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Abstract

Learning to synthesize high frame rate videos via inter-

polation requires large quantities of high frame rate train-

ing videos, which, however, are scarce, especially at high

resolutions. Here, we propose unsupervised techniques to

synthesize high frame rate videos directly from low frame

rate videos using cycle consistency. For a triplet of consecu-

tive frames, we optimize models to minimize the discrepancy

between the center frame and its cycle reconstruction, ob-

tained by interpolating back from interpolated intermediate

frames. This simple unsupervised constraint alone achieves

results comparable with supervision using the ground truth

intermediate frames. We further introduce a pseudo super-

vised loss term that enforces the interpolated frames to be

consistent with predictions of a pre-trained interpolation

model. The pseudo supervised loss term, used together with

cycle consistency, can effectively adapt a pre-trained model

to a new target domain. With no additional data and in

a completely unsupervised fashion, our techniques signifi-

cantly improve pre-trained models on new target domains,

increasing PSNR values from 32.84dB to 33.05dB on the

Slowflow and from 31.82dB to 32.53dB on the Sintel evalu-

ation datasets.

1. Introduction

With the advancement of modern technology, consumer-

grade smartphones and digital cameras can now record

videos at high frame rates (e.g. 240 frames-per-second).

However, achieving this comes at the cost of high power

consumption, larger storage requirements, and reduced

video resolution. Given these limitations, regular events

are not typically recorded at high frame rates. Yet, impor-

tant life events happen unexpectedly and hence tend to be

recorded at standard frame rates. It is thus greatly desirable

to have the ability to produce arbitrarily high FPS videos

from low FPS videos.

Video frame interpolation addresses this need by gener-
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Figure 1. Visual results of a sample from Slowflow dataset. Base-

line supervised model is trained with Adobe and YouTube datasets

and proposed unsupervised model is fine-tuned with Slowflow.

ating one or more intermediate frames from two consecu-

tive frames. Increasing the number of frames in videos es-

sentially allows one to visualize events in slow motion and

appreciate content better. Often, video interpolation tech-

niques are employed to increase the frame rate of already

recorded videos, or in streaming applications to provide a

high refresh rate or a smooth viewing experience.

Video interpolation is a classical vision and graphics

problem [3, 21, 27] and has recently received renewed re-

search attention [10, 16, 11, 14]. Particularly, supervised

learning with convolutional neural networks (CNNs) has

been widely employed to learn video interpolation from

paired input and ground truth frames, often collected from

raw video data. For instance, recent CNN-based approaches

such as [6] and [16], trained with large quantities of public

high FPS videos, obtain high quality interpolation results

when the test videos are similar to the training ones.

However, these methods may fail if the training data dif-

fer from the target domain. For instance, the target domain

might be to slow down videos of fish taken underwater, but
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available training data only contains regular outdoor scenes,

thus leading to a content gap. Additionally, there might be

more subtle domain gaps due to differences such as camera

parameters, encoding codecs, and lighting, leading to the

well-known co-variate shift problem [18]. It is impractical

to address the issue by collecting high FPS videos cover-

ing all possible scenarios, because it is expensive to capture

and store very high FPS videos, e.g., videos with more than

1000-fps at high spatial resolutions.

In this work, we propose a set of unsupervised learning

techniques to alleviate the need for high FPS training videos

and to shrink domain gaps in video interpolation. Specifi-

cally, we propose to learn video frame interpolation, with-

out paired training data, by enforcing models to satisfy a

cycle consistency constraint [2] in the time. That is, for a

given triplet of consecutive frames, if we generate the two

intermediate frames between the two consecutive frames,

and generate back their intermediate frame, the resulting

frame must match the original input middle frame (shown

schematically in Fig. 3). We show such simple constraint

alone is effective to learn video interpolation, and achieve

results that compete with supervised approaches.

In domain adaptation applications, where we have ac-

cess to models pre-trained on out-of-domain datasets, but

lack ground truth frames in target domains, we also propose

unsupervised fine-tuning techniques that leverage such pre-

trained models (See Fig. 2). We fine-tune models on tar-

get videos, with no additional data, by optimizing to jointly

satisfy cycle consistency and minimize the discrepancy be-

tween generated intermediate frames and corresponding

predictions from the known pre-trained model. We demon-

strate our joint optimization strategy leads to significantly

superior accuracy in upscaling frame rate of target videos

than fine-tuning with cycle consistency alone or directly ap-

plying the pre-trained models on target videos (see Fig. 1).

Cycle consistency has been utilized for image matching

[25], establishing dense 3D correspondence over object in-

stances [23], or in learning unpaired image-to-image trans-

lation in conjunction with Generative Adversarial Networks

(GANs) [26]. To the best of our knowledge, this is the first

attempt to use a cycle consistency constraint to learn video

interpolation in a completely unsupervised way.

To summarize, the contributions of our work include:

• We propose unsupervised approaches to learn video in-

terpolation in the absence of paired training data by op-

timizing neural networks to satisfy cycle consistency

constraints in time domain.

• We learn to synthesize arbitrarily high frame rate

videos by learning from only low frame rate raw

videos.

• We demonstrate the effectiveness of our unsupervised

techniques in reducing domain gaps in video interpo-

lation.

Video

Interpolation

Network

High FPS training data Low FPS testing data

Supervised training Unsupervised fine-tuning

Figure 2. Video interpolation methods may fail if the training data

differ from the test data. In this work, we propose an unsupervised

fine-tuning technique to reduce domain gaps.

2. Related Works

Video Interpolation: The task is to interpolate intermedi-

ate frames between a pair of input frames. Classical ap-

proaches such as [4] and [12] estimate optical flow and in-

terpolate intermediate frames along the estimated trajectory

of pixels, and further make use of forward and backward

optical flow consistency to reason about occlusions.

Given the recent rise in popularity of deep learning meth-

ods, several end-to-end trainable methods have been pro-

posed for video interpolation. Specifically, these methods

can be trained to interpolate frames using just input and

target frames and no additional supervision. Liu et al. [9]

and Jiang et al. [6] both indirectly learn to predict optical

flow using frame interpolation. Works such as [15, 16]

are similarly end-to-end trainable, but instead of learning

optical flow vectors to warp pixels, they predict adaptive

convolutional kernels to apply at each location of the two

input frames. Our work presents unsupervised techniques

to train or fine-tune any video interpolation model, for in-

stance the Super SloMo [6], which predicts multiple inter-

mediate frames, or the Deep Voxel Flow [9], which predicts

one intermediate frame.

Cycle Consistency: One of the key elements of our pro-

posed method is the use of a cycle consistency constraint.

This constraint encourages the transformations predicted by

a model to be invertible, and is often used to regularize

the model behavior when direct supervision is unavailable.

Cycle consistency has been used in a variety of applica-

tions, including determining the quality of language trans-

lations [2], semi-supervised training for image-description

generation [13], dense image correspondences [24], iden-

tifying false visual relations in structure from motion [22],

and image-to-image translation [26], to name a few.

A cycle consistency constraint, in the context of video

interpolation, means that we should be able to reconstruct

the original input frames by interpolating between predicted

intermediate frames at the appropriate time stamps. Most

related to our work is [8], which uses such a constraint to

regularize a fully supervised video interpolation model. Our

work differs in several critical aspects. First, our method is

based on the Super SloMo [6] architecture, and is thus ca-

pable of predicting intermediate frames at arbitrary times-
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tamps, whereas [8] is specifically trained to predict the

middle timestamp. Next, and most critically, our proposed

method is fully unsupervised. This means that the target in-

termediate frame is never used for supervision, and that it

can learn to produce high frame rate interpolated sequences

from any lower frame rate sequence.

3. Method

In this work, we propose to learn to interpolate arbitrarily

many intermediate frames from a pair of input frames, in an

unsupervised fashion, with no paired intermediate ground

truth frames. Specifically, given a pair of input frames I0
and I1, we generate intermediate frame Ît, as

Ît = M
�

I0, I1, t
�

, (1)

where t 2 (0, 1) is time, and M is a video frame interpo-

lation model we want to learn without supervision. We re-

alize M using deep convolutional neural networks (CNN).

We chose CNNs as they are able to model highly non-linear

mappings, are easy to implement, and have been proven to

be robust for various vision tasks, including image classifi-

cation, segmentation, and video interpolation.

Inspired by the recent success in learning unpaired

image-to-image translation using Generative Adversarial

Networks (GAN) [26], we propose to optimize M to main-

tain cycle consistency in time. Let I0, I1 and I2 are a triplet

of consecutive input frames. We define the time-domain cy-

cle consistency constraint such that for generated interme-

diate frames at time t between (I0, I1) and between (I1, I2),
a subsequently generated intermediate frame at time (1� t)
between the interpolated results (Ît, Ît+1) must match the

original middle input frame I1. Mathematically, a cycle re-

constructed frame using M is given by,

Î1 = M
⇣

M
�

I0, I1, t
�

,M
�

I1, I2, t
�

, 1� t

⌘

. (2)

We then optimize M to minimize the reconstruction er-

ror between Î1 and I1, as

argmin
θ(M)

⇣

�

�Î1 � I1
�

�

1

⌘

. (3)

Figure 3 schematically presents our cycle consistency based

approach.

A degenerate solution to optimizing equation 3 might be

to copy the input frames as the intermediate predictions (i.e.

outputs). However, in practice this does not occur. In order

for M to learn to do copy frames in this way, it would have

to learn to identify the input’s time information within a sin-

gle forward operation (eq. 2), as I1 is a t = 1 input in the

first pass, and I1 is a t = 0 input in the second pass. This

is difficult, since the same weights of M are used in both

passes. We support this claim in all of our experiments,

መ𝐈𝑡 =ℳ(𝐈0, 𝐈1, 𝑡)
T = 2

መ𝐈𝑡+1 = ℳ(𝐈1, 𝐈2, 𝑡)

መ𝐈1 =ℳ(መ𝐈𝑡 , መ𝐈𝑡+1, 1 − 𝑡)
T = 𝑡 + 1T = 1T = 𝑡T = 0

Figure 3. An overview of time-domain cycle consistency con-

strain. I0, I1 and I2, shown as green circles, are a triplet of con-

secutive input frames. If we generate intermediate frames at time t

between (I0, I1) and between (I1, I2), and subsequently generate

back an intermediate frame at time (1− t) between (̂It, Ît+1), the

resulting frame must match the original middle input frame, I1.

where we compared our learned approach using equation 3

with the trivial case of using inputs as intermediate predic-

tion.

It is true that triplets of input frames could be exploited

directly. For example, the reconstruction error between

M(I0, I2, t = 0.5) and I1 could be used without cycle con-

sistency. However, our experiments in Section 4.4.2 sug-

gest that such objectives, which model interpolation over a

larger timestep, lead to significantly worse accuracy if used

without cycle consistency.

Optimizing M to the satisfy cycle consistency (CC) con-

straint in time, as will show in our experiments in Sections

4.2 and 4.3, is effective and is able to generate arbitrarily

many intermediate frames that are realistic and temporally

smooth. It also produces results that are competitive with

supervised approaches, including the same model M, but

trained with supervision.

In this work, we also propose techniques that can make

unsupervised fine-tuning processes robust. It is quite com-

mon to have access to out-of-domain training videos in

abundance or access to already pre-trained interpolation

models. On the other hand, target domain videos are often

limited in quantity, and most critically, lack ground truth in-

termediate frames. We aim to optimize M in target videos

to jointly satisfy cycle consistency as defined in equation 3

and also learn to approximate a known pre-trained interpo-

lation model, denoted as F . Mathematically, our modified

objective is given as,

argmin
θ(M)

⇣

�

�Î1 � I1
�

�

1
+
�

�Ît � F
�

I0, I1, t
�
�

�

1
+

�

�Ît+1 � F
�

I1, I2, t
�
�

�

1

⌘

,

(4)

where Î1 is the cycle reconstructed frame given by equation

2, Ît and Ît+1 are given by equation 1, and θ(M) are the

parameters of M that our optimization processes update.
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The added objective function to approximate F , help

regularize M to generate realistic hidden intermediate

frames Ît an Ît+1 by constraining them to resemble pre-

dictions of a known frame interpolation model, F . As op-

timization progresses and M learns to pick-up interpola-

tion concepts, one can limit the contribution of the regular-

izing “pseudo” supervised (PS) loss and let optimizations

be guided more by the cycle consistency. Such a surrogate

loss term, derived from estimated intermediate frames, can

make our training processes converge faster or make our

optimization processes robust by exposing it to many varia-

tions of F .

In this work, for the sake of simplicity, we chose F to be

the same as our M, but pre-trained with supervision on a

disjoint dataset that has ground-truth high frame rate video,

and denote it as Mpre. Our final objective can be given by,

argmin
θ(M)

⇣

λrc

�

�Î1 � I1
�

�

1
+ λrp

�

�Ît �Mpre

�

I0, I1, t
�
�

�

1
+

λrp

�

�Ît+1 �Mpre

�

I1, I2, t
�
�

�

1

⌘

,

(5)

where λrc and λrp are weights of CC and PS losses.

As we will show in the experiments, optimizing equa-

tion 5 by relying only on the PS loss, without cycle consis-

tency, will teach M to perform at best as good as Mpre,

i.e., the model used in the same PS loss. However, as we

show in Section 4.4.1, by weighting cycle consistency and

PS losses appropriately, we achieve frame interpolation re-

sults that are superior to those obtained by learning using

either CC or PS losses alone.

Finally, we implement our M using the Super SloMo

video interpolation model [6]. Super SloMo is a state of

the art flow-based CNN for video interpolation, capable of

synthesizing an arbitrary number of high quality and tem-

porally stable intermediate frames. Our technique is not

limited to this particular interpolation model, but could be

adopted with others as well.

In the subsequent subsections we provide a short sum-

mary of the Super SloMo model, our loss functions, and

techniques we employed to make our unsupervised training

processes stable.

3.1. Video Interpolation Model

To generate one or more intermediate frames Ît from a

pair of input frames (I0, I1), first the Super SloMo model

estimates an approximate bi-directional optical flow from

any arbitrary time t to 0, Ft→0, and from t to 1, Ft→1.

Then, it generates a frame by linearly blending the input

frames after they are warped by the respective estimated op-

tical flows, as

Ît = αT (I0,Ft→0) + (1� α)T (I1,Ft→1), (6)

where T is an operation that bilinearly samples input frames

using the optical flows, and α weighs the contribution of

each term. The blending weight α models both global prop-

erty of temporal consistency as well as local or pixel-wise

occlusion or dis-occlusion reasoning. For instance, to main-

tain temporal consistency, I0 must contribute more to Ît
when t is close to 0. Similarly, I1 contributes more to Ît,

when t is close to 1.

To cleanly blend the two images, an important property

of video frame interpolation is exploited, i.e. not all pixels

at time t are visible in both input frames. Equation 6 can

thus be defined by decomposing α to model both temporal

consistency and occlusion or de-occlusions, as

Ît =
1

Z

⇣

�

1� t
�

Vt←0T
�

I0,Ft→0

�

+ tVt←1T
�

I1,Ft→1

�

⌘

,

(7)

where Vt←0 and Vt←0 are visibility maps, and Z = (1 �
t)Vt←0 + tVt←1 is a normalisation factor. For a pixel p,

Vt←0(p) 2 [0, 1] denotes visibility of p at time t (0 means

fully occluded or is invisible at t).

The remaining challenge is estimating the intermediate

bi-direction optical flows (Ft→0,Ft→1) and the correspond-

ing visibility maps (Vt←0,Vt←1). For more information,

we refer the reader to [6].

3.2. Training and Loss Functions

We train M to generate arbitrarily many intermediate

frames {Îti}
N
i=1 without using the corresponding ground-

truth intermediate frames {Iti}
N
i=1, with N and ti 2 (0, 1)

being frame count and time, respectively. Specifically, as

described in Section 3, we optimize M to (a) minimize

the errors between the cycle reconstructed frame Î1 and I1
and (b) to minimize the errors between the intermediately

predicted frames Ît and Ît+1 and the corresponding esti-

mated or pseudo ground-truth frames Mpre(I0, I1, t) and

Mpre(I1, I2, t).
Note that, during optimization a cycle reconstructed

frame Î1 can be obtained via arbitrarily many intermedi-

ately generated frames {Îti , Îti+1}
N
i=1. Thus, many recon-

struction errors can be computed from a single triplets of

training frames {I0, I1, I2}. However, we found doing so

makes optimizations unstable and often unable to converge

to acceptable solutions. Instead, we found establishing very

few reconstruction errors per triplet to make our training

stable and generate realistic intermediate frames. In our ex-

periments, we calculate one reconstruction error per triplet,

at random time ti 2 (0, 1).
Our training loss functions are given by,

L = λrcLrc + λrpLrp + λpLp + λwLw + λsLs, (8)

where Lrc, defined as,

Lrc = kÎ1 � I1k1, (9)
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models how good the cycle reconstructed frame is, and Lrp,

defined as,

Lrp =kÎti �Mpre(I0, I1, ti)k1+

kÎti+1 �Mpre(I1, I2, ti)k1,
(10)

models how close the hidden intermediate frames are to

our pseudo intermediate frames. Lp models a perceptual

loss defined as the L2 norm on the high-level features of

VGG-16 model, pre-trained on ImageNet, and is given as,

Lp = kΨ(Î1)�Ψ(I1)k2, (11)

with Ψ representing the conv4 3 feature of the VGG-16

model.

Our third loss, Lw is a warping loss that make optical

flow predictions realistic, and is given by,

Lw =kT (I0,F1→0)� I1k1 + kT (I1,F0→1)� I0k1+

kT (I1,F2→1)� I2k1 + kT (I2,F1→2)� I1k1+

kT (Ît,Ft+1→t)� Ît+1k1 + kT (Ît+1,Ft→t+1)� Îtk1.

(12)

In a similar way as the Super SloMo framework, we also

enforce a smoothness constraint to encourage neighbouring

optical flows to have similar optical flow values, and it is

given as,

Ls =k∆Ft→t+1k1 + k∆Ft+1→tk1+

k∆F0→1k1 + k∆F1→0k1+

k∆F1→2k1 + k∆F2→1k1,

(13)

where Ft→t+1 and Ft+1→t are the forward and backward

optical flows between the the intermediately predicted Ît
and Ît+1 frames.

Finally, we linearly combine our losses using experimen-

tally selected weights: λrc = 0.8, λrp = 0.8, λp = 0.05,

λw = 0.4, and λs = 1, see Section 4.4.1 for details on

weight selection.

3.3. Implementation Details

We use Adam solver [7] for optimization with β1 = 0.9,

β2 = 0.999, and no weight decay. We train our models

for a total of 500 epochs, with a total batch size of 32 on

16 V100 GPUs, using distributed training over two nodes.

Initial learning rate is set to 1e−4, and then scaled-down by

10 after 250, and again after 450 epochs.

4. Experiments

4.1. Datasets and Metrics

Table 1 summarizes datasets we used for training and

evaluation. We used Adobe-240fps [20] (76.7K frames)

and YouTube-240fps [6] (296.4K frames) for supervised

training to establish baselines. For unsupervised train-

ing, we considered low FPS Battlefield1-30fps videos [17]

(320K frames), and Adobe-30fps (9.5K frames), obtained

by temporally sub-sampling Adobe-240fps videos, by keep-

ing only every other 8th frame. We chose game frames be-

cause they contain a large range of motion that could make

learning processes robust. We used UCF101 [19] datasets

for evaluation.

To study our unsupervised fine-tuning techniques in

bridging domain gaps, we considered two particularly dis-

tinct, high FPS and high resolution, target video datasets:

Slowflow-240fps and Sintel-1008fps [5]. Slowflow is cap-

tured from real life using professional high speed cameras,

whereas Sintel is a game content. We split Slowflow dataset

into disjoint low FPS train (3.4K frames) and a high FPS

test (414 frames) subsets, see Table 1. We create the test set

by selecting nine frames in each of the 46 clips. We then

create our low FPS train subset by temporally sub-sampling

the remaining frames from 240-fps to 30-fps. During eval-

uation, our models take as input the first and ninth frame in

each test clip and interpolate seven intermediate frames. We

follow a similar procedure for Sintel-1008fps [5], but inter-

polate 41 intermediate frames, i.e., conversion of frame rate

from 24- to 1008-fps.

To quantitatively evaluate interpolations we considered

Peak-Signal-To-Noise (PSNR), the Structural-Similarity-

Image-Metric (SSIM), and the Interpolation-Error (IE) [1],

which is calculated as the root mean-squared-error between

generated and ground truth frames. High PSNR and SSIM

scores indicate better quality, whereas for IE score it is the

opposite.

4.2. Large-Scale Unsupervised Training

In this section, we consider the scenario where we do

not have any high frame rate videos to train a base model,

but we have abundant low frame rate videos. We test our

models on UCF101 dataset; for every triplet of frames, the

first and third ones are used as input to predict the second

frame.

Results are presented in Table 2. Our unsupervised tech-

nique trained on Adobe-30fps performs competitively with

results obtained with supervision on Adobe-240fps, achiev-

ing PSNR of 34.47, and 34.63 respectively. Compared to

the supervised training, our unsupervised training uses 1/8th

of the frame count, and performs comparably to techniques

trained with supervision. This shows the effectiveness of

cycle consistency constraint alone in training models, from

random initialization, for video frame interpolation. We fur-

ther study the impact of frame count in unsupervised train-

ing. For this study, we used the low FPS Battlefield-1 se-

quences. The higher the frame count of low FPS frames,

the better our unsupervised model performs, when evalu-
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FPS Frame count Clip count Resolution Train Test

UCF101 [19] 25 1,137 379 256× 256 x

YouTube [6] 240 296,352 1,014 720× 1280 x

Battlefield-1 [17] 30 329,222 363 1080× 1920 x

Adobe [20]
30 9,551

112 720× 1280
x

240 76,768 x

Slowflow [5]
30 3,470

46 2048× 2560
x

240 414 x

Sintel [5]
24 551

13 872× 2048
x

1008 559 x

Table 1. Statistics of video datasets used in training or evaluation.

UCF101

Training data PSNR(↑) SSIM(↑) IE(↓)

Trivial Copy N/A 31.27 0.895 8.35

Baseline Adobe-240fps 34.63 0.946 5.48

Proposed
Adobe-30fps 34.47 0.946 5.50

BattleField-30fps 34.55 0.947 5.38

Table 2. Interpolation results for single intermediate frame inter-

polation on UCF101.

ated on UCF101. Using Battlefield-30fps, at frame count

four times larger than Adobe-240fps, we achieve results on

par with supervised techniques, achieving IE of 5.38 and

5.48, respectively.

Table 2 also presents results of trivial copy, which is the

simple case of using inputs as predictions. Compared to

cycle consistency, trivial prediction leads to significantly

worse interpolation, further indicating our approach does

in fact allow us to synthesize intermediate frames from un-

paired raw video frames.

4.3. Unsupervised Fine-tuning for Domain Transfer

One particularly common situation in video frame inter-

polation is that we have access to pre-trained models or ac-

cess to high FPS out-of-domain videos in abundance, but

lack ground truth frames in target videos, which are also

commonly limited in quantity. Our unsupervised techniques

allow us to fine-tune pre-trained models directly on target

videos without additional data, and demonstrate significant

gain in accuracy in upscaling frame rates of target videos.

First, we consider the scenario where train and test

videos are collected with different camera set-ups. We as-

sume we have access to high fps videos collected by hand-

held cameras, which is the Adobe-240fps, YouTube-240fps,

UCF101 datasets, and consider the Slowflow dataset as our

target, a particularly high resolution and high FPS video

captured by high speed professional cameras in real life.

Our baseline is a frame interpolation model trained with su-

pervision. Specifically, we consider Super SloMo and Deep

Voxel Flow (DVF) [9]. DVF is another widely-used single-

frame interpolation method. We apply our unsupervised

fine-tuning directly on the low FPS train split of Slowflow,

and evaluate on its test split.

Adobe→Slowflow

Loss PSNR(↑) SSIM(↑) IE(↓)

Trivial Copy N/A 25.00 0.718 14.86

Baseline PairedGT 32.84 0.887 6.67

Proposed
CC 32.35 0.886 6.78

CC + PS 33.05 0.890 6.62

Adobe+YouTube→Slowflow

Baseline PairedGT 33.13 0.889 6.63

Proposed CC + PS 33.20 0.891 6.56

Table 3. Multi-frame interpolation results on Slowflow for frame

rate conversion from 30- to 240-FPS, and domain transfer exper-

iments using baselines obtained by pre-training with supervision

on Adobe- or Adobe+YouTube-240FPS.

Adobe→Sintel

Loss PSNR(↑) SSIM(↑) IE(↓)

Trivial Copy N/A 22.48 0.714 20.23

Baseline PairedGT 31.82 0.912 5.61

Proposed
CC 30.08 0.872 7.67

CC+PS 32.53 0.918 5.21

Adobe+YouTube→Sintel

Baseline PairedGT 33.23 0.928 4.74

Proposed CC+PS 33.34 0.928 4.71

Table 4. Multi-frame interpolation results on Sintel for frame rate

conversion from 24 to 1008 FPS, and domain transfer experi-

ments using baselines obtained by pre-training with supervision

on Adobe- or Adobe+YouTube-240fps.

Adobe!Slowflow: Our unsupervised training with cy-

cle consistency alone performs quite closely to the base-

line (Super SloMo pre-trained with supervision), achiev-

ing PSNR of 32.35 and 32.84, respectively. While a total

of 76.7K Adobe-240fps frames are used in supervised pre-

training, our unsupervised training is performed with only

3K frames of Slowflow, which indicates the efficiency and

robustness of our proposed unsupervised training technique.

Furthermore, fine-tuning the pre-trained model by jointly

optimizing to satisfy cycle consistency and to minimize our

proposed pseudo supervised loss (CC + PS), we outperform

the pre-trained baseline by a large margin, with PSNR of

33.05 vs. 32.84. The PS loss relies on the same pre-trained
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Ground Truth

Intermediate

Baseline Supervised

(Super SloMo)

Proposed Unsupervised

Fine-tuning (Super SloMo)

Figure 4. Visual results of a sample from Slowflow dataset. Base-

line supervised model is trained with Adobe dataset and proposed

unsupervised model is fine-tuned with Slowflow. Improvements

seen as the person’s back squeezed in supervised (middle) but pre-

served in unsupervised (right). On bottom row, although both

techniques blur the regions surrounding the helmet, the shape of

helmet is preserved in our proposed technique.

baseline model, as discussed in Section 3, and regularizes

our training process. If used alone, i.e without cycle consis-

tency, it performs at best as good as the baseline pre-trained

model, see Section 4.4.1 for more details.

Adobe+YouTube!Slowflow: Here, our baseline model

is pre-trained on a larger dataset Adobe+YouTube, total

of 372.7K frames, and achieves better accuracy than pre-

training on Adobe alone, achieving PSNR 33.13 vs. 32.84,

when directly applied on Slowflow test videos. Even with

improved pre-trained baseline, we observe consistent ben-

efit with our proposed unsupervised fine-tuning, improving

PSNR from 33.13 to 33.20.

Another interesting observation from this study is that it

takes an extra 296.K frames from YouTube-240fps to im-

prove PSNR from 32.84 to 33.13 on Slowflow, via pre-

training with supervision. We achieve a comparable im-

provement of PSNR from 32.84 to 33.05 by simply fine-

tuning on the target low FPS frames in a completely unsu-

pervised way. Sample interpolation results from this study

can be found at Figure 1, where improvements on the bicy-

cle tire and the shoe are highlighted, and at Figure 4, where

improvements on the persons’ back and helmet regions are

highlighted.

Table 4 present results of unsupervised fine-

tuning for domain transfer from Adobe!Sintel and

Adobe+YouTube!Sintel for the task of upscaling frame

rate from 24- to 1008-fps. Similarly to the Slowflow

experiments, in Table 3, the results indicate the utility of

our unsupervised techniques in shrinking domain gaps or

achieving results that compete with supervised techniques.

Slowflow Sintel

PSNR(↑) SSIM(↑) IE(↓) PSNR(↑) SSIM(↑) IE(↓)

Baseline 30.79 0.84 8.57 29.14 0.84 8.96

Proposed 31.42 0.86 7.99 29.71 0.86 8.23

Table 5. Comparison of supervised training at quarter resolution

(baseline) and unsupervised fine-tuning at full resolution (pro-

posed) for frame rate upscaling from 30 to 240 FPS (Slowflow)

and 24 to 1008 FPS (Sintel).

UCF101!Slowflow: Table 6 and Figure 5 present results

of fine-tuning DVF on Slowflow. We use an off-the-shelf

implementation of DVF, pre-trained on UCF1011. Our un-

supervised techniques improve the PSNR from 24.64dB to

28.38dB, demonstrating that our method generalizes well

to different interpolation techniques, and is not limited to

Super SloMo.

UCF101→Slowflow using DVF [9]

Loss PSNR(↑) SSIM(↑) IE(↓)

Trivial Copy N/A 24.26 0.698 15.60

Baseline PairedGT 25.64 0.778 12.77

Proposed CC + PS 28.38 0.820 9.79

Table 6. Slowflow 30- to 60-FPS conversion. The baseline DVF is

pre-trained on UCF-101 with supervision.

Ground Truth

Intermediate

Baseline Supervised

(DVF)

Proposed Unsupervised

Fine-tuning (DVF)

Figure 5. Visual comparison of unsupervised fine-tuning of DVF

with supervised DVF pre-trained on UCF-101.

In our second domain transfer setting, we consider the

scenario where target and test datasets share similarities in

content and style but they are in different resolution. This

is a very practical scenario given the scarcity of the high-

frame high-resolution videos. Therefore, it is highly desir-

able to learn from low resolution videos, and be able to in-

terpolate higher resolutions. We establish a low resolution

baseline by training with supervision on 240 fps Slowflow-

train dataset, after down-sampling its frames by 4 in each

dimension. Our test video is Slowflow-test split at its origi-

nal resolution. We repeat similar setting for Sintel. Table 5

shows results where our fine-tuning technique on the test

domain improves PSNR from 30.79 to 31.42 for Slowflow,

1https://github.com/lxx1991/pytorch-voxel-flow
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Ground Truth

Intermediate

Baseline Supervised

(Super SloMo)

Proposed Unsupervised

Fine-tuning (Super SloMo)

Figure 6. Visual results of a sample from Slowflow dataset. Base-

line supervised model is trained with Slowflow dataset in quar-

ter resolution and proposed unsupervised model is fine-tuned with

full resolution Slowflow. The tree in the background is deformed,

and also deformed in the supervised (middle), while it is predicted

well in proposed (right). Bottom row, supervised shows blurriness

in the grass, while it is crisper in the proposed.

and from 29.14 to 29.71 for Sintel. Visual samples from this

experiment can be found in Figure 6.

4.4. Ablation Studies

We conduct ablation studies to analyze various design

choices of the proposed method.

4.4.1 Optimal CC and PS Weights

Figure 7 presents interpolation results in PSNR for our mod-

els trained with a range of PS weight, λrp, values. We

fix CC’s weight, λrc to 0.8, and vary λrp in small incre-

ments from 0 to 64. When λrp = 0, optimization is guided

entirely by CC, it achieves PSNR of 32.35 for unsuper-

vised Adobe+YouTube!Slowflow domain transfer. Inter-

polation accuracy gradually increases, and plateaus approx-

imately after 0.8. Based on this, we select λrp = 0.8,

and fix its value for all our experiments. At large values

of λrp, the optimization is mostly guided by PS loss, and

as such, trained models perform very similarly to the pre-

trained model that the PS loss depends on. Figure 7 shows

this trend. Optimizing with optimally combined CC and PS

losses on the other hand leads to results that are superior to

those obtained using either loss alone.

λrp

Figure 7. Interpolation accuracy in PSNR versus λrp (PS weight)

used in our proposed joint CC and PS optimization techniques,

when applied for Adobe+YouTube→Slowflow unsupervised do-

main transfer.

4.4.2 Large Time-step Supervision

We study the effect of using loss terms, such as

kM(I0, I2, t = 0.5)� I1k or its variations, defined over a

longer time. Table 7 presents Adobe+YouTube!Slowflow

fine-tuning with cycle consistency, the loss derived from

two step interpolation alone or together with cycle consis-

tency. Optimizing using losses derived from long step inter-

polation result in worse accuracy than optimizing with cycle

consistency. When used with cycle consistency, we also did

not find it to lead to notable improvement. We attribute this

because the model’s capacity might be spent to solve the

harder problem of interpolating large steps, and provide lit-

tle benefit to the task of synthesizing intermediate frames

between consecutive frames.

Adobe+YouTube→Slowflow

Loss PSNR(↑) SSIM(↑) IE(↓)

CC 32.84 0.887 6.67

Long Step 29.03 0.824 8.98

CC + Long Step 32.24 0.884 6.81

Table 7. Comparison of cycle consistency with objectives derived

from longer time step interpolation.

5. Conclusions

We have presented unsupervised learning techniques to

synthesize high frame rate videos directly from low frame

rate videos by teaching models to satisfy cycle consistency

in time. Models trained with our unsupervised techniques

are able to synthesize arbitrarily many, high quality and

temporally smooth intermediate frames that compete with

supervised approaches. We further apply our techniques to

reduce domain gaps in video interpolation by fine-tuning

pre-trained models on target videos using a pseudo super-

vised loss term and demonstrate significant gain in accu-

racy. Our work shows the potential of learning to interpolate

high frame rate videos using only low frame rate videos and

opens new avenues to leverage large amounts of low frame

rate videos in unsupervised training.
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