
Few-Shot Learning with Embedded Class Models and Shot-Free Meta Training

Avinash Ravichandran

Amazon Web Services

ravinash@amazon.com

Rahul Bhotika

Amazon Web Services

bhotikar@amazon.com

Stefano Soatto

Amazon Web Services and UCLA

soattos@amazon.com

Abstract

We propose a method for learning embeddings for few-

shot learning that is suitable for use with any number of

shots (shot-free). Rather than fixing the class prototypes to

be the Euclidean average of sample embeddings, we allow

them to live in a higher-dimensional space (embedded class

models) and learn the prototypes along with the model pa-

rameters. The class representation function is defined im-

plicitly, which allows us to deal with a variable number of

shots per class with a simple constant-size architecture. The

class embedding encompasses metric learning, that facili-

tates adding new classes without crowding the class repre-

sentation space. Despite being general and not tuned to the

benchmark, our approach achieves state-of-the-art perfor-

mance on the standard few-shot benchmark datasets.

Figure 1. One image of a mushroom (Muscaria) may be enough

to recognize it in the wild (left); in other cases, there may be more

subtle differences between an edible (Russula, shown in the cen-

ter) and a deadly one (Phalloides, shown on the right), but still few

samples are enough for humans.

1. Introduction

Consider Figure 1: Given one or few images of an

Amanita Muscaria (left), one can easily recognize it in the

wild. Identifying a Russula (center) may require more sam-

ples, enough to distinguish it from the deadly Amanita Phal-

loides (right), but likely not millions of them. We refer to

this as few-shot learning. This ability comes from having

seen and touched millions of other objects, in different en-

vironments, under different lighting conditions, partial oc-

clusions and other nuisances. We refer to this as meta-

learning. We wish to exploit the availability of large an-

notated datasets to meta-train models so they can learn new

concepts from few samples, or “shots.” We refer to this as

meta-training for few-shot learning.

In this paper we develop a framework for both meta-

training (learning a potentially large number of classes from

a large annotated dataset) and few-shot learning (using the

learned model to train new concepts from few samples), de-

signed to have the following characteristics.

Open set: Accommodate an unknown, growing, and pos-

sibly unbounded number of new classes in an “open set”

or “open universe” setting. Some of the simpler methods

available in the literature, for instance based on nearest-

neighbors of fixed embeddings [15], do so in theory. In

these methods, however, there is no actual few-shot learn-

ing per se, as all learnable parameters are set at meta-

training.

Continual: Enable leveraging few-shot data to improve the

model parameters, even those inferred during meta-training.

While each class may only have few samples, as the number

of classes grows, the few-shot training set may grow large.

We want a model flexible enough to enable “lifelong” or

“continual” learning.

Shot Free: Accommodate a variable number of shots for

each new category. Some classes may have a few samples,

others a few hundred; we do not want to meta-train differ-

ent models for different number of shots, nor to restrict our-

selves to all new classes having the same number of shots,

as many recent works do. This may be a side-effect of the

benchmarks available that only test a few combinations of

shots and “ways” (classes).

Embedded Class Models: Learn a representation of the

classes that is not constrained to live in the same space as the

representation of the data. All known methods for few-shot

learning choose an explicit function to compute class rep-

resentatives (a.k.a. “prototypes” [15], “proxies,” “means,”

“modes,” or “templates”) as some form of averaging in the

embedding (feature) space of the data. By decoupling the

data (feature space) from the classes (class embedding), we

free the latter to live in a richer space, where they can bet-

1331

ter represent complex distributions, and possibly grow over

time.

To this end, our contributions are described as follows:

• Shot-free: A meta-learning model and sampling

scheme that is suitable for use with any number of

ways and any number of shots, and can operate in

an open-universe, life-long setting. When we fix the

shots, as done in the benchmarks, we achieve essen-

tially state-of-the-art performance, but with a model

that is far more flexible.

• Embedded Identities: We abstract the identities to a

different space than the features, thus enabling captur-

ing more complex classes.

• Implicit Class Representation: The class represen-

tation function has a variable number of arguments,

the shots in the class. Rather than fixing the number

of shots, or choosing a complex architecture to han-

dle variable numbers, we show that learning an im-

plicit form of the class function enables seamless meta-

training, while requiring a relatively simple optimiza-

tion problem to be solved at few-shot time. We do not

use either recurrent architectures that impose artificial

ordering, or complex set-functions.

• Metric Learning is incorporated in our model, en-

abling us to add new classes without crowding the class

representation space.

• Performance: Since there is no benchmark to show-

case all the features of our model, we use existing

benchmarks for few-shot learning that fix the num-

ber of ways and shots to a few samples. Some of the

top performing methods are tailored to the benchmark,

training different models for different number of shots,

which does not scale, and does not enable handling

the standard case where each way comes with its own

number of shots. Our approach, while not tuned to any

benchmark, achieves state-of-the-art performance and

is more general.

In the next section we present a formalism for ordinary clas-

sification that, while somewhat pedantic, allows us to gen-

eralize to life-long, open universe, meta- and few-shot train-

ing. The general model allows us to analyze existing work

under a common language, and highlights limitations that

motivate our proposed solution in Sect. 2.3.

1.1. Background, Notation; Ordinary Classification

In ordinary classification, we call B = {(xi, yi)}
M
i=1,

with yi ∈ {1, . . . , B} a “large-scale” training set;

(xj , yj) ∼ P (x, y) a sample from the same distribution.

If it is in the training set, we write formally P (y = k|xi) =

δ(k − yi). Outside the training set, we approximate this

probability with

Pw(y = k|x) :=
exp(−φw(x)k)

∑

k exp(−φw(x)k)
(1)

where the discriminant φw : X → R
K is an element of a

sufficiently rich parametric class of functions with parame-

ters, or “weights,” w, and the subscript k indicates the k-th

component. The empirical cross-entropy loss is defined as

L(w) :=

K∑

k=1

(xi,yi)∈B

−P (y = k|xi) logPw(y = k|xi)

=
∑

(xi,yi)∈B

− logPw(yi|xi) (2)

minimizing which is equivalent to maximizing
∏

i Pw(yi|xi). If B is i.i.d., this yields the maximum-

likelihood estimate ŵ, that depends on the dataset B
and approximates φŵ(x)y ≃ logP (y|x). We write

cross-entropy explicitly as a function of the discriminant as

L(w) =
∑

(xi,yi)∈B

ℓ(φw(xi)yi
) (3)

by substituting (1) into (2), where ℓ is given, with a slight

abuse of notation, by

ℓ(vi) := −vi + LSE(v) (4)

with the log-sum-exp LSE(v) := log
(
∑K

k=1 exp(vk)
)

.

Next, we introduce the general form for few-shot and life-

long learning, used later to taxonomize modeling choices

made by different approaches in the literature.

1.2. General Few­Shot Learning

Let F = {(xj , yj)}
N(k)
j=1 be the few-shot training set,

with k ∈ N the classes, or “ways,” and N(k) the “shots,”

or samples per class. We assume that meta- and few-shot

data xi, xj live in the same domain (e.g., natural images),

while the meta- and few-shot classes are disjoint, which we

indicate with y ∈ B + {1, . . . ,K}.1

During meta-training, from the dataset B we learn a para-

metric representation (feature, or embedding) of the data

φw(x), for use later for few-shot training. During few-

shot training, we use N(k) samples for each new category

1The number of ways K is a-priori unknown and potentially un-

bounded. It typically ranges from a few to few hundreds, while N(k)
is anywhere from one to a few thousands. The meta-training set has typi-

cally M in the millions and B in the thousands. Most benchmarks assume

the same number of shots for each way, so there is a single number N ,

an artificial and unnecessary restriction. There is no loss of generality in

assuming the classes are disjoint, as few-shot classes that are shared with

the meta-training set can just be incorporated into the latter.

332

k > B to train a classifier, with k potentially growing un-

bounded (life-long learning). First, we define “useful” and

then formalize a criterion to learn the parameters w, both

during meta- and few-shot training.

Unlike standard classification, discussed in the previous

section, here we do not know the number of classes ahead of

time, so we need a representation that is more general than

aK-dimensional vector φw. To this end, consider two addi-

tional ingredients: A representation of the classes ck (iden-

tities, prototypes, proxies), and a mechanism to associate

a datum xj to a class k through its representative ck. We

therefore have three functions, all in principle learnable and

therefore indexed by parametersw. The data representation

φw : X → R
F maps each datum to a fixed-dimensional

vector, possibly normalized,

z = φw(x). (5)

We also need a class representation, that maps the N(k)
features zj sharing the same identity yj = k, to some rep-

resentative ck through a function ψw : RFN(k) → R
C that

yields, for each k = B + 1, . . . , B +K

ck = ψw ({zj | yj = k}) (6)

where zj = φw(xj). Note that the argument of ψ has vari-

able dimension. Finally, the class membership can be de-

cided based on the posterior probability of a datum belong-

ing to a class, approximated with a sufficiently rich para-

metric function class in the exponential family as we did

for standard classification,

Pw(y = k|xj) :=
exp (−χw(zj , ck))

∑

k exp(−χw(zj , ck))
(7)

where χw : RF × R
C → R is analogous to (1). The cross-

entropy loss (2) can then be written as

L(w) =
B+K∑

k=B+1

N(k)
∑

j=1

ℓ(χw(zj , ck)) (8)

with ℓ given by (4) and ck by (6). The loss is minimized

when χŵ(zj , ck) = logP (yj = k|xj), a function of the

few-shot set F . Note, however, that this loss can also be

applied to the meta-training set, by changing the outer sum

to k = 1, . . . , B, or or to any combination of the two, by se-

lecting subsets of {1, . . . , B +K}. Different approaches to

few-shot learning differ in the choice of model M and mix-

ture of meta- and few-shot training sets used in one iteration

of parameter update, or training “episode.”

2. Stratification of Few-shot Learning Models

Starting from the most general form of few-shot learn-

ing described thus far, we restrict the model until there is

no few-shot learning left, to capture the modeling choices

made in the literature.

2.1. Meta Training

In general, during meta-training for few-shot learning,

one solves some form of

ŵ = argmin
w

∑

(xi,yi)∈B

ℓ(χw(zi, ci))

︸ ︷︷ ︸

L(w,c)

s. t. zi = φw(xi); ci = ψw({zj |yj = i}).

Implicit class representation function: Instead of the ex-

plicit form in (6), one can infer the function ψw implicitly:

Let r = minw L(w,ψw) be the minimum of the optimiza-

tion problem above. If we consider c = {c1, . . . , cB} as

free parameters in L(w, c), the equation r = L(ŵ, c) de-

fines c implicitly as a function of ŵ, ψŵ. One can then

simply find ŵ and c simultaneously by solving

ŵ, ĉ = argmin
w,c

B∑

k=1

i|yi=k

ℓ(χw(φw(xi), ck)) (9)

which is equivalent to the previous problem, even if there

is no explicit functional form for the class representation

ψw. As we will see, this simplifies meta-learning, as there

is no need to design a separate architecture with a variable

number of inputs ψw, but requires solving a (simple) opti-

mization during few-shot learning. This is unlike all other

known few-shot learning methods, that learn or fix ψw dur-

ing meta-learning, and keep it fixed henceforth.

Far from being a limitation, the implicit solution has sev-

eral advantages, including bypassing the need to explicitly

define a function with a variable number of inputs (or a set

function) ψw. It also enables the identity representation to

live in a different space than the data representation, again

unlike existing work that assumes a simple functional form

such as the mean.

2.2. Few­shot Training

Lifelong few-shot learning: Once meta-training is done,

one can use the same loss function in (9) for k > B to

achieve life-long, few-shot learning. While each new cat-

egory k > B is likely to have few samples N(k), in the

aggregate the number of samples is bound to grow beyond

M , which we can exploit to update both the embedding φw,

the metric χw and the class function ck = ψw.

Metric learning: A simpler model consists of fixing the

parameters of the data representation φ̂ := φŵ and using the

same loss function, but summed for k > B, to learn from

few shotsNk the new class proxies ck and change the metric

χw as the class representation space becomes crowded. If

we fix the data representation, during the few-shot training

333

phase, we solve

ŵ, ĉ = argmin
w,c

B+K∑

k=B+1

∑

j|yj=k

ℓ(χw(φ̂(xj), ck)) (10)

where the dependency on the meta-training phase is through

φ̂ and both ŵ and ĉ depend on the few-shot dataset F .

New class identities: One further simplification step is to

also fix the metric χ, leaving only the class representatives

to be estimated

ĉ = argmin
c

B+K∑

k=B+1

∑

j|yj=k

ℓ(χ(φ̂(xj), ck)). (11)

The above is the implicit form of the parametric function

ψw, with parameters w = c, as seen previously. Thus eval-

uating ĉk = ψc({zj |yj = k}) requires solving an optimiza-

tion problem.

No few-shot learning: Finally, one can fix even the func-

tion ψ explicitly, forgoing few-shot learning and simply

computing

ĉk = ψ({φ̂(xj) |yj = k}), k > B (12)

that depends on B through φ̂, and on F through Yk.

We articulate our modeling and sampling choices in the

next section, after reviewing the most common approaches

in the literature in light of the stratification described.

2.3. Related Prior Work

Most current approaches fall under the case (12), thus

involving no few-shot learning, forgoing the possibility of

lifelong learning and imposing additional undue limitations

by constraining the prototypes to live in the same space

of the features. Many are variants of Prototypical Net-

works [15], where only one of the three components of

the model is learned: ψ is fixed to be the mean, so ck :=
1

|Yk|

∑

j∈Yk
zj and χ(z, c) = ‖z − c‖2 is the Euclidean dis-

tance. The only learning occurs at meta-training, and the

trainable portion of the model φw is a conventional neural

network. In addition, the sampling scheme used for training

makes the model dependent on the number of shots, again

unnecessarily.

Other work can be classified into two main categories:

gradient based [11, 3, 9, 14] and metric based [15, 20, 10, 4].

In the first, a meta-learner is trained to adapt the parameters

of a network to match the few-shot training set. [11] uses

the base set to learn long short-term memory (LSTM) units

[6] that update the base classifier with the data from the few-

shot training set. MAML [3] learns an initialization for the

network parameters that can be adapted by gradient descent

in a few steps. LEO [14] is similar to MAML, but uses a

task specific initial condition and performs the adaptation in

a lower-dimensional space. Most of these algorithms adapt

φw(x) and use an ordinary classifier at few-shot test time.

There is a different φw(x) for every few-shot training set,

with little re-use or any continual learning.

On the metric learning side, [20] trains a weighted clas-

sifier using an attention mechanism [22] that is applied to

the output of a feature embedding trained on an the base

set. This method requires the shots at meta- and few-shot

training to match. Prototypical Networks [15] are trained

with episodic sampling and a loss function based on the

performance of a nearest-mean classifier [19] applied to a

few-shot training set. [4] generates classification weights

for a novel class based on a feature extractor using the base

training set. Finally, [1] incorporates ridge regression in

an end-to-end manner into a deep-learning network. These

methods learn a single φw(x), which is reused across few-

shot training tasks. The class identities are then either ob-

tained through a function defined a-priori such as the sam-

ple mean in [15], an attention kernel [20], or ridge regres-

sion [1]. The form of ψw or χ do not change at few-shot

training. [10] uses task-specific adaptation networks to fa-

cilitate the adapting embedding network with output on a

task-dependent metric space. In this method, the form of χ

and ψ are fixed and the output of φ is modulated based on

the few-shot training set.

Next, we describe our model that, to the best of our

knowledge, is the first and only to learn each component

of the model: The embedding φw, the metric χw, and im-

plicitly the class representation φw.

3. Proposed Model

Using the formalism of Sect. 2 we describe our mod-

eling choices. Note that there is redundancy in the model

class M, as one could fix the data representation φ(x) = x,

and devolve all modeling capacity to ψ, or vice-versa. The

choice depends on the application context. We outline our

choices, motivated by limitations of prior work.

Embedding φw: In line with recent work, we choose a deep

convolutional network. The details of the architecture are in

Sect. 4.

Class representation function ψw: We define it implicitly

by treating the class representations ck as parameters along

with the weights w. As we saw earlier, this means that

at few-shot training, we have to solve a simple optimiza-

tion problem (11) to find the representatives of new classes,

rather than computing the mean as in Prototypical Networks

and its variants:

ck = argmin
c

∑

j|yj=k

ℓ(χw(φ̂(xj), c)) = ψc(k). (13)

Note that the class estimates depend on the parameters w

in χ. If few-shot learning is resource constrained, one can

334

still learn the class representations implicitly during meta-

training, and approximate them with a fixed function, such

as the mean, during the few-shot phase.

Metric χ: we choose a discriminant induced by the Eu-

clidean distance in the space of class representations, to

which data representations are mapped by a learnable pa-

rameter matrix W :

χ
W
(zj , ck) = ‖Wφ̂(xj)− ck‖

2 (14)

Generally, we pick the dimension of c larger than the dimen-

sion of z, to enable capturing complex multi-modal identity

representations. Note that this choice encompasses metric

learning: If Q = QT was a symmetric matrix representing

a change of inner product, then ‖Wφ − c‖2Q = φTWTQc

would be captured by simply choosing the weights W̃ =
QW . Since both the weights and the class proxies as free,

there is no gain in generality in adding the metric param-

eters Q. Of course, W can be replaced by any non-linear

map, effectively “growing” the model via

χw(zj , ck) = ‖f̂w(φ(xj))− ck‖
2 (15)

for some parametric family fw such as a deep neural net-

work.

4. Implementation

Embedding φw(xj) We use two different architectures.

The first [15, 20] is four-convolution blocks, each block

with 64 3 × 3 filters followed by batch-normalization and

ReLU. This is passed through max-pooling of a 2 × 2 ker-

nel. Following the convention in [4], we call this archi-

tecture C64. The other network is a modified ResNet [5],

similar to [10]. We call this ResNet-12.

In addition, we normalize the embedding to live on the

unit sphere, i.e. φ(x) ∈ S
d−1, where d is the dimension of

the embedding. This normalization is added as a layer to

ensure that the feature embedding are on the unit sphere, as

opposed to applying it post-hoc. This adds some complica-

tions during meta-training due to poor scaling of gradients

[21], and is addressed by a single parameter layer after nor-

malization, whose sole purpose is scaling the output of the

normalization layer. This layer is not required at test time.

Class representation: As noted earlier, this is implicit

during meta-training. In order to show the flexibility of our

framework, we increase the dimension of the class repre-

sentation.

Metric χ We choose the angular distance in feature space,

which is the d-hypersphere:

χ(zj , ck) = ‖Wzj − ck‖
2 = 2s2(1− cos θ), (16)

where s is the scaling factor used during training and θ the

angle between the normalized arguments. As the repre-

sentation z = φw(x) is normalized, the class-conditional

model is a Fisher-Von Mises (spherical Gaussian). How-

ever, as Wφw(xi) ∈ S
d−1, we need Wψw ∈ S

d−1. During

meta-training we apply the same normalization and scale

function to the implicit representation as well.

Pw(y = k|x) ∝ exp〈Wφw(x), ck〉 (17)

up to the normalization constant.

Sampling At each iteration during meta-training, images

from the training set B are presented to the network in the

form of episodes [20, 11, 15]; each episode consists of im-

ages sampled from K classes. The images are selected by

first sampling K classes from B and then sampling Ne im-

ages from each of the sampled classes. The loss function is

now restricted to the K classes present in the episode as op-

posed to the entire set of classes available at meta-training.

This setting allows for the network to learn a better embed-

ding for an open set classification as shown in [2, 20]

Unlike existing sampling methods that use episodic sam-

pling [11, 15], we do not split the images within an episode

into a meta-train set and a meta-test set. For instance, proto-

typical networks [15] use the elements in the meta-train set

to learn the mean of the class representation. [11] learns the

initial conditions for optimization. This requires a notion of

training “shot,” and results in multiple networks to match

the shots one expects at few-shot training.

Regularization First, we notice that the loss function (9)

has a degenerate solution where all the centers and the em-

beddings are the same. In this case, Pw(y = k|xj) =
Pw(y = k′|xj) for all k and k′, i.e., Pw(y = k′|xj) is a

uniform distribution. For this degenerate case, the entropy

is maximum, so we use entropy to bias the solution away

from the trivial one. We also use Dropout [16] on top of the

embedding φw(x) during meta-training. Even when using

episodic sampling, the embedding tends to over-fit on the

base set in the absence of dropout. We do not use this at

few-shot train and test time.

Figure 2 summarizes our architecture for the loss func-

tion during meta training. This has layers that are only

needed for training such as the scale layer, Dropout and the

loss. During few-shot training, we only use the learned em-

bedding φw(x).

5. Experimental Results

We test our algorithm on three datasets: miniImagenet

[20], tieredImagenet [12] and CIFAR Few-Shot [1]. The

miniImagenet dataset consists of images of size 84 × 84
sampled from 100 classes of the ILSVRC [13] dataset, with

335

D
R
O
P
O
U
T

φw(x)
<latexit sha1_base64="m0ZCbQv5iMpY7i+RD1iqseEz2YY=">AAAB8HicdVDLSsNAFJ3UV62vqks3Q4tQEULS+kh3RTcuK9iHNKFMppN26OTBzEQNoV+hCxeKuPVz3PVvnKYKKnrgwuGce7n3HjdiVEjDmGq5hcWl5ZX8amFtfWNzq7i90xZhzDFp4ZCFvOsiQRgNSEtSyUg34gT5LiMdd3w+8zs3hAsaBlcyiYjjo2FAPYqRVNK1HY1o/7Zyd9Avlg29bh1XazWoyIlpGRmpW0dKMXUjQ7lRsg8fpo2k2S++24MQxz4JJGZIiJ5pRNJJEZcUMzIp2LEgEcJjNCQ9RQPkE+Gk2cETuK+UAfRCriqQMFO/T6TIFyLxXdXpIzkSv72Z+JfXi6VnOSkNoliSAM8XeTGDMoSz7+GAcoIlSxRBmFN1K8QjxBGWKqOCCuHrU/g/aVd1s6ZXL1UaZ2COPNgDJVABJjgFDXABmqAFMPDBPXgCzxrXHrUX7XXemtM+Z3bBD2hvH++xk3w=</latexit>

k · k2
<latexit sha1_base64="1DA8TBu2Z5dJV+MZ9ltnbeUSdiE=">AAAB8nicdVBdSwJBFJ21L7Mvq8deBiUIAtnVPtY3qZceDVKD3UVmx1EHZ3eWmbuBqP+iXnoootd+TW/+m0YtqKgDFw7n3Mu994SJ4Bpse2pllpZXVtey67mNza3tnfzuXlPLVFHWoFJIdRsSzQSPWQM4CHabKEaiULBWOLic+a07pjSX8Q0MExZEpBfzLqcEjOT5Y592JPjjdrmdL9qlqntarlSwIWeOa89J1T0xilOy5yjWCv7x/bQ2rLfz735H0jRiMVBBtPYcO4FgRBRwKtgk56eaJYQOSI95hsYkYjoYzU+e4EOjdHBXKlMx4Ln6fWJEIq2HUWg6IwJ9/dubiX95XgpdNxjxOEmBxXSxqJsKDBLP/scdrhgFMTSEUMXNrZj2iSIUTEo5E8LXp/h/0iyXnEqpfG3SuEALZNEBKqAj5KBzVENXqI4aiCKJHtATerbAerRerNdFa8b6nNlHP2C9fQDWlpSb</latexit>

s(·)
<latexit sha1_base64="jjSloQC9hoO3xzUBhusNXFD2R7Q=">AAAB73icdVDLSsNAFJ3UV62vqks3Q4tQEULS+kh3RTcuK9gHNKFMJpN26OThzEQIoT8hggtF3Po77vo3TlMFFT1w4XDOvdx7jxszKqRhzLTC0vLK6lpxvbSxubW9U97d64oo4Zh0cMQi3neRIIyGpCOpZKQfc4ICl5GeO7mc+707wgWNwhuZxsQJ0CikPsVIKqkvajb2Ink0LFcNvWmd1hsNqMiZaRk5aVonSjF1I0e1VbGPH2attD0sv9tehJOAhBIzJMTANGLpZIhLihmZluxEkBjhCRqRgaIhCohwsvzeKTxUigf9iKsKJczV7xMZCoRIA1d1BkiOxW9vLv7lDRLpW05GwziRJMSLRX7CoIzg/HnoUU6wZKkiCHOqboV4jDjCUkVUUiF8fQr/J926bjb0+rVK4wIsUAQHoAJqwATnoAWuQBt0AAYM3IMn8Kzdao/ai/a6aC1onzP74Ae0tw8ZzJMA</latexit>

L
O
S
S

W, {ci}
<latexit sha1_base64="2nDLUHO7pFSlYHhtRWOvEMr5IfE=">AAAB8HicdVDLSsNAFJ34rPVVdelmsAguJCRt1XRXdOOygn1IE8pkOmmHzkzCzEQooV/hxoUibv0cd/6N07SCih64cDjnXu69J0wYVdpxPqyl5ZXVtfXCRnFza3tnt7S331ZxKjFp4ZjFshsiRRgVpKWpZqSbSIJ4yEgnHF/N/M49kYrG4lZPEhJwNBQ0ohhpI911Tv0M96k/7ZfKjl33zirVKjTk3PWcnNS9mlFc28lRBgs0+6V3fxDjlBOhMUNK9Vwn0UGGpKaYkWnRTxVJEB6jIekZKhAnKsjyg6fw2CgDGMXSlNAwV79PZIgrNeGh6eRIj9Rvbyb+5fVSHXlBRkWSaiLwfFGUMqhjOPseDqgkWLOJIQhLam6FeIQkwtpkVDQhfH0K/yftiu06tntTKzcuF3EUwCE4AifABRegAa5BE7QABhw8gCfwbEnr0XqxXuetS9Zi5gD8gPX2CQWNkI8=</latexit><latexit sha1_base64="2nDLUHO7pFSlYHhtRWOvEMr5IfE=">AAAB8HicdVDLSsNAFJ34rPVVdelmsAguJCRt1XRXdOOygn1IE8pkOmmHzkzCzEQooV/hxoUibv0cd/6N07SCih64cDjnXu69J0wYVdpxPqyl5ZXVtfXCRnFza3tnt7S331ZxKjFp4ZjFshsiRRgVpKWpZqSbSIJ4yEgnHF/N/M49kYrG4lZPEhJwNBQ0ohhpI911Tv0M96k/7ZfKjl33zirVKjTk3PWcnNS9mlFc28lRBgs0+6V3fxDjlBOhMUNK9Vwn0UGGpKaYkWnRTxVJEB6jIekZKhAnKsjyg6fw2CgDGMXSlNAwV79PZIgrNeGh6eRIj9Rvbyb+5fVSHXlBRkWSaiLwfFGUMqhjOPseDqgkWLOJIQhLam6FeIQkwtpkVDQhfH0K/yftiu06tntTKzcuF3EUwCE4AifABRegAa5BE7QABhw8gCfwbEnr0XqxXuetS9Zi5gD8gPX2CQWNkI8=</latexit><latexit sha1_base64="2nDLUHO7pFSlYHhtRWOvEMr5IfE=">AAAB8HicdVDLSsNAFJ34rPVVdelmsAguJCRt1XRXdOOygn1IE8pkOmmHzkzCzEQooV/hxoUibv0cd/6N07SCih64cDjnXu69J0wYVdpxPqyl5ZXVtfXCRnFza3tnt7S331ZxKjFp4ZjFshsiRRgVpKWpZqSbSIJ4yEgnHF/N/M49kYrG4lZPEhJwNBQ0ohhpI911Tv0M96k/7ZfKjl33zirVKjTk3PWcnNS9mlFc28lRBgs0+6V3fxDjlBOhMUNK9Vwn0UGGpKaYkWnRTxVJEB6jIekZKhAnKsjyg6fw2CgDGMXSlNAwV79PZIgrNeGh6eRIj9Rvbyb+5fVSHXlBRkWSaiLwfFGUMqhjOPseDqgkWLOJIQhLam6FeIQkwtpkVDQhfH0K/yftiu06tntTKzcuF3EUwCE4AifABRegAa5BE7QABhw8gCfwbEnr0XqxXuetS9Zi5gD8gPX2CQWNkI8=</latexit><latexit sha1_base64="2nDLUHO7pFSlYHhtRWOvEMr5IfE=">AAAB8HicdVDLSsNAFJ34rPVVdelmsAguJCRt1XRXdOOygn1IE8pkOmmHzkzCzEQooV/hxoUibv0cd/6N07SCih64cDjnXu69J0wYVdpxPqyl5ZXVtfXCRnFza3tnt7S331ZxKjFp4ZjFshsiRRgVpKWpZqSbSIJ4yEgnHF/N/M49kYrG4lZPEhJwNBQ0ohhpI911Tv0M96k/7ZfKjl33zirVKjTk3PWcnNS9mlFc28lRBgs0+6V3fxDjlBOhMUNK9Vwn0UGGpKaYkWnRTxVJEB6jIekZKhAnKsjyg6fw2CgDGMXSlNAwV79PZIgrNeGh6eRIj9Rvbyb+5fVSHXlBRkWSaiLwfFGUMqhjOPseDqgkWLOJIQhLam6FeIQkwtpkVDQhfH0K/yftiu06tntTKzcuF3EUwCE4AifABRegAa5BE7QABhw8gCfwbEnr0XqxXuetS9Zi5gD8gPX2CQWNkI8=</latexit>

Figure 2. Our meta-training loss flow: The layers represented in

blue are the layers that remain after meta-training. While the green

layers are used only for training. Here ‖ · ‖ represents an L2 nor-

malization layer and s(·) represents a scaling layer

600 images per class. We used the data split outlined in

[11], where 64 classes are used for training, 16 classes are

used for validation, and 20 classes are used for testing.

We also use tieredImagenet [12]. This is a larger sub-

set of ILSVRC, and consists of 779,165 images of size

84×84 representing 608 classes hierarchically grouped into

34 high-level classes. The split of this dataset ensures that

sub-classes of the 34 high-level classes are not spread over

the training, validation and testing sets, minimizing the se-

mantic overlap between training and test sets. The result

is 448,695 images in 351 classes for training, 124,261 im-

ages in 97 classes for validation, and 206,209 images in 160

classes for testing. For a fair comparison, we use the same

training, validation and testing splits as in [12], and use the

classes at the lowest level of the hierarchy.

Finally, we use CIFAR Few-Shot, (CIFAR-FS) [1] con-

taining images of size 32× 32, a reorganized version of the

CIFAR-100 [8] dataset. We use the same data split as in [1],

dividing the 100 classes into 64 for training, 16 for valida-

tion, and 20 for testing.

5.1. Comparison to Prototypical Networks

Many recent methods are variants of Prototypical Net-

works, so we perform detailed comparison with it. We keep

the training procedure, network architecture, batch-size as

well as data augmentation the same. The performance gains

are therefore solely due to the improvements in our method.

We use ADAM [7] for training with an initial learning

rate of 10−3, and a decay factor of 0.5 every 2,000 iter-

ations. We use the validation set to determine the best

model. Our data augmentation consists of mean subtrac-

tion, standard-deviation normalization, random cropping

and random flipping during training. Each episode contains

15 query samples per class during training. In all our exper-

iments, we set λ = 1 and did not tune this parameter.

Except otherwise noted, we always test few-shot algo-

rithms on 2000 episodes, with 30 query classes per point

per episode. At few-shot training, we experimented with

setting the class identity to be implicit (optimized) or av-

erage prototype (fixed). The latter may be warranted when

the few-shot phase is resource-constrained and yields simi-

lar performance. To compare computation time, we use the

fixed mean. Note that, in all cases, the class prototypes are

learned implicitly during meta-training.

The results of this comparison are shown in Table 1.

From this table we see that for the 5-shot 5-way case we

perform similarly to Prototypical Network. However, for

the 1-shot case we see significant improvements across all

three datasets. Also, the performance of Prototypical Net-

works drops when the train and test shot are changed. Ta-

ble 1 shows a significant drop in performance when we test

models with a 5-shot setting and train with 1-shot. Notice

that, from the table, our method is able to maintain the same

performance. Consequently, we only train one model and

test it across the different shot scenarios, hence the moniker

“shot-free.”

5.2. Effect of Dimension of Class Identities

Class identities ck can live in a space of different di-

mensions than the feature embedding. This can be done in

two ways: by lifting the embedding into a higher dimension

space or by projecting the class identity into the embedding

dimension. If the dimension of the class identity changes,

we also need to modify χ according to (14). The weight

matrix W ∈ R
d×µ, where d is the dimension of the embed-

ding and µ is the dimension of the class identities, can be

learned during meta-training. This is equivalent to adding a

fully connected layer through which the class identities are

passed before normalization. Thus, we now learn φw, ψk

and χW . We show experimental results with the C64 archi-

tecture on the miniImagenet datasets in Table 2. Here, we

tested the dimension of the class identities to be 2×, 5× and

10× the dimension of the embedding. From this table we

see that increasing the dimensions gives us a performance

boost. However, this increase saturates at a dimension of

2× the dimension of the embedding space.

5.3. Comparison to the State­of­the­art

In order to compare with the state-of-the-art, we use the

ResNet-12 base architecture, train our approach using SGD

with Nesterov momentum with an initial learning rate of

0.1, weight decay of 5e − 4, momentum of 0.9 and eight

episodes per batch. Our learning rate was decreased by

a factor of 0.5 every time the validation error did not im-

prove for 1000 iterations. We did not tune these parameters

based on the dataset. As mentioned earlier, we train one

model and test across various shots. We also compare our

method with class identities in a space with twice the di-

mension of the embedding. Lastly, we compare our method

336

Dataset Testing Scenario Training Scenario Our implementation of [15] Our Method

miniImagenet

1-shot 5-way 1-shot 5-way 43.88 ± 0.40 49.07 ± 0.43

5-shot 5-way 1-shot 5-way 58.33 ± 0.35 64.98 ± 0.35

5-shot 5-way 5-shot 5-way 65.49 ± 0.35 65.73 ± 0.36

tieredImagenet

1-shot 5-way 1-shot 5-way 41.36 ± 0.40 48.19 ± 0.43

5-shot 5-way 1-shot 5-way 55.93 ± 0.39 64.60 ± 0.39

5-shot 5-way 5-shot 5-way 65.51 ± 0.38 65.50 ± 0.39

CIFAR Few-Shot

1-shot 5-way 1-shot 5-way 50.74 ± 0.48 55.14 ± 0.48

5-shot 5-way 1-shot 5-way 64.63 ± 0.42 70.33 ± 0.40

5-shot 5-way 5-shot 5-way 71.57 ± 0.38 71.66 ± 0.39

Table 1. Comparison of results from our method to that of our implementation of Prototypical Network [15] using the C64 network

architecture. The table shows the accuracy and 95% percentile confidence interval of our method averaged over 2,000 episodes on different

datasets. Note that our method does not have a notion of shot, here we when we imply training by different shot, we mean that the batch

sizes is the same as that of the prescribed method.

Dimension 1x 2x 5x 10x

Performance 49.07 51.46 51.46 51.32

Table 2. Performance of our method on miniImagenet with the

class identity dimension as a function of the embedding dimension

using the C64 network architecture. The table shows the accuracy

averaged over 2,000 episodes.

with a variant of ResNet where we change the filter sizes to

(64,160,320,640) from (64,128,256,512).

The results of our comparison for miniImagenet is shown

in Table 3. Modulo empirical fluctuations, our method per-

forms at the state-of-the art and in some cases exceeds it.

We wish to point out that SNAIL [9], TADAM [10, 17],

LEO [14], MTLF [17] pre-train the network for a 64 way

classification task on miniImagenet and 351 way classifi-

cation on tieredImagenet. However, all the models trained

for our method are trained from scratch and use no form of

pre-training. We also do not use the meta-validation set for

tuning any parameters other than selecting the best trained

model using the error on this set. Furthermore, unlike all

other methods, we did not have to train multiple networks

and tune the training strategy for each case. Lastly, LEO

[14] uses a very deep 28 layer Wide-ResNet as a base model

compared to our shallower ResNet-12. A fair comparison

would involve training our methods with the same base net-

work. However, we include this comparison for complete

transparency.

The performance of our method on tieredImagenet is

shown in Table 4. This table shows that we are the top per-

forming method for 1-shot 5-way and 5-shot 5-way. We

test on this dataset as it is much larger and does not have

semantic overlap between meta training and few-shot train-

ing even though fewer baselines exist for this dataset com-

pared to miniImagenet. Also shown in Table 4 is the perfor-

Algorithm 1-shot 5-Shot 10-shot

5-way 5-way 5-way

Meta LSTM [11] 43.44 60.60 -

Matching networks [20] 44.20 57.0 -

MAML [3] 48.70 63.1 -

Prototypical Networks [15] 49.40 68.2 -

Relation Net [18] 50.40 65.3 -

R2D2 [1] 51.20 68.2 -

SNAIL [9] 55.70 68.9 -

Gidariset al. [4] 55.95 73.00 -

TADAM [10] 58.50 76.7 80.8

MTFL [17] 61.2 75.5 -

LEO [14] 61.76 77.59 -

Our Method (ResNet-12) 59.00 77.46 82.33

Our Method (ResNet-12) 2x dims. 60.64 77.02 80.80

Our Method (ResNet-12 Variant) 59.04 77.64 82.48

Our Method (ResNet-12 Variant) 2x dims 60.71 77.26 81.34

Table 3. Performance of 4 variants of our method on miniImagenet

compared to the state-of-the-art. The table shows the accuracy

averaged over 2,000 episodes.

mance of our method on the CIFAR Few-Shot dataset. We

show results on this dataset to illustrate that our method can

generalize across datasets. From this table we see that our

method performs the best for CIFAR Few-Shot.

5.4. Effect of Choices in Training

As a final remark, there is no consensus on the few-shot

training and testing paradigm in the literature. There are too

many variables that can affect performance. To illustrate

this, we show the effect of few training choices.

Effect of Optimization algorithm In the original imple-

mentation of Prototypical Networks [15], ADAM [7] was

used as the optimization algorithm. However, most newer

algorithms such as [10, 4] use SGD as their optimization

algorithm. This result of using different optimization al-

337

Algorithm 1-shot 5-Shot 10-shot

5-way 5-way 5-way

tieredImagenet

MAML [3] 51.67 70.30 -

Prototypical Networks [12] 53.31 72.69 -

Relation Net [18] 54.48 71.32 -

LEO [14] 65.71 81.31 -

Our Method (ResNet-12) 63.99 81.97 85.89

Our Method (ResNet-12) 2x dims. 66.87 82.64 85.53

Our Method (ResNet-12) Variant 63.52 82.59 86.62

Our Method (ResNet-12) Variant 2x dims 66.87 82.43 85.74

CIFAR Few-Shot

MAML [3] 58.9 71.5 -

Prototypical Networks [15] 55.5 72.0 -

Relation Net 55.0 69.3 -

R2D2 [1] 65.3 79.4 -

Our Method (ResNet-12) 69.15 84.70 87.64

Table 4. Performance of our method on tieredImagenet and CI-

FAR Few-Shot datasets as compared to the state-of-the-art. The

performance numbers for CIFAR Few-Shot are from [1]. The ta-

ble shows the accuracy averaged over 2,000 episodes. Note that

the training setting for the prior work is different.

gorithms is shown in Table 5. Here, we show the perfor-

mance of our algorithm on the miniImagenet dataset using

a ResNet-12 model. From this table we see that, while for

the 1-shot 5-way the results are better with ADAM as op-

posed to SGD, we see that the same does not hold for the

5-shot 5-way and 10-shot 5-way scenarios. This shows that

SGD generalizes better for our algorithm as compared to

ADAM.

Optimization Algorithm 1-shot 5-Shot 10-shot

5-way 5-way 5-way

ADAM 59.41 76.75 81.33

SGD 59.00 77.46 82.33

Table 5. Performance of our method on miniImagenet using the

ResNet-12 model with different choices of optimization algorithm.

The table shows the accuracy averaged over 2,000 episodes.

Effect of number of tasks per iteration. TADAM [10]

and Gidaris et al. [4] use multiple episodes per iteration.

They refer to this as tasks in TADAM [10], which uses 2

tasks for 5-shot, 1 task for 10-shot and 5 task for 1-shot.

We did not perform any such tuning and instead defaulted

it to 8 episodes per iteration based on Gidaris et al. [4]. We

also experimented with 16 episodes per iteration. However,

this led to a loss in performance across all testing scenarios.

Table 6, shows the performance numbers on miniImagenet

dataset using the ResNet-12 architecture and trained using

ADAM [7] as the optimization algorithm. From this table

we see that for all the scenarios 8 episodes per iteration has

a better performance.

Choice 1-shot 5-Shot 10-shot

5-way 5-way 5-way

8 episodes per iteration 59.41 76.75 81.33

16 episodes per iteration 58.22 74.53 78.61

Table 6. Performance of our method on miniImagenet using a

ResNet-12 model with different choices of episodes per iteration.

The table shows the accuracy averaged over 2,000 episodes.

Even with all major factors such as network architecture,

training procedure, batch size remaining the same, factors

such as the number of query points used for testing these

methods affect the performance and methods in existing lit-

erature uses anywhere between 15-30 points for testing, and

for some methods it is unclear what this choice was. This

calls for stricter protocols for evaluation, and richer bench-

mark datasets.

6. Discussion

We have presented a method for meta-learning for few-

shot learning where all three ingredients of the problem are

learned: The representation of the data φw, the representa-

tion of the classes ψc, and the metric or membership func-

tion χW . The method has several advantages compared to

prior approaches. First, by allowing the class representa-

tion and the data representation spaces to be different, we

can allocate more representative power to the class proto-

types. Second, by learning the class models implicitly we

can handle a variable number of shots without having to

resort to complex architectures, or worse, training differ-

ent architectures, one for each number of shots. Finally, by

learning the membership function we implicitly learn the

metric, which allows class prototypes to redistribute during

few-shot learning.

While some of these benefits are not immediately evident

due to limited benchmarks, the improved generality allows

our model to extend to a continual learning setting where

the number of new classes grows over time, and is flexible

in allowing each new class to come with its own number of

shots. Our model is simpler than some of the top performing

ones in the benchmarks. A single model performs on-par or

better in the few-shot setting and offers added generality.

References

[1] Luca Bertinetto, João F. Henriques, Philip H. S. Torr,

and Andrea Vedaldi. Meta-learning with differentiable

closed-form solvers. CoRR, abs/1805.08136, 2018. 4,

5, 6, 7, 8

[2] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-

Chiang Frank Wang, and Jia-Bin Huang. A closer look

338

at few-shot classification. In International Conference

on Learning Representations, 2019. 5

[3] Chelsea Finn, Pieter Abbeel, and Sergey Levine.

Model-agnostic meta-learning for fast adaptation of

deep networks. In ICML, 2017. 4, 7, 8

[4] Spyros Gidaris and Nikos Komodakis. Dynamic few-

shot visual learning without forgetting. In CVPR,

2018. 4, 5, 7, 8

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. In

CVPR, pages 770–778. IEEE Computer Society, 2016.

5

[6] Sepp Hochreiter and Jürgen Schmidhuber. Long short-

term memory. Neural Comput., 9(8):1735–1780, Nov.

1997. 4

[7] Diederik P. Kingma and Jimmy Lei Ba. ADAM:

A method for stochastic optimization. International

Conference on Learning Representations 2015, 2015.

6, 7, 8

[8] Alex Krizhevsky. Learning multiple layers of fea-

tures from tiny images. Technical report, University

of Toronto, 2009. 6

[9] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and

Pieter Abbeel. A simple neural attentive meta-learner.

In ICLR, 2018. 4, 7

[10] Boris N. Oreshkin, Pau Rodrı́guez, and Alexandre La-

coste. Improved few-shot learning with task condi-

tioning and metric scaling. In NIPS, 2018. 4, 5, 7,

8

[11] Sachin Ravi and Hugo Larochelle. Optimization as a

model for few-shot learning. In ICLR, 2017. 4, 5, 6, 7

[12] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake

Snell, Kevin Swersky, Joshua B. Tenenbaum, Hugo

Larochelle, and Richard S. Zemel. Meta-learning

for semi-supervised few-shot classification. CoRR,

abs/1803.00676, 2018. 5, 6, 8

[13] Olga Russakovsky, Jia Deng, Hao Su, Jonathan

Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,

Andrej Karpathy, Aditya Khosla, Michael Bernstein,

Alexander C. Berg, and Li Fei-Fei. Imagenet large

scale visual recognition challenge. Int. J. Comput. Vi-

sion, 115(3):211–252, Dec. 2015. 5

[14] Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski,

Oriol Vinyals, Razvan Pascanu, Simon Osindero, and

Raia Hadsell. Meta-learning with latent embedding

optimization. CoRR, abs/1807.05960, 2018. 4, 7, 8

[15] Jake Snell, Kevin Swersky, and Richard S. Zemel.

Prototypical networks for few-shot learning. In NIPS,

pages 4080–4090, 2017. 1, 4, 5, 7, 8

[16] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,

Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:

A simple way to prevent neural networks from over-

fitting. J. Mach. Learn. Res., 15(1):1929–1958, Jan.

2014. 5

[17] Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt

Schiele. Meta-transfer learning for few-shot learning.

CoRR, abs/1812.02391, 2018. 7

[18] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang,

Philip H.S. Torr, and Timothy M. Hospedales. Learn-

ing to compare: Relation network for few-shot learn-

ing. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2018. 7, 8

[19] Robert Tibshirani, Trevor Hastie, Balasubramanian

Narasimhan, and Gilbert Chu. Diagnosis of multiple

cancer types by shrunken centroids of gene expres-

sion. Proceedings of the National Academy of Sci-

ences, 99(10):6567–6572, 2002. 4

[20] Oriol Vinyals, Charles Blundell, Timothy Lillicrap,

Koray Kavukcuoglu, and Daan Wierstra. Matching

networks for one shot learning. In NIPS, 2016. 4, 5, 7

[21] Feng Wang, Xiang Xiang, Jian Cheng, and Alan Lod-

don Yuille. Normface: L2 hypersphere embedding for

face verification. In Proceedings of the 25th ACM

International Conference on Multimedia, MM ’17,

pages 1041–1049, New York, NY, USA, 2017. ACM.

5

[22] Kelvin Xu, Jimmy Lei Ba, Ryan Kiros, Kyunghyun

Cho, Aaron Courville, Ruslan Salakhutdinov,

Richard S. Zemel, and Yoshua Bengio. Show, attend

and tell: Neural image caption generation with visual

attention. In ICML, pages 2048–2057, 2015. 4

339

