)

f(xt) + βδ

For simplicity, we substitute κ = β/α in the following:

f(xn) ≤ (κ− 1)
n
f (x0) + βδ

n−1
∑

k=0

(κ− 1)
k

= (κ− 1)
n
f (x0) +

β (1− (κ− 1)n)

2− κ
δ

For convergence, we require 1 ≤ κ = β/α < 2. When n

reaches 1
2−κ log

(

f(x0)
Cαδ

)

, we have

‖xn − x∗‖2 ≤
‖Axn −Ax∗‖2

α
=

f(xn)

α

≤ (κ− 1)
n f(x0)

α
+

β (1− (κ− 1)n)

α(2− κ)
δ

≤ (κ− 1)
n f(x0)

α
+

δ

2/κ− 1
≤

(

C +
1

2/κ− 1

)

δ

Finally, when n → ∞, we have (κ− 1)
n f(x0)

α → 0

‖x∗ − x∞‖2 ≤
δ

2/κ− 1
=

δ

2α/β − 1
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[19] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

5

[20] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,

Andrew Cunningham, Alejandro Acosta, Andrew Aitken,

Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-

realistic single image super-resolution using a generative ad-

versarial network. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 4681–4690,

2017. 2

[21] Chengbo Li, Wotao Yin, and Yin Zhang. User’s guide for

tval3: Tv minimization by augmented lagrangian and al-

ternating direction algorithms. CAAM report, 20(46-47):4,

2009. 1, 6

[22] Ding Liu, Bihan Wen, Xianming Liu, Zhangyang Wang,

and Thomas S Huang. When image denoising meets high-

level vision tasks: A deep learning approach. arXiv preprint

arXiv:1706.04284, 2017. 1

[23] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.

Deep learning face attributes in the wild. In Proceedings of

International Conference on Computer Vision (ICCV), 2015.

5

[24] Morteza Mardani, Enhao Gong, Joseph Y Cheng, Shreyas S

Vasanawala, Greg Zaharchuk, Lei Xing, and John M Pauly.

Deep generative adversarial neural networks for compres-

sive sensing mri. IEEE transactions on medical imaging,

38(1):167–179, 2019. 2

[25] Morteza Mardani, Qingyun Sun, David Donoho, Vardan Pa-

pyan, Hatef Monajemi, Shreyas Vasanawala, and John Pauly.

Neural proximal gradient descent for compressive imag-

ing. In Advances in Neural Information Processing Systems,

pages 9596–9606, 2018. 1

[26] Chris Metzler, Ali Mousavi, and Richard Baraniuk. Learned

d-amp: Principled neural network based compressive image

recovery. In Advances in Neural Information Processing Sys-

tems, pages 1772–1783, 2017. 1

[27] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and

Yuichi Yoshida. Spectral normalization for generative ad-

versarial networks. arXiv preprint arXiv:1802.05957, 2018.

5

[28] Ali Mousavi, Gautam Dasarathy, and Richard G Baraniuk.

Deepcodec: Adaptive sensing and recovery via deep convo-

lutional neural networks. arXiv preprint arXiv:1707.03386,

2017. 1

5610



[29] Ali Mousavi, Gautam Dasarathy, and Richard G Baraniuk.

A data-driven and distributed approach to sparse signal rep-

resentation and recovery. 2018. 1

[30] Alec Radford, Luke Metz, and Soumith Chintala. Un-

supervised representation learning with deep convolu-

tional generative adversarial networks. arXiv preprint

arXiv:1511.06434, 2015. 5

[31] JH Rick Chang, Chun-Liang Li, Barnabas Poczos, BVK Vi-

jaya Kumar, and Aswin C Sankaranarayanan. One network

to solve them all–solving linear inverse problems using deep

projection models. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5888–

5897, 2017. 1

[32] Yaniv Romano, Michael Elad, and Peyman Milanfar. The

little engine that could: Regularization by denoising (red).

SIAM Journal on Imaging Sciences, 10(4):1804–1844, 2017.

1

[33] Viraj Shah and Chinmay Hegde. Solving linear inverse prob-

lems using gan priors: An algorithm with provable guaran-

tees. arXiv preprint arXiv:1802.08406, 2018. 2, 3, 6

[34] Robert Tibshirani. Regression shrinkage and selection via

the lasso. Journal of the Royal Statistical Society: Series B

(Methodological), 58(1):267–288, 1996. 6

[35] Singanallur V Venkatakrishnan, Charles A Bouman, and

Brendt Wohlberg. Plug-and-play priors for model based re-

construction. In Global Conference on Signal and Infor-

mation Processing (GlobalSIP), 2013 IEEE, pages 945–948.

IEEE, 2013. 1

[36] Bihan Wen, Saiprasad Ravishankar, and Yoram Bresler.

Structured overcomplete sparsifying transform learning with

convergence guarantees and applications. International

Journal of Computer Vision, 114(2-3):137–167, 2015. 1

[37] Bihan Wen, Saiprasad Ravishankar, Luke Pfister, and Yoram

Bresler. Transform learning for magnetic resonance image

reconstruction: From model-based learning to building neu-

ral networks. arXiv preprint arXiv:1903.11431, 2019. 1

[38] Jianchao Yang, John Wright, Thomas S Huang, and Yi

Ma. Image super-resolution via sparse representation. IEEE

transactions on image processing, 19(11):2861–2873, 2010.

1

[39] Raymond A Yeh, Chen Chen, Teck Yian Lim, Alexander G

Schwing, Mark Hasegawa-Johnson, and Minh N Do. Seman-

tic image inpainting with deep generative models. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 5485–5493, 2017. 2

[40] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas

Funkhouser, and Jianxiong Xiao. Lsun: Construction of a

large-scale image dataset using deep learning with humans

in the loop. arXiv preprint arXiv:1506.03365, 2015. 5

[41] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augus-

tus Odena. Self-attention generative adversarial networks.

arXiv preprint arXiv:1805.08318, 2018. 5

[42] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and
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