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Abstract

The visual entities in cross-view (e.g. ground and aerial)

images exhibit drastic domain changes due to the differ-

ences in viewpoints each set of images is captured from.

Existing state-of-the-art methods address the problem by

learning view-invariant images descriptors. We propose a

novel method for solving this task by exploiting the gener-

ative powers of conditional GANs to synthesize an aerial

representation of a ground-level panorama query and use it

to minimize the domain gap between the two views. The

synthesized image being from the same view as the ref-

erence (target) image, helps the network to preserve im-

portant cues in aerial images following our Joint Feature

Learning approach. We fuse the complementary features

from a synthesized aerial image with the original ground-

level panorama features to obtain a robust query represen-

tation. In addition, we employ multi-scale feature aggre-

gation in order to preserve image representations at dif-

ferent scales useful for solving this complex task. Experi-

mental results show that our proposed approach performs

significantly better than the state-of-the-art methods on the

challenging CVUSA dataset in terms of top-1 and top-1%

retrieval accuracies. Furthermore, we evaluate the gen-

eralization of the proposed method for urban landscapes

on our newly collected cross-view localization dataset with

geo-reference information.

1. Introduction

Estimating the geo-location of an image has been tackled

as an image-matching task, where the query image is com-

pared against a database of reference images with known

locations. Traditionally, the matching has been conducted

between images taken from the same view, primarily street-

view [14, 34, 43], which have a high degree of visual sim-

ilarity in terms of scene contents. Since these ground level

reference images are typically concentrated around urban

areas with more human accessibility, the applicability of the

method is limited to those regions. With the availability of

aerial images from Google maps, Bing maps, etc. that cover
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Figure 1: The ground panorama query and its edgemap are inputs

to the Generator (X-Fork [31]) network to synthesize aerial image

Ia′ and its segmentation map (shown in upper panel). We then

jointly learn the feature representations for image triads (Ig , Ia′

and Ia). The features fg for Ig and fa′ for Ia′ are fused, followed

by fully-connected operation to obtain a robust query representa-

tion fg∗ and is matched with the aerial feature representation fa∗

(shown in lower panel).

the earth surface densely, researchers have lately explored

the prospect of cross-view image matching [18, 24, 40],

where the query ground image is matched against aerial im-

ages. This comes with additional challenges due to vari-

ation in viewpoints between the ground and aerial images,

which capture the same scene differently in two views. This

motivates us to explore transforming the query street-view

image into aerial view, so that the transformed image has

scene representations similar to the images it is matched

against.

The recent success of Generative Adversarial Networks

(GANs) [12] in synthesizing realistic images from ran-

domly sampled noise vectors [29] or conditional variables

such as text [30, 46], images [19, 31], labels [27], etc. has

inspired us to frame the problem as viewpoint translation

followed by feature matching. Moreover, GANs have been

used for domain transfer problems as in [20, 47] to learn the

mapping between different domain representations. Recent

cross-view synthesis works by [31, 32, 9, 48] are successful
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in transforming the images between aerial and street views.

In this paper, we address the following problem: given a

ground-level panorama retrieve matching aerial images. In

order to solve this problem, we take a next step to synthesize

aerial images from ground-level panorama and use them for

image retrieval.

The complexity of the cross-view image synthesis prob-

lem and its challenges are well-known. Thus, the syn-

thesized images cannot be relied on to completely replace

the query ground-level image to solve the matching task.

Therefore, we propose a framework as shown in Figure

1 to incorporate the synthesized image into the matching

pipeline as auxiliary information in order to bridge the ex-

isting domain gap between aerial and ground views. We

attempt to learn representations for aerial reference images

that are similar to their corresponding ground level im-

ages, as well as the synthesized aerial images. Since the

synthesized aerial images are transformed representations

of street-view (ground) images, we expect them to con-

tain representative features. By learning representations in

this manner, the synthesized aerial images force the net-

work to minimize the distance between feature representa-

tions of aerial images and street-view images. Additionally,

we hypothesize that some features of aerial images are bet-

ter learned by considering synthesized aerial images rather

than street-view images. Thus, the joint training of these

image triads (ground, synthesize aerial from ground, and

corresponding real aerial) will help the aerial stream re-

tain important cues that would have otherwise been lost in

cross-view training. We fuse the learned complementary

feature representations of synthesized images with query

image features to obtain a robust representation that we use

for our image matching task.

The features extracted at different layers of deep neu-

ral networks capture varying levels of semantic information

of the input image. For the image matching task, which

is considerably more challenging than a standard classifica-

tion problem, we exploit the inherent multi-scale pyramidal

structure of features at multiple layers of deep neural net-

works and aggregate them to obtain a better image repre-

sentation.

In summary, this paper makes the following contribu-

tions. We propose a novel approach to leverage aerial im-

ages synthesized using GANs to extract complementary

features for cross-view image matching. We incorporate

the edgemaps, in addition to semantic segmentation which

is typically used, together with the input images to im-

prove the cross-view synthesis by providing cues on ob-

ject shapes and boundaries to the network. The synthe-

sized images bridge the domain gap between cross-view

images. The joint training of image triads using auxil-

iary loss helps improve the network training. The pro-

posed feature fusion strategy demonstrates the capabilities

of GANs for constructive training and complementary fea-

ture learning. Lastly, we show that aggregating features

from multiple convolutional layers at different resolutions

greatly helps preserve coarse to fine latent representations

necessary for complex cross-view matching task. Our ex-

tensive experiments show that the proposed joint feature

learning method outperforms the state-of-the-art methods

on CVUSA dataset [45] and with feature fusion, we obtain

significant improvements on top-1 and top-10 retrieval ac-

curacies.

2. Related Works

2.1. Domain Transfer and GANs

GANs are very popular in domain transfer tasks. In the

works reported in [19, 47, 20, 41, 10], image mapping be-

tween two domains; source and target domains is learnt.

Augmented CycleGAN [2], StarGAN [7] have explored

many-to-many cross-domain mappings.

Cross-view relations have been explored in [45, 31, 11]

with more challenging settings of aerial and ground views,

where there is minimum semantic and viewpoint overlap

between the objects in the images. Cross-view image syn-

thesis between these contrasting domains has attracted wide

interests lately [31, 32, 9, 48] with the popularity of GANs;

these works have been successful in image translation be-

tween aerial and ground-level cropped (single camera) im-

ages. Zhai et al. [45] explored the possibility of synthesiz-

ing ground-level panorama from ground semantic layouts

wherein the layouts were predicted from the semantic maps

of the aerial images. Here, we directly transform the ground

level panorama to aerial view and use them for cross-view

image matching task.

2.2. Multi­scale Feature Aggregation

Features at different layers of deep neural networks are

essentially the multi-resolution features of the same image.

Abundance of literature has explored features at multiple

scales [17, 28, 33, 26, 22] for applications like key-point

detection, human pose estimation, semantic segmentation.

FPN [25], HyperNet [21], ION [5] explored multi-scale fea-

tures for object detection. Earlier, Hypercolumns [13] were

created from multi-layer features and used for object seg-

mentation and localization. Building upon this work, we

also aggregate the features at multiple scales to efficiently

obtain robust representation of the images.

2.3. Image Geolocalization

Image geolocalization has been tackled as an image

matching task [3, 15, 42] in computer vision community.

Early works in geolocalization [43, 37, 34, 44] matched im-

ages in the same view; a query street-view image is com-

pared against the reference street-view images using hand-
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crafted features. Hays et al. [14] proposed a data-driven

approach to estimate the distribution over geographical lo-

cation from a single image.

Cross-view matching has been explored by several re-

cent works [24, 35, 18, 39, 38] using both hand-crafted fea-

tures as well as deep networks. Bansal et al. [4] explored fa-

cade matching. Tian et al. [36] matched building features in

oblique views. Recent work by [18] exploit the NetVLAD

[3] to obtain view-invariant descriptors for cross-view pairs

and use them for matching.

In this work, we exploit the synthesized aerial images

as complementary source of information for better scene

understanding of street-view images to solve cross-view

matching task, rather than just learning view-invariant fea-

tures as in the previous approaches.

3. Method

We propose a novel method to bridge the domain gap be-

tween street-view and aerial images by leveraging the syn-

thesized aerial images using GANs. We learn the repre-

sentations of synthesized aerial images jointly with ground

and aerial image representations. Additionally, we fuse

the complementary representations of ground images with

the representations of their corresponding synthesized aerial

images to learn robust query representations of ground im-

ages. Also, we exploit the edgemaps of input images to pro-

vide GANs with the notion of object shapes and boundaries

and facilitate the cross-view image synthesis.

The organization of the rest of this section is as follows.

In the next subsection, we briefly describe how GANs are

used for cross-view image synthesis, followed by joint fea-

ture learning, and finally feature fusion is described.

3.1. Cross­View Image Synthesis

We adopt X-Fork generator architecture of [31] to train

the GAN for cross-view image synthesis. The X-Fork is a

multi-task learning architecture that synthesizes cross-view

image as well as semantic segmentation map. We make the

following modifications to the X-Fork architecture. Since

our input is panorama (rectangular in shape), the feature

maps at the bottleneck are also rectangular (1 × 4). We re-

shape the features into squares (2 × 2), and then apply mul-

tiple upconvolution operations to generate 512 × 512 reso-

lution aerial images. Next, we exploit the edgemaps of input

images that outline the objects present in the images. We

employ Canny Edge Detection [6] to obtain the edgemaps

of the inputs. The edgemap is stacked together with the

panorama, along the channels to create a 4-channel input; 3

channels for RGB image and 1 channel for edgemap. The

output is an RGB image and its segmentation map in aerial

view. We utilize the synthesized aerial images in joint fea-

ture learning experiments.
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(a) Joint Feature Learning: Inputs to this network are Ig and Ia
and outputs are fg and fa. Employing auxiliary loss between fa′

and fa helps to pull features fg and fa closer, and minimize the

domain gap between two features than when training two-stream

network on (Ig, Ia) pairs. The branch in the middle (dotted box

filled with cyan) is used during the training only.
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(b) Feature Fusion. Inputs to this network are Ig and Ia and out-

puts are fg∗ and fa∗ . fg and fa′ are concatenated and passed

through fully-connected layer (FC) to get their fused representa-

tion fg∗. Similarly, fa is mapped to fa∗ , a representation closer

to fg∗ .

Figure 2: Architectures for our proposed approaches. The green

and blue triangles are encoders for ground and aerial images re-

spectively, with the network layer definition explained in subsec-

tion 4.2. The parameters for networks shown in shade of yellow

are frozen during the training.

3.2. Joint Feature Learning

We propose to learn the representations for image triads:

query ground panorama, Ig , synthesized aerial image, Ia′

from ground panorama and aerial image Ia jointly, so that

the synthesized aerial image representations fa′ pushes the

image representations fg and fa closer to each other.

The joint feature learning architecture is shown in Fig-

ure 2a. The encoder blocks are shown in green (for ground

image) and blue (for aerial images) triangles. Each encoder

consists of deep convolutional architecture as described in

subsection 4.2. We elegantly exploit the inherent multi-

scale pyramidal structure of features at multiple layers of

deep neural networks. We consider the features from the

final three convolutional layers, conv 6, conv 7 and conv 8

layers. These features are aggregated and followed by a

fully connected layer to obtain the feature representation for

images in each view.

The encoders for aerial and street-view images do not

share the weights. Since the cross-view images are captured
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from different viewpoints, the visual entities exhibit drastic

domain changes. The two encoders operate on these sets of

diverse images, so it is understandable that the weight shar-

ing is not a good choice. On the other hand, the encoders

for Ia′ and Ia share the weights, since both images repre-

sent the aerial domain. This way, the aerial encoders learn

weights suitable for the synthesized image Ia′ as well as the

real image Ia. Thus, fa′ effectively forces the features fa
to be closer to fg and bridges the domain gap between the

two views. This is possible because the transformed image

Ia′ captures representations of Ig which are easier for the

network to learn from Ia′ than it would be when learning

directly from Ig .

This strategy leverages the synthesized images at train-

ing time, but does not require them during the testing. The

auxiliary loss between Ia′ and Ia influences the aerial im-

age encoder to learn representations for aerial images by

considering the synthesized aerial image. We train our net-

work jointly on these image triads (Ig , Ia′ and Ia) using

weighted soft-margin ranking loss [18], which is explained

next.

3.2.1 Weighted Soft-margin Triplet Loss

Consider a feature embedding fg of ground-level im-

age, fa−pos of the corresponding matching aerial image and

a non-matching aerial image feature fa−neg . The triplet

loss [16] aims to bring the matching feature fa−pos closer

to fg while at the same time pushes fa−neg away. Here,

if dp is the Euclidean distance between positive samples

(fg , fa−pos) and dn is the Euclidean distance between

negative/non-matching samples (fg , fa−neg), we try to min-

imize dp as well as maximize dn. The triplet loss is ex-

pressed as shown below:

Ltriplet = max(0,m+ dp − dn), (1)

where, m is a margin that specifies a minimum distance be-

tween non-matching pairs.

In order to avoid the necessity of explicitly deciding the

margin for triplet loss, soft-margin triplet loss is popular and

is expressed as given in Equation 2 below:

Lsoft = ln(1 + ed), (2)

where d = dp − dn.

In our work, we use the weighted soft margin triplet loss

[18] as given in Equation 3:

Lweighted = ln(1 + eαd). (3)

We use α = 10, which results in better convergence than α

= 1.

We incorporate the auxiliary loss between the synthe-

sized aerial images, I ′a, and the real aerial images, Ia, along

with the loss between the real aerial, Ia, and the ground

images, Ig , for joint feature learning using the Equation 4

below:

Ljoint = λ1Lweighted(Ig, Ia) + λ2Lweighted(Ia′ , Ia).
(4)

Here, λ1 and λ2 are balancing factors between the losses

for (Ig , Ia) and (Ia′ , Ia) pairs respectively.

3.3. Feature Fusion

In the above method, the synthesized aerial image is used

during the training only, for bridging the domain gap be-

tween the real aerial and ground view images; but is ne-

glected during testing. Since the features of the synthe-

sized image contain complementary information that as-

sist in joint feature learning, we attempt to further exploit

them. We fuse the ground image features fg with synthe-

sized aerial image features fa′ and find a robust representa-

tion fg∗ for the query ground image.

The fusion architecture is shown in Figure 2b. We use

the trained joint feature learning network as feature ex-

tractor for our feature fusion task. We first concatenate

the features from ground query image with the features

from synthesized aerial image. The concatenated features

need to be refined to obtain a generalized representation

for query image fg∗ . We achieve this by passing through

a fully-connected layer in the upper stream. The features

fa from the lower stream need to be optimized against the

refined features from upper fully-connected layer. So, we

add a fully-connected layer in the lower stream that learns

the generalized representations, fa∗ , for the aerial images.

During the testing, the fused feature representation fg∗ for

query image Ig is compared against the representations fa∗

for aerial images for image matching.

4. Experimental Setup

This section deals with the datasets we used and the ex-

perimental setups we followed in our work.

4.1. Datasets

We conduct experiments on CVUSA dataset [45] to

compare our work with existing methods. We also col-

lect a new dataset, OP dataset, from urban areas of Orlando

and Pittsburgh with geo-information. The other benchmark

dataset, GT-Crossview [38] doesn’t contain the ground level

panorama, thus making it infeasible to synthesize mean-

ingful aerial image. Also, the GT-Crossview dataset has

aligned image pairs in training set, whereas unaligned im-

age pairs in test set with no direction information, so the

synthesized aerial images for test case will be randomly

oriented relative to aerial images in the reference database,

thus it is not possible to use this dataset in our framework.
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Figure 3: Image retrieval examples on CVUSA dataset [45]. For each query ground-level panorama, the synthesized aerial image is shown

alongside, followed by the five closest aerial images retrieved by proposed Feature Fusion method. The correct matching (ground truth)

aerial images are shown in green boxes. Rows 5 and 6 show examples where the ground truth aerial images are retrieved at the second and

fourth positions respectively.

CVUSA: CVUSA is a benchmark dataset for cross-view

image matching with 35,532 satellite and ground-panorama

image pairs for training and 8,884 pairs for testing. Aerial

images are 750×750 and ground-panorama are 224×1232
in resolutions. Sample images from this dataset are shown

in Figure 3.

Orlando-Pittsburgh (OP) dataset: We collect image

pairs from two US cities, Orlando and Pittsburgh with

ground-truth geo-locations. We call it Orlando-Pittsburgh

(OP) dataset. The dataset covers urban areas of the cities,

entirely different from the rural areas in CVUSA dataset.

Figure 6 shows some example images of this dataset. The

dataset contains 1,910 training and 722 testing pairs of

aerial and ground-panorama images. The resolutions are

640 × 640 for aerial images and 416 × 832 for panora-

mas. Primary motivation to collect this dataset is to eval-

uate the generalization of the proposed methods in urban

locations and to compute matching accuracy in terms of dis-

tance (meters); and the unavailability of such datasets pub-

licly. Though small-scale, this dataset should be useful for

future research in this direction.

4.2. Implementation Details

We present the implementation details of our cross-view

synthesis network and the proposed image matching net-

works in this section.

Cross-View Synthesis network: The generator of cross-

view synthesis network, shown as Generator in Figures 1

and 2 has an encoder and two decoders, similar to the X-

Fork architecture in [31]. The input to the encoder is a 4-

channel image; 3-RGB channels and an edgemap, stacked

together. The decoders generate cross-view image and its

segmentation map, for a given input. The network consists

of blocks of Convolution, Batch Normalization and Leaky

ReLU layers. Convolutional kernels of size 4 × 4 with a

stride of 2 are used that downsamples the feature maps af-

ter each convolution, and to upsample the feature maps af-

ter each upconvolution operation. We reshape the features

at bottleneck to adjust the feature shape and pass through

the decoders. The six blocks of decoders share the weights

whereas the final two blocks don’t. The discriminator net-

work has similar architecture to the one used in [31]. We

train the GAN end-to-end using Torch [8] implementation.
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The weights are initialized with a random Gaussian distri-

bution with zero mean and 0.02 standard deviation.

Joint Feature Learning network: Each stream (encoder)

of joint feature learning network in Figure 2a consists of

seven convolutional layers, each followed by ReLU activa-

tions. Dropouts are applied after the final three ReLU lay-

ers. The features after these dropouts are flattened and then

concatenated to obtain multi-scale representation of the in-

put image. This is followed by a fully-connected layer for

dimensionality reduction to obtain 1,000-dimensional fea-

ture vector for each input. The two-stream baselines are

trained from scratch with Xavier initialization. The joint

feature learning network is initialized with weights from the

two-stream network trained on (Ig , Ia) image pairs and the

loss function is optimized as shown in Equation 4. We use

λ1 = 10 and λ2 = 1, weighing more on the loss term for

(Ig , Ia) pairs because of their superior performance over

(Ia′ , Ia) in image matching as reported in Table 1 and ob-

jectively I ′a is used as an auxiliary information, only during

the training in joint feature learning network.

Feature Fusion network The Feature Fusion network in

Figure 2b has two fully-connected layers, one each for

aerial and ground feature branches. The upper FC layer

takes 2000-dimensional fused feature and translates it to a

1000-dimensional feature representation. The input to the

lower FC layer is fa that is mapped to a 1000 dimensional

feature representation. The FC layers are randomly initial-

ized with a uniform distribution with zero mean and 0.005

standard deviation.

The two-stream baselines and the proposed joint feature

learning and feature fusion networks are implemented us-

ing Tensorflow [1] with Adam optimizer (lr = 10−5) and

dropout = 0.5. A batch size of B = 30 for experiments on

two-stream networks and B = 24 for joint feature learning

networks is used. Weighted soft-margin triplet loss is used

for training in all the experiments. An exhaustive mini-

batch strategy [38] is employed to maximize the number

of triplets within each batch. For each image in a batch of B

images, we have 1 positive pair and (B-1) negative pairs for

each ground image, and (B-1) negative pairs for each aerial

image. So, for B images, we have B positive pairs and 2 x

B x (B-1) negative pairs. Further training is continued with

in-batch hard negative mining; by training each positive pair

against the most negative sample (i.e. smallest distance) in

the batch. Code and dataset is publicly available 1.

In summary, GAN is first trained to generate the cross-

view image Ia′ for the ground panorama Ig . Next, the syn-

thesized images are used for joint feature learning in our

proposed method.

1https://github.com/kregmi/cross-view-image-matching

Table 1: Comparison of Top-1, Top-10 and Top-1% recall for

the baselines and the proposed approaches (first panel) and with

previous methods (second panel) on CVUSA Dataset [45].

Method Top-1 Top-10 Top-1%

Two-stream baseline (Ia′ , Ia) 10.23% 35.10% 72.58%
Two-stream baseline (Ig , Ia) 18.45% 48.98% 82.94%

Joint Feat. Learning (Ia′ , Ia) 14.31% 48.75% 86.47%

Joint Feat. Learning (Ig , Ia) 29.75% 66.34% 92.09%

Feature Fusion 48.75% 81.27% 95.98%

Workman et al. [40] - - 34.3%

Zhai et al. [45] - - 43.2%

Vo and Hays [38] - - 63.7%
CVM-Net-I [18] 22.53% 63.28% 91.4%

CVM-Net-II [18] 11.18% 43.51% 87.2%

5. Results

We present an extensive analysis of our proposed method

demonstrating the effectiveness of synthesized images for

image retrieval to bridge the domain gap between the cross-

view images. We also provide the comparison of our work

with the state-of-the-art methods on the CVUSA dataset.

Finally, we present an evaluation on geo-localization task

on the OP dataset.

5.1. Evaluation Metric

The common metric for evaluation of image based

matching task is to compute the recall accuracy. A match-

ing is successful for a query street-view image if the cor-

rect match lies within a set of closest images in Euclidean

distance of the representative features. We report top-1%

accuracy for ease of comparison with previous works. We

also report top-1 and top-10 recalls on CVUSA dataset.

5.2. Results of Our Approach

We evaluate our model variants in terms of retrieval ac-

curacy on the CVUSA dataset [45]. The results are reported

in Table 1 (first panel).

Baseline Comparison (first and second rows in Table 1

(first panel)): The two-stream networks trained employing

image pairs (Ig , Ia) and (Ia′ , Ia), where first image in each

tuple is the query, are the baselines. We observe that the

synthesized image Ia′ as a query performs quite well with

72.58% for top-1% recall but slightly lower than Ig as query

(82.94%). This means that the synthesized images cap-

ture fair amount of information from the ground panorama

whereas they are not yet completely dependable for cross-

view image retrieval and we need to consider real ground

images as well. This provided us the motivation for joint

feature learning.

Joint Feature Learning (third and fourth rows in Table 1

(first panel)): For joint feature learning, as explained earlier,
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image triads (Ig , Ia and Ia′ ) are used during training and

only (Ig , Ia) pairs are used during the testing. We report an

improvement of about 9% in top-1% retrieval accuracy over

two-stream baseline (Ig , Ia) by joint feature learning. The

improvement suggests that the synthesized aerial images

contain features complementary to ground image features

that facilitate the network to learn better representations for

aerial images during the joint feature learning. The synthe-

sized aerial image as an auxiliary information between the

ground and aerial images is successful in forcing them to

bring their feature representations closer to each other dur-

ing the joint feature learning.

Since the representations for Ig , Ia and Ia′ were learned

together during joint feature learning, we were curious to

evaluate how well the feature representations for Ia′ per-

form in image matching. Unsurprisingly, we obtain an im-

provement of about 14% in top-1% retrieval accuracy over

two-stream baseline (Ia′ , Ia). This improvement further

consolidated the belief that the learned features for Ig and

Ia′ are complementary to each other and can be fused to-

gether to obtain robust descriptor for the ground image.

Feature Fusion: (fifth row in Table 1 (first panel)): The

Feature Fusion approach fuses the synthesized image fea-

tures with the ground image features to obtain a representa-

tive feature for the query. This provides further improve-

ment of 3.89% in top-1% accuracy (compare fourth and

fifth rows). The significance of feature fusion can be mea-

sured by about 19% improvement in top-1 retrieval accu-

racy over joint feature learning. This improvement further

signifies that the synthesized image features are comple-

mentary to street-view image features that should be ex-

ploited to obtain better features for cross-view matching.

The qualitative results are shown in Figure 3. The query

ground images and the synthesized aerial images along with

five closest images are shown in each row.

5.3. Comparison to Existing Methods

We compare our work with the previous approaches by

[40, 45, 38, 18] on CVUSA dataset [45]. We report the top-

1, top-10 and top1-% accuracies for state-of-the-art CVM-

Net [18] and our methods. The results are shown in Table 1

(second panel). We observe that the Joint Feature Learning

outperforms ( fourth row in Table 1 (first panel)) the previ-

ous works and is further boosted by Feature Fusion ( fifth

row in Table 1 (first panel)). We achieve an overall 4.58%

improvement over SOTA CVM-Net [18] for top-1% recall

accuracy. We obtain significant increments of more than

26% and 18% in top-1 and top-10 accuracies over CVM-

Net-I [18]. We also plot top-K recall accuracy for K = 1 to

80 for our methods as compared with previous approaches

in Figure 4. It illustrates that various versions of our pro-

posed method outperform the existing state-of-the-art ap-

proaches for all values of K.
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Figure 4: Comparison of different versions of our methods with

CVM-Net I and CVM-Net II [18] on CVUSA dataset [45].

Table 2: Ablation Study on CVUSA Dataset [45]. The reported

numbers are the retrieval accuracies for Feature Fusion network

for specified ablation criteria.

Ablation Criteria Top-1 Top-10 Top-1%

Single Scale Features 8.01 % 32.62 % 74.41%

Global Avg. Pooling (GAP) 16.13% 51.72% 87.68%
Weight Sharing 29.94% 68.24% 93.42%

Multi-scale Features

+ No GAP + No Wt. Sharing 48.75% 81.27% 95.98%

5.4. Ablation Study

We conduct the following ablation studies to understand

the impact of different choices made in the proposed net-

works. For the experiments on ablation, the joint feature

learning and feature fusion networks are used with speci-

fied setups: a) single scale features - only the final layer

features are matched, b) global average pooling (GAP) -

GAP operation suppresses the spatial dimension of feature

maps, substantially reducing the feature size, and c) weight

sharing between the encoders for aerial and ground images.

All these methods reduce the number of parameters used in

the network.

Single Scale vs. Multi-scale Features: For this abla-

tion, joint feature learning network with single scale fea-

tures is trained first followed by experiments using the Fea-

ture Fusion network. The features after the final convolu-

tional block (conv 8) are considered as single scale features.

These are the representative features for the given input im-

age and are used for matching. We do not employ global

average pooling and weight sharing in this ablation for di-

rect comparison of the single-scale vs. multi-scale feature

representations. The scores are reported in Table 2 (first
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Figure 5: Geo-localization results on the OP dataset with differ-

ent error thresholds.

row for single scale and fourth row for multi-scale features).

The results signify that features from conv 6 and conv 7 are

also crucial in image matching rather than just using the fea-

tures from final conv 8 layer only. The results demonstrate

the importance of aggregating the multi-scale features for

cross-view matching task.

Pooling vs. No Pooling: We also conduct ablations on us-

ing global average pooling [23] in our experiments. Global

average pooling is a popular approach to reduce the spa-

tial dimensions of the features and consequently reduce the

number of parameters in the network. We experimented

with using global average pooling layer before concatenat-

ing the features from multiple scales. The result is reported

in Table 2 (second row for using GAP and fourth row with-

out using GAP, rest of the architecture being the same).

We observe that the loss of spatial information in features

severely impacts the retrieval performance.

Weight Sharing vs. No Weight Sharing: We believe that

the two branches receiving the input images from com-

pletely different viewpoints as is the case with aerial and

ground -view images should not share the weights. Even

though the networks will be looking at same scene con-

tents their representations from the two views are drastically

different, thus suggesting that the networks should freely

evolve their weights based on the input they receive. The

results are reported in Table 2 (third row for weight sharing

and fourth row for without weight sharing, remainder of the

setup being the same). The numbers clearly suggest that no

weight sharing is fairly an easy choice, especially looking

at the difference of about 18% in Top-1 accuracies.

5.5. Cross­view Localization

We use the Orlando-Pittsburgh (OP) dataset for image

based geo-localization. We want to determine the gps lo-

cation of the query image by assigning it the location of

closest retrieved aerial image. The query image is correctly

geo-localized if it is located within a threshold distance in

0.0 11.08 44.33 254.90 69.32

2.25 161.17 12.35 21.19 521.67

4.44 111.39 9.58 1246.39 424.53

Ground Query Top matches (top 1 – top 5 from left to right)

Figure 6: Image retrieval examples on the OP dataset. The correct

aerial image matches are shown in green borders. The numbers

below each aerial image shows its distance in meters from query

ground image.

Table 3: Top-1 retrieval accuracy on Orlando-Pittsburgh Dataset.

Two-stream (Ig , Ia) Joint Feat. Learning Feature Fusion

30.61% 38.36% 45.57%

meters from its ground truth position.

The recall accuracy with respect to distance threshold in

meters is plotted in Figure 5. We observe that our proposed

Feature Fusion method can retrieve images close to its geo-

location with higher accuracy than the baseline which can

be attributed to its superiority in Top-1 recall.

The image retrieval examples on the OP dataset are

shown in Figure 6. The ground query images are followed

by the five closest aerial images. Even though the retrieved

images are very similar to each other, we are able to re-

trieve the correct match at Top-1 position. The Top-1 recall

is reported in Table 3. The results affirm that the proposed

methods are generalizable to urban cities of OP dataset as

well as rural areas of CVUSA dataset.

6. Conclusion

In this paper, we have presented a novel and practical

approach to cross-view image retrieval by transforming the

query image to target view to obtain a better scene under-

standing. We showed that the synthesized aerial images

can be seamlessly incorporated in cross-view matching

pipeline by joint feature training to bridge the domain gap

between the aerial and street-view images. Also, the ground

image features and the corresponding synthesized aerial

image features are fused to obtain a robust descriptor of

the ground image. We obtained significant improvements

over state-of-the-art methods on the challenging CVUSA

dataset.
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