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Abstract

We present a novel method for computing correspon-

dences across 3D shapes using unsupervised learning. Our

method computes a non-linear transformation of given de-

scriptor functions, while optimizing for global structural

properties of the resulting maps, such as their bijectivity

or approximate isometry. To this end, we use the func-

tional maps framework, and build upon the recent FMNet

architecture for descriptor learning. Unlike that approach,

however, we show that learning can be done in a purely

unsupervised setting, without having access to any ground

truth correspondences. This results in a very general shape

matching method that we call SURFMNet for Spectral Un-

supervised FMNet, and which can be used to establish cor-

respondences within 3D shape collections without any prior

information. We demonstrate on a wide range of challeng-

ing benchmarks, that our approach leads to state-of-the-art

results compared to the existing unsupervised methods and

achieves results that are comparable even to the supervised

learning techniques. Moreover, our framework is an order

of magnitude faster, and does not rely on geodesic distance

computation or expensive post-processing.

1. Introduction

Shape matching is a fundamental problem in computer

vision and geometric data analysis, with applications in de-

formation transfer [42] and statistical shape modeling [6]

among other domains. During the past decades, a large

number of techniques have been proposed for both rigid

and non-rigid shape matching [44]. The latter case is both

more general and more challenging since the shapes can

potentially undergo arbitrary deformations (See Figure 1),

which are not easy to characterize by purely axiomatic ap-

proaches. As a result, several recent learning-based tech-

niques have been proposed for addressing the shape cor-

respondence problem, e.g. [10, 25, 26, 51] among many

others. Most of these approaches are based on the idea

that the underlying correspondence model can be learned

from data, typically given in the form of ground truth corre-

Source descriptor before Target descriptor before

Source descriptor after Target descriptor after

Figure 1: Given a pair of shapes with noisy descriptors

(top), our approach makes them more consistent (bottom)

without the knowledge of the underlying map, and auto-

matically computes an accurate pointwise correspondence.

spondences between some shape pairs. In the simplest case,

this can be formulated as a labeling problem, where differ-

ent points, e.g., in a template shape, correspond to labels

to be predicted [51, 27]. More recently, several methods

have been proposed for structured map prediction, aiming

to infer an entire map, rather than labeling each point in-

11617



dependently [10, 23]. These techniques are based on learn-

ing pointwise descriptors, but, crucially, impose a penalty

on the entire map, obtained using these descriptors, result-

ing in higher quality, globally consistent correspondences.

Nevertheless, while learning-based methods have achieved

impressive performance, their utility is severely limited by

requiring the presence of high-quality ground truth maps

between a sufficient number of training examples. This

makes it difficult to apply such approaches to new shape

classes for which ground truth data is not available.

In our paper, we show that this limitation can be lifted

and propose a purely unsupervised strategy, which com-

bines the accuracy of learning-based methods with the gen-

erality of axiomatic techniques for shape correspondence.

The key to our approach is a bi-level optimization scheme,

which optimizes for descriptors on the shapes, but imposes

a penalty on the entire map, inferred from them. For this, we

use the recently proposed FMNet architecture [23], which

exploits the functional map representation [30]. However,

rather than penalizing the deviation of the map from the

ground truth, we enforce structural properties on the map,

such as its bijectivity or approximate isometry. This results

in a shape matching method that achieves state-of-the-art

accuracy among unsupervised methods and, perhaps sur-

prisingly, achieves comparable performance even to super-

vised techniques.

2. Related Work

Computing correspondences between 3D shapes is a

very well-studied area of computer vision and computer

graphics. Below we only review the most closely related

methods and refer the interested readers to recent surveys

including [46, 44, 5] for more in-depth discussions.

Functional Maps Our method is built on the functional

map representation, which was originally introduced in

[30] for solving non-rigid shape matching problems, and

then extended significantly in follow-up works, including

[2, 21, 20, 9, 15, 36] among many others (see also [31] for

a recent overview).

One of the key benefits of this framework is that it al-

lows us to represent maps between shapes as small matri-

ces, which encode relations between basis functions defined

on the shapes. Moreover, as observed by several works in

this domain [30, 40, 21, 36, 9], many natural properties on

the underlying pointwise correspondences can be expressed

as objectives on functional maps. This includes orthonor-

mality of functional maps, which corresponds to the lo-

cal area-preservation nature of pointwise correspondences

[30, 21, 40]; commutativity with the Laplacian operators,

which corresponds to intrinsic isometries [30], preservation

of inner products of gradients of functions, which corre-

sponds to conformal maps [40, 9, 50]; preservation of point-

wise products of functions, which corresponds to functional

maps arising from point-to-point correspondences [29, 28];

and slanted diagonal structure of functional map in the con-

text of partial shapes [36, 24] among others.

Similarly, several other regularizers have been proposed,

including exploiting the relation between functional maps

in different directions [14], the map adjoint [18], and pow-

erful cycle-consistency constraints [17] in shape collec-

tions to name a few. More recently constraints on func-

tional maps have been introduced to promote map continu-

ity [35, 34] and kernel-based techniques for extracting more

information from given descriptors [49] among others. All

these methods, however, are based on combining first-order

penalties that arise from enforcing descriptor preservation

constraints with these additional desirable structural prop-

erties of functional maps. As a result, any artefact or in-

consistency in the pre-computed descriptors will inevitably

lead to severe map estimation errors. Several methods have

been suggested to use robust norms [21, 20], which can help

reduce the influence of certain descriptors but still does not

control the global map consistency properties.

Most recently, a powerful technique BCICP, for map op-

timization, was introduced in [35] that combines a large

number of functional constraints with sophisticated post-

processing, and careful descriptor selection. As we show

below our method is simpler, more efficient and achieves

superior accuracy even to this recent approach.

Learning-based Methods To overcome the inherent dif-

ficulty of axiomatic techniques, several methods have been

introduced to learn the correct deformation model from data

with learning-based methods. Some early approaches in

this direction were used to learn either optimal parame-

ters of spectral descriptors [25] or exploited random forests

[38] or metric learning [11] for learning optimal constraints

given some ground truth matches.

More recently, with the advent of deep learning methods,

several approaches have been proposed to learn transforma-

tions in the context of non-rigid shape matching. Most of

the proposed methods either use Convolutional Neural Net-

works (CNNs) on depth maps, e.g. for dense human body

correspondence [51] or exploit extensions of CNNs directly

to curved surfaces, either using the link between convolu-

tion and multiplication in the spectral domain [7, 12], or di-

rectly defining local parametrizations, for example via the

exponential map, which allows convolution in the tangent

plane of a point, e.g. [26, 8, 27, 33] among others.

These methods have been applied to non-rigid shape

matching, in most cases modeling it as a label prediction

problem, with points corresponding to different labels. Al-

though successful in the presence of sufficient training data,

such approaches typically do not impose global consistency,

and can lead to artefacts, such as outliers, requiring post-

processing to achieve high-quality maps.
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Learning for Structured Prediction Most closely related

to our approach are recent works that apply learning for

structured map prediction [10, 23]. These methods learn a

transformation of given input descriptors, while optimizing

for the deviation of the map computed from them using the

functional map framework, from ground truth correspon-

dences. By imposing a penalty on entire maps, and thus

evaluating the ultimate use of the descriptors, these methods

have led to significant accuracy improvements in practice.

We note that concurrent to our work, Halimi et al. [16] also

proposed an unsupervised deep learning method that com-

putes correspondences without using the ground truth. This

approach is similar to ours, but is based on computation of

geodesic distances, while our method operates purely in the

spectral domain making it extremely efficient.

Contribution Unlike these existing methods, we propose

an unsupervised learning-based approach that transforms

given input descriptors, while optimizing for structural map

properties, without any knowledge of the ground truth or

geodesic distances. Our method, which can be seen as a bi-

level optimization strategy, allows to explicitly control the

interaction between pointwise descriptors and global map

consistency, computed via the functional map framework.

As a result, our technique is scalable with respect to shape

complexity, leads to significant improvement compared to

the standard unsupervised methods, and achieves compara-

ble performance even to supervised approaches.

3. Background & Motivation

3.1. Shape Matching and Functional Maps

Our work is based on the functional map framework and

representation. For completeness, we briefly review the ba-

sic notions and pipeline for estimating functional maps, and

refer the interested reader to a recent course [31] for a more

in-depth discussion.

Basic Pipeline Given a pair of shapes, S1, S2 represented

as triangle meshes, and containing, respectively, n1 and n2

vertices, the basic pipeline for computing a map between

them using the functional map framework, consists of the

following main steps (see Chapter 2 in [31]) :

1. Compute a small set of k1, k2 of basis functions on

each shape, e.g. by taking the first few eigenfunctions

of the respective Laplace-Beltrami operators.

2. Compute a set of descriptor functions on each shape

that are expected to be approximately preserved by

the unknown map. For example, a descriptor function

can correspond to a particular dimension (e.g. choice

of time parameter of the Heat Kernel Signature [43])

computed at every point. Store their coefficients in the

respective bases as columns of matrices A1,A2.

3. Compute the optimal functional map C by solving the

following optimization problem:

Copt = argmin
C12

Edesc

(

C12

)

+ αEreg

(

C12

)

, (1)

where the first term aims at the descriptor preservation:

Edesc

(

C12

)

=
∥

∥C12A1 − A2

∥

∥

2
, whereas the second

term regularizes the map by promoting the correctness

of its overall structural properties. The simplest ap-

proach penalizes the failure of the unknown functional

map to commute with the Laplace-Beltrami operators:

Ereg(C12) =
∥

∥C12Λ1 −Λ2C12

∥

∥

2
(2)

where Λ1 and Λ2 are diagonal matrices of the Laplace-

Beltrami eigenvalues on the two shapes.

4. Convert the functional map C to a point-to-point map,

for example using nearest neighbor search in the spec-

tral embedding, or using other more advanced tech-

niques [37, 15].

One of the strengths of this pipeline is that typically

Eq. (1) leads to a simple (e.g., least squares) problem with

k1k2 unknowns, independent of the number of points on the

shapes. This formulation has been extended using e.g. man-

ifold optimization [22], descriptor preservation constraints

via commutativity [29] and, more recently, with kerneliza-

tion [49] among many others (see also Chapter 3 in [31]).

3.2. Deep Functional Maps

Despite its simplicity and efficiency, the functional map

estimation pipeline described above is fundamentally de-

pendent on the initial choice of descriptor functions. To al-

leviate this dependence, several approaches have been pro-

posed to learn the optimal descriptors from data [10, 23].

In our work, we build upon a recent deep learning-based

framework, called FMNet, introduced by Litany et al. [23]

that aims to transform a given set of descriptors so that the

optimal map computed using them is as close as possible to

some ground truth map given during training.

Specifically, the approach proposed in [23] assumes, as

input, a set of shape pairs for which ground truth point-wise

maps are known, and aims to solve the following problem:

min
T

∑

(S1,S2)∈Train

lF (Soft(Copt), GT(S1,S2)), where (3)

Copt = argmin
C

‖CAT (D1) −AT (D2)‖. (4)

Here T is a non-linear transformation, in the form of a neu-

ral network, to be applied to some input descriptor functions

D, Train is the set of training pairs for which ground truth

correspondence GT(S1,S2) is known, lF is the soft error

loss, which penalizes the deviation of the computed func-

tional map Copt, after converting it to a soft map Soft(Copt)
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Figure 2: Overview of our SURFMNet approach: given a

pair of shapes and their descriptors D1, D2, we optimize for

a non-linear transformation T using the FMNet architecture

so that the transformed descriptors lead to functional maps

that best satisfy the structural constraints.

from the ground truth correspondence, and AT (D1) de-

notes the transformed descriptors D1 written in the basis of

shape 1. In other words, the FMNet framework [23] aims

to learn a transformation T of descriptors, so that the trans-

formed descriptors T (D1), T (D2), when used within the

functional map pipeline result in a soft map that is as close

as possible to some known ground truth correspondence.

Unlike methods based on formulating shape matching as

a labeling problem this approach evaluates the quality of

the entire map, obtained using the transformed descriptors,

which as shown in [23] leads to significant improvement

compared to several strong baselines.

Motivation Similarly to other supervised learning methods,

although FMNet [23] can result in highly accurate corre-

spondences, its applicability is limited to shape classes for

which high-quality ground truth maps are available. More-

over, perhaps less crucially, the soft map loss in FMNet is

based on the knowledge of geodesic distances between all

pairs of points, making it computationally expensive. Our

goal, therefore, is to show that a similar approach can be

used more widely, without any training data, while working

purely in the spectral domain.

4. SURFMNet

4.1. Overview

In this paper, we introduce a novel approach, which we

call SURFMNet for Spectral Unsupervised FMNet. Our

method aims to optimize for non-linear transformations of

descriptors, in order to obtain high-quality functional, and

thus pointwise maps. For this, we follow the general strat-

egy proposed in FMNet [23]. However, crucially, rather

than penalizing the deviation of the computed map from

the known ground truth correspondence, we evaluate the

structural properties of the inferred functional maps, such

as their bijectivity or orthogonality. Importantly, we express

all these desired properties, and thus the penalties during

optimization, purely in the spectral domain, which allows

us to avoid the conversion of functional maps to soft maps

during optimization as was done in [23]. Thus, in addition

to being purely unsupervised, our approach is also more ef-

ficient since it does not require pre-computation of geodesic

distance matrices or expensive manipulation of large soft

map matrices during training.

To achieve these goals, we build on the FMNet model,

described in Eq. (3) and (4) in several ways: first, we pro-

pose to consider functional maps in both directions, i.e. by

treating the two shapes as both source and target; second,

we remove the conversion from functional to soft maps;

and, most importantly, third, we replace the soft map loss

with respect to ground truth with a set of penalties on the

computed functional maps, which are described in detail

below. Our optimization problem can be written as:

min
T

∑

(S1,S2)

∑

i∈penalties

wiEi(C12,C21), where (5)

C12 = argmin
C

‖CAT (D1) −AT (D2)‖, (6)

C21 = argmin
C

‖CAT (D2) −AT (D1)‖. (7)

Here, similarly to Eq. (3) above, T denotes a non-linear

transformation in the form of a neural network, (S1, S2) is

a set of pairs of shapes in a given collection, wi are scalar

weights, and Ei are the penalties, described below. Thus,

we aim to optimize for a non-linear transformation of in-

put descriptor functions, such that functional maps com-

puted from transformed descriptors possess certain desir-

able structural properties and are expressed via penalty min-

imization. Figure 2 illustrates our proposed method where

we denote the total sum of all penalty terms in Eq. (5) as

Eglobal and back-propagation via grey dashed lines.

When deriving the penalties used in our approach, we

exploit the links between properties of functional maps and

associated pointwise maps, that have been established in

several previous works [30, 40, 14, 29]. Unlike all these

methods, however, we decouple the descriptor preservation

constraints from structural map properties. This allows us

to optimize for descriptor functions, and thus, gain a very

strong resilience in the presence of noisy or uninformative

descriptors, while still exploiting the compactness and effi-

ciency of the functional map representation.

4.2. Deep Functional Map Regularization

In our work, we propose to use four regularization terms,

by including them as a penalties in the objective function,

all inspired by desirable map properties.

Bijectivity Given a pair of shapes and the functional maps
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in both directions, perhaps the simplest requirement is for

them to be inverses of each other, which can be enforced by

penalizing the difference between their composition and the

identity map. This penalty, used for functional map estima-

tion in [14], can be written, simply as:

E1 = ‖C12C21 − I‖2 + ‖C21C12 − I‖2 (8)

Orthogonality As observed in several works [30, 40] a

point-to-point map is locally area preserving if and only

if the corresponding functional map is orthonormal. Thus,

for shape pairs, approximately satisfying this assumption, a

natural penalty in our unsupervised pipeline is:

E2 = ‖C⊤
12C12 − I‖2 + ‖C⊤

21C21 − I‖2 (9)

Laplacian commutativity Similarly, it is well-known that

a pointwise map is an intrinsic isometry if and only if

the associated functional map commutes with the Laplace-

Beltrami operator [39, 30]. This has motivated using the

lack of commutativity as a regularizer for functional map

computations, as mentioned in Eq. (2). In our work, we use

it to introduce the following penalty:

E3 =
∥

∥C12Λ1 −Λ2C12

∥

∥

2
+
∥

∥C21Λ2 −Λ1C21

∥

∥

2
(10)

where Λ1 and Λ2 are diagonal matrices of the Laplace-

Beltrami eigenvalues on the two shapes.

Descriptor preservation via commutativity The previ-

ous three penalties capture desirable properties of point-

wise correspondences when expressed as functional maps.

Our last penalty promotes functional maps that arise from

point-to-point maps, rather than more general soft corre-

spondences. To achieve this, we follow the approach pro-

posed in [29] based on preservation of pointwise products

of functions. Namely, it is known that a non-trivial linear

transformation T across function spaces corresponds to a

point-to-point map if and only if T (f ⊙h) = T (f)⊙T (h)
for any pair of functions f, h. Here ⊙ denotes the point-

wise product between functions [41], i.e. (f ⊙ h)(x) =
f(x)h(x). When f is a descriptor function on the source

and g is the corresponding descriptor on the target, the au-

thors of [29] demonstrate that this condition can be rewrit-

ten in the reduced basis as follows: CMf = MgC, where

Mf = Φ+Diag(f)Φ, and Mg = Ψ+Diag(g)Ψ. This leads

to the following penalty, in our setting:

E4 =
∑

(fi,gi)∈Descriptors

||C12Mfi −MgiC12||
2

+||C21Mgi −MfiC21||
2,

Mfi = Φ+Diag(fi)Φ,Mgi = Ψ+Diag(gi)Ψ.

(11)

In this expression, fi and gi are the optimized descriptors

on source and target shape, obtained by the neural network,

and expressed in the full (hat basis), whereas Φ,Ψ are the

fixed basis functions on the two shapes, and + denotes the

Moore-Penrose pseudoinverse.

4.3. Optimization

As mentioned in Section 4.1, we incorporate these four

penalties into the energy in Eq. (5). Importantly, the only

unknowns in this optimization are the parameters of the

neural network applied to the descriptor functions. The

functional maps C12 and C21 are fully determined by the

optimized descriptors via the solution of the optimization

problems in Eq. (6) and Eq. (7). Note that although stated

as optimization problems, both Eq. (6) and Eq. (7) reduce

to solving a linear system of equations. This is easily differ-

entiable using the well-known closed-form expression for

derivatives of matrix inverses [32]. Moreover, the function-

ality of differentiating a linear system of equations is im-

plemented in TensorFlow [1] and we use it directly, in the

same way as it was used in the original FMNet work. Fi-

nally, all of the penalties E1, E2, E3, E4 are differentiable

with respect to the functional maps C12,C21. This means

that the gradient of the total energy can be back-propagated

to the neural network T in Eq. (5), allowing us to optimize

for the descriptors while penalizing the structural properties

of the functional maps.

5. Implementation & Parameters

Implementation details We implemented 1 our method in

TensorFlow [1] by adapting the open-source implementa-

tion of FMNet [23]. Thus, the neural network T used

for transforming descriptors in our approach, in Eq. (5) is

exactly identical to that used in FMNet, as mentioned in

Eq. (3). Namely, this network is based on a residual archi-

tecture, consisting of 7 fully connected residual layers with

exponential linear units, without dimensionality reduction.

Please see Section 5 in [23] for more details.

Following the approach of FMNet [23], we also sub-sample

a random set of 1500 points at each training step, for ef-

ficiency. However, unlike their method, sub-sampling is

done independently on each shape, without enforcing con-

sistency. Remark that our network is fully connected on

the dimensions of the descriptors, not across vertices them-

selves. For example, the first layer has 352 × 352 weights

(not 1500×352 weights) where 352 and 1500 are the dimen-

sions of the SHOT descriptors, and no. of sampled vertices

respectively. Indeed, in exactly the same way as in FM-

Net, our network is applied on the descriptors of each point

independently, using the same (learned) weights, and differ-

ent points on the shape only communicate through the func-

tional map estimation layer, and not in the MLP layers. This

1Code available at https://github.com/

LIX-shape-analysis/SURFMNet.
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Methods E1+E2+E3+E4 E3 E1 E2 E4

Geodesic Error 0.020 0.073 0.083 0.152 0.252

Table 1: Ablation study of penalty terms in our method on

the FAUST benchmark.

ensures invariance to permutation of shape vertices. We also

randomly sub-sample 20% of the optimized descriptors for

our penalty E4 at each training step to avoid manipulating a

large set of operators. We observed that this sub-sampling

not only helps to gain speed but also robustness during opti-

mization. Importantly, we do not form large diagonal matri-

ces explicitly, but rather define the multiplicative operators

M in objective E4 directly via pointwise products and sum-

mation using contraction between tensors.

Finally, we convert functional maps to pointwise ones

with nearest neighbor search in the spectral domain, fol-

lowing the original approach [30].

Parameters Our method takes two types of inputs: the in-

put descriptors, and the scalar weights wi in Eq. (5). In

all experiments below, we used the same SHOT [45] de-

scriptors as in FMNet [23] with the same parameters, which

leads to a 352-dimensional vector per point, or equivalently,

352 descriptor functions on each shape. For the scalar

weights, wi, we used the same four fixed values for all ex-

periments below (namely, w1 = 103, w2 = 103, w3 = 1
and w4 = 105), which were obtained by examining the rel-

ative penalty values obtained throughout the optimization

on a small set of shapes, and setting the weights inversely

proportionally to those values. We train our network with a

batch size of 10 for 10 000 iterations using a learning rate

of 0.001 and ADAM optimizer [13].

6. Results

Datasets We evaluate our method on the following datasets:

the original FAUST dataset [6] containing 100 human

shapes in 1-1 correspondence and the remeshed versions of

SCAPE [3] and FAUST [6] datasets, made publicly avail-

able recently by Ren et al. [35]. These datasets were ob-

tained by independently re-meshing each shape to approx-

imately 5000 vertices using the LRVD re-meshing method

[52], while keeping track of the ground truth maps within

each collection. This results in meshes that are no longer

in 1-1 correspondence, and indeed can have different num-

ber of vertices. The re-meshed datasets therefore offer sig-

nificantly more variability in terms of shape structures, in-

cluding e.g. point sampling density, making them more

challenging for existing algorithms. Let us note also that

the SCAPE dataset is slightly more challenging since the

shapes are less regular (e.g., there are often reconstruction

artefacts on hands and feet) and have fewer features than

those in FAUST.

We stress that although we also evaluated on the origi-

nal FAUST dataset, we view the remeshed datasets as more

realistic, providing a more faithful representation of the ac-

curacy and generalization power of different techniques.

Ablation study We first evaluated the relative importance

of the different penalties in our method on the FAUST

shape dataset [6]. We evaluated the average correspondence

geodesic error with respect to the ground truth maps.

Table 1 summarizes the quality of the computed corre-

spondences between shapes in the test set, using different

combination of penalties. We observe that the combination

of all four penalties significantly out-performs any other

subsets. Besides, among individual penalties used indepen-

dently, the Laplacian commutativity gives the best result.

For more combinations of penalty terms, we refer to a more

detailed ablation study in the supplementary material.

Baselines We compared our method to several techniques,

both supervised and fully automatic. For conciseness, we

refer to SURFMNet as Ours in the following text. For a

fair comparison with FMNet, we evaluate our method in

two settings: Ours-sub and Ours-all. For Ours-sub, we

split each dataset into training and test sets containing 80

and 20 shapes respectively, as done in [23]. For Ours-all,

we optimize over all the dataset and apply the optimized

network on the same test set as before. We stress that unlike

FMNet, our method does not use any ground truth in either

setting. We use the notation Ours-sub only to emphasize the

split of dataset into train and test since the “training set” was

only used for descriptor optimization with the functional

map penalties introduced above without any ground truth.

Since the original FMNet work [23] already showed very

strong improvement compared to existing supervised learn-

ing methods we primarily compare to this approach. For

reference, we also compare to the Geodesic Convolutional

Neural Networks (GCNN) method of [26] on the remeshed

datasets, which were not considered in [23]. GCNN is a rep-

resentative supervised method based on local shape param-

eterization, and as FMNet assumes, as input, ground truth

maps between a subset of the training shapes. For super-

vised methods, we always split the datasets into 80 (resp.

60) shapes for training and 20 (resp. 10) for testing in the

FAUST and SCAPE datasets respectively.

Among fully automatic methods, we use the Product

Manifold Filter method with the Gaussian kernel [48] (PMF

Gauss) and its variant with the Heat kernel [47] (PMF Heat).

We also compare to the recently proposed BCICP [35],

which achieved state-of-the-art results among axiomatic

methods. With a slight abuse of notation, we denote these

non-learning methods as Unsupervised in Figure 4 since

none of these methods use ground truth. Finally, we also

evaluated the basic functional map approach, based on di-

rectly optimizing the functional maps as outlined in Sec-
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Figure 3: Quantitative evaluation of pointwise correspondences comparing our method with Supervised Methods.

Figure 4: Quantitative evaluation of pointwise correspondences comparing our method with Unsupervised Methods.

tion 3.1, but using all four of our energies for regulariza-

tion. This method, which we call “Fmap Basic” can be

viewed as a combination of the approaches of [14] and [28],

as it incorporates functional map coupling (via energy E1)

and descriptor commutativity (via E4). Unlike our tech-

nique, however, it operates on fixed descriptor functions,

and uses descriptor preservation constraints with the origi-

nal and noisy descriptors.

For fairness of comparison, we used SHOT descriptors

[45] as input to all methods, except BCICP [35], which uses

carefully curated WKS [4] descriptors. Furthermore, we

consider the results of FMNet [23] before and after applying

the PMF-based post-processing as suggested in the original

article. We also report results with ICP post-processing in-

troduced in [30]. Besides the accuracy plots shown in Fig-

ures 3 and 4, we also include statistics such as maximum

and 95th percentile in supplementary material.

6.1. Evaluation and Results

Figure 3 summarizes the accuracy obtained by super-

vised methods on the three datasets whereas Figure 4 com-

pares with unsupervised methods, using the evaluation pro-

tocol introduced in [19]. Note that in all cases, our network

SURFMNet, (Ours-all), when optimized on all shapes

achieves the best results even compared to the recent state-

of-the-art method in [35]. Furthermore, our method is com-

parable even to supervised learning techniques, GCNN [7]

and FMNet [23] despite being purely unsupervised.

Remark that the remeshed datasets are significantly

harder for both supervised and unsupervised methods, since

the shapes are no longer identically meshed and in 1-1 cor-

respondence. We have observed this difficulty also while

training supervised FMNet and GCNN techniques with

very slow convergence during training. On both of these

datasets, our approach achieves the lowest average error, re-

ported in Figure 3 and 4. Note that on the remeshed FAUST

dataset, as shown in Figure 3, only GCNN [7] produces a

similarly large fraction of correspondences with a small er-

ror. However, this method is supervised. On the remeshed

SCAPE dataset, our method leads to the best results across

all measures, despite being purely unsupervised.

Postprocessing Results As shown in Figures 3 and 4 our

method can often obtain high quality results even without

any post-processing. Nevertheless, in the challenging cases

such as the SCAPE remeshed dataset, when trained on a

subset of shapes, it can also benefit from an efficient ICP-

based refinement. This refinement, does not require com-

puting geodesic distances and does not require the shapes

to have the same number of points, thus maintaining the

flexibility and efficiency of our pipeline.

Correlation with actual Geodesic loss We further investi-

gated if there is a correlation between the value of our loss

and the quality of correspondence. Specifically, whether

minimizing our loss function, mainly consisting of regular-

ization terms on estimated functional maps, corresponds to
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Source Ground-Truth SURFMNet BCICP PMF (heat) PMF (gauss)

Figure 5: Comparison of our method with Unsupervised methods for texture transfer on the SCAPE remeshed dataset. Note

that BCICP is roughly 7 times slower than our method and its shortcomings are marked with red circles.

Source Ground-Truth SURFMNet+ICP SURFMNet FMNet FMNet + PMF GCNN

Figure 6: Comparison of our method with Supervised method for texture transfer on the SCAPE remeshed dataset.

Runtime

Methods Pre-processing Training Testing Post-processing Total

FMNet 60s 1500s 0.3s N/As 1650s

FMNet + PMF 60s 1500s 0.3s 30s 1680s

Fmap Basic 10s N/A 60s N/A 120s

BCICP N/A N/A 60s 180s 240s

SURFMNet 10s 25s 0.3s N/A 35s

SURFMNet + ICP 10s 25s 0.3s 10s 45s

Table 2: Runtime of different methods averaged over 190

shape pairs.

minimizing the geodesic loss with respect to the unknown

ground truth map. We found strong correlation between the

two and share a plot in the supplementary material.

Qualitative and Runtime Comparison Figures 5 and 6

show examples shape pairs and maps obtained between

them using different methods, visualized via texture trans-

fer. Note the continuity and quality of the maps obtained

using our method, compared to other techniques (more re-

sults in supplementary material). One further advantage of

our method is its efficiency, since we do not rely on the

computation of geodesic matrices and operate entirely in

the spectral domain. Table 2 compares the run-time of the

best performing methods on an Intel Xeon 2.10GHz ma-

chine with an NVIDIA Titan X GPU. Note that our method

is over an order of magnitude faster than FMNet and signif-

icantly faster than the currently best unsupervised BCICP.

7. Conclusion & Future Work

We presented an unsupervised method for computing

correspondences between shapes. Key to our approach is

a bi-level optimization formulation, aimed to optimize de-

scriptor functions, while promoting the structural properties

of the entire map, obtained from them via the functional

maps framework. Remarkably, our approach achieves sim-

ilar, and in some cases superior performance even to super-

vised correspondence techniques.

In the future, we plan to incorporate other penalties on

functional maps, e.g., those arising from recently-proposed

kernalization approaches [49], or for promoting orientation

preserving maps[35] and also incorporate cycle consistency

constraints [17]. Finally, it would be interesting to extend

our method to partial and non-isometric shapes and match-

ing other modalities, such as images or point clouds, since it

opens the door to linking the properties of local descriptors

to global map consistency.
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Rodolà and Adrien Poulenard for their help in performing

quantitative comparisons and producing qualitative results.

1624



References

[1] Martı́n Abadi, Ashish Agarwal, and Paul Barham et

al. TensorFlow: Large-scale machine learning on het-

erogeneous systems, 2015. Software available from

tensorflow.org. 5

[2] Yonathan Aflalo, Anastasia Dubrovina, and Ron Kim-

mel. Spectral generalized multi-dimensional scal-

ing. International Journal of Computer Vision,

118(3):380–392, 2016. 2

[3] Dragomir Anguelov, Praveen Srinivasan, Daphne

Koller, Sebastian Thrun, Jim Rodgers, and James

Davis. SCAPE: Shape Completion and Animation of

People. In ACM Transactions on Graphics (TOG),

volume 24, pages 408–416. ACM, 2005. 6

[4] Mathieu Aubry, Ulrich Schlickewei, and Daniel Cre-

mers. The wave kernel signature: A quantum mechan-

ical approach to shape analysis. 31(4), Nov. 2011. 7

[5] Silvia Biasotti, Andrea Cerri, A Bronstein, and M

Bronstein. Recent trends, applications, and perspec-

tives in 3d shape similarity assessment. In Computer

Graphics Forum, volume 35, pages 87–119, 2016. 2

[6] Federica Bogo, Javier Romero, Matthew Loper, and

Michael J. Black. FAUST: Dataset and evaluation

for 3D mesh registration. In Proceedings IEEE Conf.

on Computer Vision and Pattern Recognition (CVPR),

Piscataway, NJ, USA, June 2014. IEEE. 1, 6

[7] Davide Boscaini, Jonathan Masci, Simone Melzi,

Michael M Bronstein, Umberto Castellani, and Pierre

Vandergheynst. Learning class-specific descriptors for

deformable shapes using localized spectral convolu-

tional networks. In Computer Graphics Forum, vol-

ume 34, pages 13–23. Wiley Online Library, 2015. 2,

7

[8] Davide Boscaini, Jonathan Masci, Emanuele Rodola,

and Michael M. Bronstein. Learning shape correspon-

dence with anisotropic convolutional neural networks.

In Proc. NIPS, pages 3189–3197, 2016. 2

[9] Oliver Burghard, Alexander Dieckmann, and Rein-

hard Klein. Embedding shapes with Green’s functions

for global shape matching. Computers & Graphics,

68:1–10, 2017. 2

[10] Etienne Corman, Maks Ovsjanikov, and Antonin

Chambolle. Supervised descriptor learning for non-

rigid shape matching. In Proc. ECCV Workshops

(NORDIA), 2014. 1, 2, 3

[11] Luca Cosmo, Emanuele Rodola, Jonathan Masci, An-

drea Torsello, and Michael M Bronstein. Matching

deformable objects in clutter. In 3D Vision (3DV),

2016 Fourth International Conference on, pages 1–10.

IEEE, 2016. 2
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