
Siamese Networks: The Tale of Two Manifolds

Soumava Kumar Roy1,4, Mehrtash Harandi2,4, Richard Nock1,3,4, Richard Hartley1

1The Australian National University; 2Monash University;
3The University of Sydney; 4DATA61-CSIRO, Australia

Soumava.KumarRoy@anu.edu.au, Mehrtash.Harandi@monash.edu,

Richard.Nock@data61.csiro.au, Richard.Hartley@anu.edu.au

Abstract

Siamese networks are non-linear deep models that have

found their ways into a broad set of problems in learning

theory, thanks to their embedding capabilities. In this pa-

per, we study Siamese networks from a new perspective and

question the validity of their training procedure. We show

that in the majority of cases, the objective of a Siamese net-

work is endowed with an invariance property. Neglecting

the invariance property leads to a hindrance in training the

Siamese networks. To alleviate this issue, we propose two

Riemannian structures and generalize a well-established ac-

celerated stochastic gradient descent method to take into

account the proposed Riemannian structures. Our empirical

evaluations suggest that by making use of the Riemannian

geometry, we achieve state-of-the-art results against sev-

eral algorithms for the challenging problem of fine-grained

image classification.

1. Introduction

Siamese networks, introduced in 90s by Bromley [4], are

ubiquitous in machine learning and one can find their trace

in similarity/metric learning [15, 40, 43, 45], hashing [37],

clustering [28], and zero/one/few shot learning [21, 52, 65].

Perhaps a glimpse at computer vision literature can provide a

better picture as to why Siamese networks are essential these

days. Siamese networks have been successfully employed

to address face recognition/verification [5, 17, 49, 47, 41],

person re-identification [10, 54], image/patch/point de-

scriptors [64, 25, 42, 63], localization [51, 32], image

retrieval [12], stereo matching [35], Deep Metric Learn-

ing (DML) [8, 33, 53, 61, 22] and even object track-

ing [50, 2, 44].

In majority of cases, a Siamese Neural Network (SiNN)

realizes a non-linear embedding of data with the objective be-

ing to attain a semantically meaningful space where related

patterns (e.g., faces of the same person) are close to each

other while proximity of semantically-unrelated patterns

(e.g., faces of different people) are avoided. The non-linear

embedding is accomplished in two stages; 1. Feature extrac-

tion performed by two sister networks (usually with shared

weights), 2. followed by an embedding parameterized by a

positive semi-definite matrix.

Previous studies on Siamese networks mainly focus on

the following challenges;

1. Design Challenges. For a given problem, what is the

right design of the network?

2. Training Challenges. It may sound surprising but as

evidenced by a large body of works (e.g., [41, 40, 43,

45, 61, 26]), proper sampling/mining of data plays a

crucial role in successful training of Siamese networks.

We will discuss this point in more details later in the

paper.

In this work, we will address an important and to a great

extent a neglected issue in training Siamese networks. We

will show that the objective function of a Siamese network

comes with a form of invariance. As a result, the geometry

of the search space is no longer Euclidean. Studies in the

field of Riemannian geometry suggest that better outcomes

can be yield if the true geometry of the search space is taken

into account during the optimization [1, 19]. As such, in this

work we develop tools and algorithms to take into account

the invariance in Siamese networks. Our contributions in

this work are

• We propose and develop a novel matrix manifold and

its associated manifold operations that offer invariance

to the structure of siamese networks.

• As an alternative solution, we show that the required in-

variance can also be attained by using a Stiefel manifold

to model the true geometry of the search space.

• We also make another contribution by incorporating

a Riemannian form of the stochastic gradient descent

with momentum into the backprop algorithm. This is

required to preserve the geometry during training the

network.

13046

• Lastly, we show that by exploiting the true geometry in

training Siamese networks, significant improvements

can be achieved for the task of categorizing unseen fine-

grained classes (e.g., birds or cars). We achieve this by

employing the simplest structures, demonstrating the

importance of proper training in comparison to sophis-

ticated models that make use of spectral clustering [28]

for example.

Notations: Throughout this paper, we use bold lower-

case letters (e.g., x) to show column vectors and bold

upper-case letters (e.g., X) to show matrices.[·]i is used

to denote the i-th element of a vector and In shows the

n× n identity matrix. The Frobenius norm of a matrix is

shown by ‖X‖F =
√

Tr(X⊤X), with Tr(·) indicating

the matrix trace. The set of full rank tall matrices of size

n × p and the orthogonal group are shown by R
n×p
∗ and

O(p) := {R ∈ R
p×p| R⊤R = RR⊤ = Ip}, respectively.

A matrix R
p×p ∋ M � 0 is Positive Semi-Definite (PSD)

if M = M⊤ and for any non-zero vector x ∈ R
p we have

x⊤Mx ≥ 0. A matrix M ≻ 0 is Positive Definite (PD)

if it is PSD and for any non-zero vector x ∈ R
p we have

x⊤Mx > 0.

2. Siamese Networks

As mentioned before, an SiNN makes use of a twin net-

work to realize a non-linear embedding φ (usually a Deep

Neural Network) from its input domain X (e.g., images)

to some Euclidean spaces R
n, i.e., φ : X → R

n. The

non-linear embedding is accomplished in two stages; 1. Fea-

ture extraction performed by two sister networks; followed

by, 2. learning a discriminative embedding space param-

eterized by R
n×n ∋ M � 0. M is constrained to be a

PSD matrix in order to realize a valid Mahalanobis distance

d2
M

(xi,xj)=(xi-xj)
⊤M (xi-xj), with xi,xj ∈ X . Thus

one can factorize M=LL⊤ and learn L using an SiNN to

accomplish the aforementioned factorization.

In its original form [4], the sister networks are identi-

cal (parameterized by Θ). The embedding part identifies a

metric in the resulting space to increase the discriminatory

power of the whole system. Such a construction enjoys two

key properties:

• It guarantees the consistency of its predictions. Weight

sharing ensures that two similar samples will not map

to different parts of the embedded space as each leg

uses the same functionality.

• The network is symmetric, meaning that it does not

matter how an input pair is fed to the network.

Our focus here is on the embedding part but stress that

the developments done in this work can be applied verbatim

to the cases where the weight-sharing between the sister

networks are removed intentionally.

To learn the parameters (Θ,M) of a SiNN, one makes

use of the PSD property of M and factorize it into M =
LL⊤ with L ∈ R

n×p
∗ , p ≤ n. Such factorization is essential

in SiNN as the PSD constraint can be enforced implicitly.

This is very important as the Gradient Descent (GD) updating

scheme used in the BackPropagation (BP) [30] algorithm

cannot preserve any form of constraints.

Furthermore, the factorization M = LL⊤ can be thought

of performing joint dimensionality reduction and metric

learning over the outputs of the sister networks. To see

this, consider the Singular Value Decomposition (SVD) of

L = UDV ⊤ = UB with U⊤U = Ip and B = DV ⊤.

It is now clear that the embedding part of a SiNN first per-

forms a dimensionality reduction using U followed by scal-

ing/shrinking and rotating the resulting low-dimensional

space to increase its discriminatory power.

Remark 1. We note that to have a valid metric, one should

enforce M to be positive definite, i.e., M ≻ 0. However,

learning a metric in high-dimensional spaces is not without

difficulties. For one, the number of training samples grows

exponentially with the dimensionality. For example, the

high-level features extracted from deep models in computer

vision (e.g., AlexNet [24], Inception [48] or ResNet [13])

are usually very high-dimensional. As such, SiNNs that

use such models as backbone opt for semi-definite solutions

(e.g., [40, 43, 45, 28]).

3. Problem Statement

Despite its wide adoption, factorization M = LL⊤

comes with an undesirable property as a result of a sym-

metry. To be specific, changing L to LR for R ∈ O(p)
does not change M . In other words, there exists an equiva-

lence class of solutions for every M , which in return makes

the search space non-Euclidean. This is where we ques-

tion the common practice in training SiNNs and make our

contributions.

To give the reader an intuition as to why one needs to

consider the invariance during the optimization, consider a

simple example. Assume you want to minimize a function

f : R2 → R but your function comes with an invariance

property in the form f(x) = f(Rx) for R ∈ O(2). Such

an invariance drastically changes the search space from R
2

to R
+ as circles centered at origin are equivalent.

Furthermore, recent studies in the context of low-rank

matrix approximation suggest that explicitly considering the

geometry resulted by such a symmetry is the key to faster

optimizations and better outcomes [20, 38, 39]. In what

follows, we first discuss how the updating scheme in the BP

algorithm should be altered to preserve certain constraints.

This is required as we later develop two geometries to ex-

plicitly take on board the invariance to the action of the

orthogonal group during training a deep network.

3047

4. Related Work

As mentioned in § 1, Siamese networks are used in a

large body of works to address various problems in ma-

chine learning, computer vision, speech processing and re-

lated fields. Since we are mainly interested in theoretical

aspects of Siamese nets, we briefly review recent advances in

Siamese nets and in particular focus on the literature of deep

metric/similarity learning [41, 40, 43, 18, 53, 45, 28, 61].

Traditionally, Siamese networks were trained with the so

called “contrastive loss” [4, 5]. The main idea here is to con-

struct a Euclidean space where positive pairs (i.e., samples

sharing the same class label) are close to each other while

simultaneously negative pairs (i.e., samples coming from

different classes) are pushed away. Models trained by the

contrastive loss require a weaker form of supervision. This is

because only the knowledge about pairs (positive/negative) is

needed. On the downside, models trained by the contrastive

loss can be considered as holistic solutions, meaning that

the focus is on absolute distances, where relative distances

matter more in many cases.

Exploiting relative distances and local information in

metric learning can be attributed to the seminal work of

Weinberger and Saul [59] where the concept of triplets is

introduced. In a nutshell, instead of creating positive and neg-

ative pairs blindly, for any training example xa (called the

anchor point), some neighbor samples are chosen for train-

ing. From this, one creates triplets in the form
(

xa,x+,x−

)

where x+ is a neighbor point sharing the same label as xa

with x− being a neighbor from a different class. The goal of

training is to learn a metric M such that for all triplets

d2M
(

xa,x+

)

≤ d2M
(

xa,x−

)

+ τ ,

with τ being a predefined margin, and d2
M

(

x,y
)

=
(

x −

y
)⊤

M
(

x− y
)

. Clearly the model does not consider well

separated negative pairs during training. Moreover, only

neighbor positive pairs are used for learning, meaning posi-

tive pairs that are very far from each other will never affect

the learning. Nowadays, the concept of triplets along its vari-

ants (e.g., quadruplets [27]) is the method of choice when

for training Siamese networks as it is believed to create more

discriminative and robust models. As of lately, mining forms

a central theme in deep metric learning [41, 40, 43, 61, 26].

Some lessons learned from successful models are

• Uniform Class Distribution. Each mini-batch should

contain the same number of samples per class [41, 40,

43, 18, 53, 45, 28].

• Normalization. It is helpful to normalize the output

of the sister networks [41, 40, 45, 28]. We note that

in [43], instead of normalization, authors use an ℓ2
regularization penalty.

• Semi-Hard Negative Mining. The idea introduced

in [41] constructs triplets by finding a “semi-hard” neg-

ative example. Given the anchor xa and its associated

positive sample x+, a semi-hard negative sample is one

with the property that d2M
(

xa,x+

)

≤ d2M
(

xa,x−

)

but is still the hardest negative, meaning among all

negative samples in the mini-batch satisfying the afore-

mentioned distance criterion, it has the smallest to the

anchor.

• Classification Loss. To achieve state-of-the-art, sev-

eral studies benefit from the classification loss. Exam-

ples include 1. pretraining for the classification task,

followed by fine-tuning only the top layers with the

metric loss [49] and 2. combining the metric loss with

the classification loss as in [46].

Showing success in face recognition/verification, a num-

ber of algorithms [34, 7, 57, 56] make use of softmax based

loss functions within DNNs.We note that the softmax based

algorithms are designed for closed-set problems, while DML

and SiNNs are efficient in learning from unseen classes or

limited data [62, 21, 52]. Moreover, as Horiguchi et al. [16]

demonstrate that softmax-based and DML solutions cannot

replace/eradicate one another.

5. Geometry-Aware Layers1

Inspired by studies on the geometry of low-rank matrix

decomposition [20, 39], in this section we propose two novel

layers, namely the quotient Convolutional layer (qConv for

short) and the Stiefel layer to address the invariance property

of the Siamese networks. On the other hand, we make use of

a form of Riemannian stochastic gradient descent algorithm

to preserve the structures envisaged on the qConv and Stiefel

layers during the training phase. This, ultimately, boils down

to equipping the BP algorithm with two extra operators,

namely projection onto the tangent space ΠX : Rn×p →
TXM and retraction ΥX : TXM → M with TXM
denoting the tangent space of the Riemannian manifold M
at X .

5.1. qConv Layer

Consider a (right) action of a Lie-group G on a a manifold

M. We denote the action of group element g on point x ∈
M by x g. (For instance as discussed, the Lie-group O(p)
acts on the manifold R

n×p
∗ by ordinary matrix multiplication

on the right). The orbit of a point x is the set Orb(x) =
{x g | g ∈ G}, sometimes written as [x].

Under the conditions of Theorem 1 below, the set of

orbits, denoted by M/G, forms a smooth manifold.

1The code is available at https://github.com/sumo8291/

Siamese-Networks.git.

3048

Theorem 1 (Quotient Manifold Theorem (Theorem 21.10

in [31]). Suppose that a Lie group G acts smoothly, freely

and properly on a smooth manifold M. Then M/G is a

topological manifold of dimension dim(M)− dim(G), and

has a unique smooth structure, with the property that the

quotient map is a smooth submersion.

We denote the quotient mapping by π : M → M =
M/G.The inverse-image π−1([x]) for some point [x] ∈ M,

is called the fibre of [x]. The differential of this mapping at

a point p ∈ M is denoted by dπp : Tp(M) → Tπ(p)(M).
The statement that π is a smooth submersion means that the

mapping dπp is a surjection at any point p.

Recall the factorization M = LL⊤, widely used in train-

ing SiNN, is invariant to the action of orthogonal group,

i.e., by changing L to LR, R ∈ O(p) the metric M is

not going to change. Based on the previous discussion, the

true geometry of the search space can be identified as the

quotient of R
n×p
∗ . To develop the Riemannian geometry of

M = R
n×p
∗ /O(p) and eventually obtain Π·(·) and Υ·(·),

we start by defining a Riemannian metric on R
n×p
∗ :

ḡL
(

ξ̄, ϑ̄) := Tr
(

ξ̄
(

L⊤L
)−1

ϑ̄⊤
)

=
〈

ξ̄, ϑ̄
(

L⊤L
)−1〉

F
.

(1)

where
〈

·, ·
〉

F
denotes the Frobenius inner product. Here

ξ̄, ϑ̄ ∈ TLM = R
n×p. This metric has the important prop-

erty that it is right-invariant under the action of O(p), mean-

ing ḡL
(

ξ̄, ϑ̄) = ḡLR

(

ξ̄R, ϑ̄R).It should be noted that there

are other choices of right-invariant metric. For instance, one

can define ḡL
(

ξ̄, ϑ̄) =
〈

ϑ̄, ξ̄
〉

F
, which is also right-invariant.

However, the chosen metric has the attractive feature that

it is scale invariant, namely ḡsL(sξ̄, sϑ̄) = ḡL(ξ̄, ϑ̄).With

this inner product, the tangent space TLM at L can be split

into two complementary parts, namely the horizontal space

HLM and the vertical space VLM. That is, TLR
n×p
∗ =

HLR
n×p
∗ ⊕ VLR

n×p
∗ . The vertical space is defined as the

kernel of the differential map: VLM = ker(dπL), and the

horizontal space HLM is its orthogonal complement with

respect to the metric ḡ(·, ·).

Lemma 1. The vertical space VLM at L ∈ R
n×p
∗ is equal

to the set {LΛ | Λ⊤ = −Λ}. This is a vector space of

dimension p(p− 1)/2.

Proof. We envisage the tangent space TLM as the vector

space of all matrices {γ′(0)} where γ(t) : [−1, 1] → R
n×p

is a smoothcurve with γ(0) = L. In other words, TLM is

the set of derivatives, at L, of smooth curves.Consider the

curve γ(t) = LR(t) where R(t) ∈ O(p) and R(0) is the

identity. Note that γ′(0) = LΛ for some skew-symmetric

matrix Λ. Under the projection π : Rn×p → M, we see that

π(LR(t)) = π(L), a constant curve. Consequently, γ′(0)
is in the kernel of dπL : TLM → Tπ(L)M. Note that the

set of matrices {LΛ | Λ⊤ = −Λ} forms a vector space of

dimension p(p− 1)/2 = dim(O(p)). Furthermore,

dim(ker(dπL)) = dim(TLM)− dim(Tπ(L)M)

= dim(M)− dim(M) = dim(O(p)) .

Here, the first equality is true, because π is a submersion,

and the last equality also follows from Theorem 1. It follows

that {LΛ} forms the whole of VLM = ker(π∗), as required.

Lemma 2. The horizontal space HLM with respect to the

metric ḡ is equal to

HLM = {ζ̄ ∈ TLM | ζ̄⊤L
(

L⊤L
)

=
(

L⊤L
)

L⊤ζ̄} .

Proof. Assume ζ̄ ∈ HL. Then, ζ̄ is perpendicular to any

ξ̄ = LΛ ∈ VL, so

0 = ḡL
(

ζ̄ , ξ̄) = Tr
(

(L⊤L
)−1

ζ̄⊤ LΛ) .

Since this must hold for all skew-symmetric Λ,

it follows that (L⊤L
)−1

ζ̄⊤L is symmetric, so
(

L⊤L
)−1

ζ̄⊤L = L⊤ζ̄
(

L⊤L
)−1

. This shows that

ζ̄⊤L
(

L⊤L
)

=
(

L⊤L
)

L⊤ζ̄. The converse follows

similarly.

The argument of Lemma 1 shows that the differential map

dπL maps the horizontal space HLM isomorphically onto

the tangent space Tπ(L)M, which allows us to identify the

tangent space at a point in M with the horizontal space at

any point in its fibre.

Theorem 2. Let ξ ∈ TLM = R
n×p. The horizontal part

of ξ at L is given by ξ̄↑ = ξ +LΛ with Λ ∈ R
p×p being the

solution of the following Sylvester equation,

Λ
(

L⊤L
)2

+
(

L⊤L
)2
Λ = ξ

⊤
LL⊤L−L⊤LL⊤ξ . (2)

Proof. Let the projection of ξ̄ onto the horizontal subspace

be ζ̄. Then, ζ̄ − ξ̄ is a vertical vector, so ζ̄ = ξ̄ + LΛ,

by Lemma 1. Since ζ̄ is in the horizontal subspace, the

condition in Lemma 2 holds. Substituting ζ̄ = ξ̄ +LΛ into

the equation ζ̄⊤L
(

L⊤L
)

=
(

L⊤L
)

L⊤ζ̄ gives the required

result.

The above development provides us with the key to our

optimization update step for L. At a current point L, an

update direction ξ̄ ∈ R
n×p = TLR

n×p
∗ is computed. Instead

of making an update in this direction, it is first projected to

a vector ξ̄↑ in the horizontal subspace HLM according to

Theorem 2, and an update is made in this horizontal direction.

Thus, our retraction operator is defined by

ΥL

(

ξ̄
)

= L+ ξ̄↑ . (3)

Note that the projection operator Π : Rn×p → TLM is

trivial, since TLM is identified with R
n×p.

3049

Computational Complexity.

The complexity of an update for the qConv depends on the

computational cost of the projection on the horizontal space.

• Forming the Sylvester equation. To form the

Sylvester equation, we need to compute L⊤L,
(

L⊤L
)2

, Λ
(

L⊤L
)2

, ξ
⊤
L and ξ

⊤
L(L⊤L). This

adds up to 2np2 + 3p3 flops.

• Solving the Sylvester equation. Solving the Sylvester

equation has a complexity of p3.

• Obtaining the horizontal vector. This step needs a

matrix multiplication and has a complexity of np2.

All in all, an update of qConv demands 3np2 + 4p3 extra

flops. We note that this complexity is linear in n and all the

steps can be done in a GPU.

5.2. Stiefel Layer

Instead of the factorization considered in § 5.1, we can

make use of the Singular Value Decomposition to yield

M = UDU⊤ = UD1/2D⊤/2U⊤ = USS⊤U⊤. Here,

U ∈ R
n×p is a matrix with the property that U⊤U = Ip

and S = D1/2 ∈ R
p×p is a diagonal matrix. The benefit

of working with S is that unlike D1/2, diagonal elements

of S can become negative during optimization. This how-

ever does not make the resulting metric M = USS⊤U⊤

indefinite.

The advantage of the SVD factorization is in its unique-

ness. To be precise, SVD is invariant to the permutation of

the columns of its factors. This however is a very mild con-

dition and as evidenced by our experiments can be neglected.

As such, we can replace the embedding layer in a SiNN

with two layers, one being a layer with orthogonal weights,

followed by a layer that only scales its inputs according to S.

While no especial care is required for the layer that encodes

the matrix S, we need to enforce orthogonality on the U

layer. This can be achieved by making use of the geometry

of the Stiefel manifold. To be more specific, let us formally

define the Stiefel manifold.

Definition 1 (The Stiefel Manifold). The set of (n × p)-

dimensional matrices, p ≤ n, with orthonormal columns en-

dowed with the Frobenius inner product forms a compact Rie-

mannian manifold called the Stiefel manifold St(p, n) [9].

St(p, n) , {U ∈ R
n×p : U⊤U = Ip} . (4)

Similar to the quotient geometry developed above, we

need the knowledge of the orthogonal projection and the

retraction on St(p, n). The form of orthogonal projection

reads as [1]

ΠU

(

v
)

= v −Usym
(

UTv
)

. (5)

In Eq. (5), sym(A) = 1
2 (A + AT). Various forms of

retraction are defined on St(p, n) [1]. Among them, we

recommend the following retraction

ΥU

(

ξ
)

= qf(U + ξ) . (6)

Here, qf(A) is the adjusted Q factor of the QR decompo-

sition [11]. In practice, to obtain qf(·), one performs QR

decomposition followed by swapping the sign of elements

of all columns whose corresponding diagonal elements in R

are negative.

Remark 2 (Cayley Transform). Preserving orthogonality

can also be attained using the Cayley transform [60]. The

Cayley transform is indeed a valid form of retraction on

the Stiefel manifold. The retraction provided in Eq. (6) is

however computationally cheaper and hence preferable.

Computational Complexity.

The complexity of an update for the Stiefel structure depends

on the computational cost of the following major steps:

• Orthogonal projection. Projecting v to the tangent

space of St(p, n) as in Eq. (5) involves multiplications

between matrices of size 1- n×p and p×p and 2- p×n
and n× p. This adds up to 2np2 flops.

• Retraction. The retraction involves computing and ad-

justing the QR decomposition of an n× p matrix. The

complexity of the QR decomposition using the House-

holder algorithm is 2p2(n− p/3). Adjustments change

the sign of elements of a column if the corresponding

diagonal element of R is negative which does not incur

much. Hence, the total complexity of the retraction is

O
(

2p2(n− p/3)
)

.

All the above steps are linear in n, again making the

extra flops compared to the convolutional layers affordable.

We also note that all the above operations can be done in a

GPU. Table 1 provides a summary of the qConv and Stiefel

geometry.

6. Stochastic Optimization

To train a SiNN, a set of triplets in the form

of
{(

xi, x̃i, yi
)

: xi, x̃i ∈ X , yi = {−1, 1}
}

are required.

Here, yi = 1 if xi and x̃i are semantically similar (e.g.,

belonging to the same class) and yi = −1 otherwise. We

note that SiNNs require a weaker form of supervision in

comparison to standard classification problems and a high

level semantic supervision is sufficient for training. With

the factorization M = LL⊤,L ∈ R
n×p
∗ , training an SiNN

reads as

min
Θ,L

∑

i

ℓ
(

yi,L
⊤fθ(xi),L

⊤fθ(x̃i)
)

. (7)

3050

(a) Auto-Encoder (b) Conv (c) qConv (d) Stiefel

Figure 1. t-SNE visualization on the MNIST dataset for various configurations; after the models had converged w.r.t their respective training

loss. Please see text for more details.

Table 1. Matrix representation, form of Riemannian gradient and retraction for the qConv and Stiefel layers.

M = LL⊤ M = US2UT

Matrix representation L (U ,S)

Projecting onto the tangent space ξ
L
+LΛ with Λ obtained from Eqn. (2).

(

ξ
U
−Usym

(

UT ξ
U

)

, ξ
S

)

Retraction ΥL

(

ξ̄
)

= L+ ξ̄↑ ΥU

(

ξ̄
)

= qf(U + ξ̄)

Here, ℓ : R× R
p × R

p → R is a loss function which incurs

a penalty if the embedded points L⊤fθ(xi) and L⊤fθ(x̃i)
are dissimilar for yi = 1 and vice-versa.

With this modeling, one can minimize (7) using the BP

algorithm equipped with any gradient descent-based opti-

mizers. As we see in the previous section, accounting for

the invariance to the orthogonal group entails minimizing a

constrained form of (7). In particular, we need to minimize

either

min
Θ,L∈M

∑

i

ℓ
(

yi,L
⊤fθ(xi),L

⊤fθ(x̃i)
)

, (8)

or

min
Θ,S,U∈St(p,n)

∑

i

ℓ
(

yi,SU
⊤fθ(xi),SU

⊤fθ(x̃i)
)

. (9)

Minimizing (8) or (9) with respect to Θ (and S for the

latter) is straightforward and the conventional BP algorithm

can be applied directly. However, the same cannot be said

about L and U as we need to preserve the foreseen structures

during the updates of the BP algorithm. To achieve our

goal, we make use of the Riemannian Stochastic Gradient

Descent (rSGD) [3] and equip it with a momentum term.

This innocent looking modification in practice seems to be

very beneficial. To preserve the Riemannian structure, we

propose the following updating scheme which we call rSGD

with momentum or rSGD-M for short;

m(t+1) = ν Π
X(t)

(

m(t)
)

+ η Π
X(t)

(

∇
X(t)J

)

, (10)

X(t+1) = Υ
X(t)

(

−m(t+1)
)

. (11)

Here, ν, η ∈ (0, 1] are the momentum coefficient and the

learning rate, ∇x is the gradient operator evaluated at x, J
is the function to be minimized and Π·(·) and Υ·(·) are the

projection onto the tangent space and retraction operators,

respectively.

Before concluding this section, we use the MNIST [29]

dataset to evaluate the benefits of the introduced geometrical

constraints. In doing so, we first vectorize each image in

the MNIST dataset into a 784 dimensional vector. For each

configuration we train a single layer network that projects

784 dimensional input vector onto a 20 dimensional embed-

ding space. Our goal here is to study and contrast the normal

practice in training SiNN against what can be attained by the

developments done in this work. Thus, we train the networks

using the triplet embedding loss defined below:

Ltri =
1

|P |

|P |
∑

i=1

[

∥

∥xa
i−x

p
i

∥

∥

2
−
∥

∥xa
i−xn

i

∥

∥

2
+τ

]

+
. (12)

Here [y]+ = max(0, y) is the hinge loss and τ > 0 is a

user-specified margin; and (xa
i ,x

p
i ,x

n
i) represent a triplet.

Semi-hard triplet mining strategy [41] was used to mine

v = 5 triplets for every xa
i to generate |P | triplets within a

mini-batch of size N . N and τ were set to 100 and 1.0 for the

three geometrical configurations i.e. Conv, qConv and Stiefel.

Moreover as a baseline algorithm, we have trained a single

20 dimensional Auto-Encoder (AE) using the standard mean-

squared loss. We report the final classification test error and

average training time per single epoch after training each of

the model for 100 epochs.

3051

Table 2. Classification error using 1-Nearest Neighbour and average

single-epoch training time on the MNIST dataset for AE, Conv,

qConv and Stiefel.

Configuration AE Conv qConv Stiefel

error (%) 11.13 14.84 9.93 9.75

time (sec) 10.5 12.1 12.3 12.4

From Table 2, it is observed that both the qConv and the

Stiefel layers outperform the traditional Conv and AE in

terms of classification accuracy, with the Stiefel layer being

slightly better than the qConv layer. This clearly shows the

importance of enforcing such geometrical configurations in

learning an embedding metric. Fig. 1 shows the t-SNE [36]

plots of the various configurations after their respective mod-

els had converged during training. This indeed exhibits that

by incorporating either of the proposed geometry, one can

obtain compact embedding clusters over Conv and AE. This

indeed demonstrates the enhanced discriminative ability of

the qConv and the Stiefel layers over that of Conv and AE.

Interestingly, the incurred complexity is also marginal as

shown by the time required to perform one epoch of training

in Table 2.

7. Empirical Evaluations

As the first experiment, we contrast the proposed qConv

and Stiefel layers against the normal practice (i.e., convolu-

tional layers) in training Siamese networks using a somehow

shallow network. In particular, we trained a shallow 5-layer

on the STL10 [6] dataset and studied the accuracy and run-

ning times of the vanilla convolutional layer against the

qConv and Stiefel layers. The structure of the network reads

as conv1(5×5) → max-pool → relu → conv2(5×5) → relu

→ avg-pool → conv3(5×5) → relu → conv4(4×4) → relu

→ fc5 → softmax-loss. We removed the softmax layer and

replaced the fc5 layer with qConv or the Stiefel layer in our

experiments. We trained the entire network from the very

same initialization point for all the studied geometries using

Eqn. (12). For this experiment, we report the accuracy of

a nearest neighborhood classifier after the embedding layer.

The classification accuracies of the vanilla Siamese network,

Siamese network equipped with qConv and Siamese network

with the Stiefel layer are 42.7%, 48.5% and 48.6%, respec-

tively, clearly demonstrating a huge improvements when the

proper geometry is used for training. Focusing on running

times, one epoch of training for convolutional, qConv and

Stiefel layers takes 143, 150 and 152 seconds, respectively

(The run times for all layers were measured using a GeForce

GTX TITAN-X GPU.)

FineGrained Image Classification

In this part, we assess and contrast our proposed meth-

ods against several state-of-the-art methods on two fine-

grained image datasets namely Caltech-UCSD Birds (CUB-

200-2011) [55], Stanford Cars dataset (CARS196) [23] and

Stanford Online Products (SOP) [40]. A brief overview of

the dataset is provided in the supplementary material. In our

evaluations, we have used the Normalized Mutual Informa-

tion (NMI) and Recall@K (R@K) metrics. The former is an

information theoretic measure, widely used to evaluate the

performance of a clustering techniques while the latter indi-

cates the fraction of queries for which there exists an image

of the same class with the first K positions of the retrieved

list. We compare our developments against the following

baseline and state-of-the-arts deep learning methods; which

can be broadly divided into four different categories: (1)

Structure based methods; which constraints the manifold

of the learnt embedding space. (a) Trip-SH [41] encourages

the closest (semi-hard) negative (x−) to be further away

from the positive (x+) for a given anchor (xa); (b) NMI-

based [45] that consists of a structured prediction loss to con-

strain the global structure of the embedding space in order to

alleviate isolated clusters; (c) DSC [28] which uses spectral

clustering concepts to construct the embedding space which

encourages separate but compact clusters and (d) Angu-

lar [58] loss which constrains the angular relationship at the

negative point of a triplet triangle. (2) Sampling based ap-

proaches; which aim to propose new and efficient sampling

based strategies for better mining of informative samples.

(a) Lifted-Struct [40] constrains a batch of triplets by sub-

sequently adding importance-sampled difficult negatives to

a training mini-batch; (b) Npairs [43] uses a novel loss that

needs twice the available 2B negative pairs with B denoting

the number of negative examples to form the triplets; and

(c) DWS [61] makes use of an efficient Distance Weighted

Sampling strategy to steadily mine informative examples,

thereby reducing noisy gradients during back-propagation.

(3) Statistical based approaches such as Histogram [53]

and Distribution [25] loss that aim to reduce the overlap

between the distributions of similarities (dissimilarities) be-

tween positive and negative pairs. (4) Generative modeling

based approaches such as DAML [8] and DVML [33]to ex-

plicitly model the intra-class variance and disentangle the

intra-class invariance.

Implementation Details

We follow the protocol considered in [28] and assess the

proposed geometries using the Inception-V1 model [48]. All

the images have been resized to 256×256 and are cropped at

224×224. The training images are augmented with random

cropping and are randomly flipped horizontally, where as

the test images are cropped from the center. Moreover, we

have used only a single crop per image for both training and

testing similar to [40]. To fine-tune the Inception model,

we first normalized its outputs to have unit norm followed

by adding an embedding layer per suggestions in [28] (the

3052

Table 3. NMI and Recall@K evaluation on CUB-200-2011 [55].
Method NMI R@1 R@2 R@4 R@8

Trip-SH [41] 55.4 42.6 54.9 66.4 77.2

Lifted-Struct [40] 56.5 43.6 56.6 68.6 79.6

Npairs [43] 57.2 45.4 58.4 69.5 79.5

NMI-based [45] 59.2 48.2 61.4 71.8 81.9

DSC (end-to-end/SC) [28] 58.1 49.8 62.6 73.6 82.8

Angular [58] 61.1 53.6 65.0 75.3 83.7

Distribution ∗ [25] 59.4 47.9 60.6 71.9 81.6

Histogram [53] - 52.8 64.4 74.7 83.9

DWS∗ [61] 61.3 52.4 65.1 75.1 83.6

DVML∗ [33] 61.4 52.7 64.9 75.5 84.3

DAML∗ [8] 60.8 51.5 64.7 75.2 83.5

Ours (Quotient) 62.5 52.2 64.0 75.7 83.3

Ours (Stiefel) 62.3 52.3 64.5 75.3 84.0

Table 4. NMI and Recall@K evaluation on CARS196 [23].
Method NMI R@1 R@2 R@4 R@8

Trip-SH [41] 53.4 51.5 63.8 73.5 82.4

Lifted-Struct [40] 56.9 53.0 65.7 76.0 84.3

Npairs [43] 57.8 53.9 66.8 77.8 86.4

NMI-based [45] 59.0 58.1 70.6 80.3 87.8

DSC (end-to-end/SC) [28] 58.0 59.4 71.3 80.6 88.3

Angular [58] 62.4 71.3 80.7 87.0 91.8

Distribution∗ [25] 61.6 64.4 75.4 83.6 89.5

Histogram∗ [53] - 66.2 77.2 85.0 90.8

DWS∗ [61] 62.1 70.3 78.2 86.9 90.7

DVML∗ [33] 62.7 71.6 79.7 87.8 91.1

DAML∗ [8] 63.1 72.5 82.1 88.5 92.9

Ours (Quotient) 63.5 71.9 81.5 87.9 92.5

Ours (Stiefel) 64.2 73.2 82.2 88.6 92.2

embedding layer is initialized using a classification loss).We

used a batch size of 64 samples and ensured that there were

at least 4 samples from each class in a batch. We used

RMSProp [14]optimizer to update the parameters of all the

layers using backpropagation. The learning rate for all the

datasets was fixed at 10−4 and decreased by a factor of 0.1
after every 25 epochs. The entire network was trained using

Eqn. (12); where τ is set to 0.5 for all the datasets. Several

recent studies including [40, 28] suggest that the Inception

network equipped with a metric loss is more or less robust

to the embedding dimensionality. Therefore we have fol-

lowed the experimental protocol of [28] and have fixed the

dimensionality of embedding layer to the number of train-

ing categories k for both the CUB-200-2011 and CARS916

datasets; and 512 for SOP dataset. In the evaluation phase,

we apply the standard KMeans algorithm with squared Eu-

clidean distance on the output representations and calculate

the NMI and R@K metrics.

Note: For a fair comparison, we have reported the results

of the aforementioned algorithms with triplet embedding

loss on the Inception network; even though [8, 61, 33] use a

combination of different loss functions to obtain improved

embedding space. Moreover, the algorithms marked as “∗”

were self-implemented as either the algorithms were not

evaluated on those datasets [25], or a different backbone net-

Table 5. NMI and Recall@K evaluation on SOP [40].

Method NMI R@1 R@10 R@100

Trip-SH [41] 89.5 66.7 82.4 73.5

Lifted-Struct [40] 88.7 62.5 80.8 91.9

Npairs [43] 89.4 66.4 83.2 93.0

NMI-based [45] 89.5 67.0 83.7 93.2

DSC (end-to-end/SC) [28] 89.4 67.6 83.7 93.3

Angular [58] 87.8 67.9 83.2 92.2

Distribution∗ [25] 88.9 63.5 81.3 91.3

Histogram [53] - 63.9 81.7 92.2

DWS∗ [61] 89.4 67.1 82.7 92.3

DVML∗ [33] 89.2 67.2 82.3 92.1

DAML∗ [8] 89.2 67.1 82.8 92.5

Ours (Quotient) 89.3 68.5 82.9 92.6

Ours (Stiefel) 89.9 69.2 83.1 92.7

work other than Inception was used [61], or the embedding

dimensionality was not same [8, 33].

Tables 3, 4 and 5 show the results of the quantitative

comparisons between our methods and other deep metric

learning techniques for the CUB-200-2011, CARS196 and

SOP datasets, respectively. Studying this table reveals that

the proposed geometries not only outperform the vanilla

SiNN [41] significantly but also comfortably surpass the

performance of the various state-of-the-art methods in all

the three datasets. In particular, recent methods such as

DWS [61], DAML [8] and DVML [33] make use of addi-

tional complex networks, sampling strategies or intricate

loss functions to obtain a discriminative embedding space

for fine-grained classification. However, we successfully

demonstrate that a deep network equipped with the proposed

geometrical configurations and trained using the standard

semi-hard triplet embedding outperforms the aforementioned

algorithms. This in-turn validates the importance of the pro-

posed configurations in training SiNN.

8. Conclusions and Future Work

In this paper, we focus on Siamese networks that realize

a non-linear embedding characterized by a positive semi-

definite matrix and showed how Riemannian geometry can

be used to take into account the somehow hidden invariance

property of the network. Specifically we have developed

a novel geometrical manifold, namely qConv; and used it

along with the standard Stiefel manifold to exploit the in-

variances in the siamese networks. Stiefel is slightly more

computationally expensive than qConv, although their empir-

ical results are quite similar. A future work can be to further

develop the associated geometry to handle non-symmetric

and indefinite cases. We note that this can be achieved for

example by removing the constraint that both legs of the

Siamese network should go through the same convolutional

layer. Another venue that goes beyond the current work is

to study the convergence of the proposed Riemannian SGD

algorithm with momentum.

3053

References

[1] P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Opti-

mization Algorithms on Matrix Manifolds. Princeton Univer-

sity Press, 2009. 1, 5

[2] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea

Vedaldi, and Philip HS Torr. Fully-Convolutional Siamese

Networks for Object Tracking. In ECCV, pages 850–865.

Springer, 2016. 1

[3] Silvere Bonnabel. Stochastic Gradient Descent on Rieman-

nian Manifolds. IEEE Transactions on Automatic Control,

58(9):2217–2229, 2013. 6

[4] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard

Säckinger, and Roopak Shah. Signature Verification using

a “Siamese” Time Delay Neural Network. In NIPS, pages

737–744, 1994. 1, 2, 3

[5] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a

Similarity Metric Discriminatively, with Application to Face

Verification. In CVPR, volume 1, pages 539–546, 2005. 1, 3

[6] Adam Coates, Andrew Y Ng, and Honglak Lee. An Analysis

of Single-Layer Networks in Unsupervised Feature Learning.

In Proc. Int. Conf. Artificial Intelligence & Statistics, 2011. 7

[7] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou.

Arcface: Additive Angular Margin Loss for Deep Face Recog-

nition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4690–4699, 2019. 3

[8] Yueqi Duan, Wenzhao Zheng, Xudong Lin, Jiwen Lu, and Jie

Zhou. Deep Adversarial Metric Learning. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2780–2789, 2018. 1, 7, 8

[9] Alan Edelman, Tomás A Arias, and Steven T Smith. The Ge-

ometry of Algorithms with Orthogonality Constraints. SIAM

journal on Matrix Analysis and Applications, 20(2):303–353,

1998. 5

[10] Pengfei Fang, Jieming Zhou, Soumava Kumar Roy, Lars Pe-

tersson, and Mehrtash Harandi. Bilinear Attention Networks

for Person Retrieval. In Proceedings of the IEEE International

Conference on Computer Vision, 2019. 1

[11] Gene H Golub and Charles F Van Loan. Matrix Computations.

The Johns Hopkins University Press, 4 edition, 2013. 5

[12] Albert Gordo, Jon Almazan, Jerome Revaud, and Diane Lar-

lus. End-to-End Learning of Deep Visual Representations for

Image Retrieval. Int. Journal of Computer Vision, 124(2):237–

254, 2017. 1

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep Residual Learning for Image Recognition. In CVPR,

pages 770–778, 2016. 2

[14] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neu-

ral Networks for Machine Learning Lecture 6a Overview of

Mini-Batch Gradient Descent. 8

[15] Elad Hoffer and Nir Ailon. Deep Metric Learning using

Triplet Network. In International Workshop on Similarity-

Based Pattern Recognition, pages 84–92. Springer, 2015. 1

[16] Shota Horiguchi, Daiki Ikami, and Kiyoharu Aizawa. Signifi-

cance of Softmax-based Features in Comparison to Distance

Metric Learning-based Features. IEEE transactions on pat-

tern analysis and machine intelligence, 2019. 3

[17] Junlin Hu, Jiwen Lu, and Yap-Peng Tan. Discriminative Deep

Metric Learning for Face Verification in the Wild. In CVPR,

pages 1875–1882, 2014. 1

[18] Chen Huang, Chen Change Loy, and Xiaoou Tang. Local

Similarity-Aware Deep Feature Embedding. In NIPS, pages

1262–1270, 2016. 3

[19] Zhiwu Huang, Jiqing Wu, and Luc Van Gool. Building Deep

Networks on Grassmann Manifolds. In Thirty-Second AAAI

Conference on Artificial Intelligence, 2018. 1

[20] M. Journée, F. Bach, P.-A. Absil, and R. Sepulchre. Low-Rank

Optimization on the Cone of Positive Semidefinite Matrices.

SIAM Journal on Optimization, 20(5):2327–2351, 2010. 2, 3

[21] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov.

Siamese Neural Networks for One-Shot Image Recognition.

In ICML Deep Learning Workshop, 2015. 1, 3

[22] Piotr Koniusz, Yusuf Tas, Hongguang Zhang, Mehrtash Ha-

randi, Fatih Porikli, and Rui Zhang. Museum Exhibit Identifi-

cation Challenge for the Supervised Domain Adaptation and

Beyond. In The European Conference on Computer Vision

(ECCV), 2018. 1

[23] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d

Object Representations for Fine-Grained Categorization. In

Proc. of the IEEE Int. Conf. on Computer Vision Workshops,

2013. 7, 8

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-

agenet Classification with Deep Convolutional Neural Net-

works. In NIPS, 2012. 2

[25] BG Kumar, Gustavo Carneiro, Ian Reid, et al. Learning Local

Image Descriptors with Deep Siamese and Triplet Convolu-

tional Networks by Minimising Global Loss Functions. In

CVPR, pages 5385–5394, 2016. 1, 7, 8

[26] Vijay BG Kumar, Ben Harwood, Gustavo Carneiro, Ian Reid,

and Tom Drummond. Smart Mining for Deep Metric Learn-

ing. arXiv preprint arXiv:1704.01285, 2017. 1, 3

[27] Marc T Law, Nicolas Thome, and Matthieu Cord. Learn-

ing a Distance Metric from Relative Comparisons Between

Quadruplets of Images. Int. Journal of Computer Vision,

121(1):65–94, 2017. 3

[28] Marc T Law, Raquel Urtasun, and Richard S Zemel. Deep

Spectral Clustering Learning. In ICML, pages 1985–1994,

2017. 1, 2, 3, 7, 8

[29] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-Based Learning Applied to Document

Recognition. Proceedings of the IEEE, 86(11):2278–2324,

1998. 6

[30] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-

Robert Müller. Efficient backprop. In Neural Networks:

Tricks of the Trade, pages 9–48. Springer, 2012. 2

[31] John M Lee. Introduction to Smooth Manifolds – Second

Edition. Springer, 2003. 4

[32] Tsung-Yi Lin, Yin Cui, Serge Belongie, and James Hays.

Learning Deep Representations for Ground-to-Aerial Geolo-

calization. In CVPR, pages 5007–5015, 2015. 1

[33] Xudong Lin, Yueqi Duan, Qiyuan Dong, Jiwen Lu, and Jie

Zhou. Deep Variational Metric Learning. In Proceedings of

the European Conference on Computer Vision (ECCV), pages

689–704, 2018. 1, 7, 8

3054

[34] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha

Raj, and Le Song. Sphereface: Deep Hypersphere Embedding

for Face Recognition. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 212–220,

2017. 3

[35] Wenjie Luo, Alexander G Schwing, and Raquel Urtasun. Ef-

ficient Deep Learning for Stereo Matching. In CVPR, pages

5695–5703, 2016. 1

[36] Laurens van der Maaten and Geoffrey Hinton. Visualizing

Data using t-SNE. Journal of Machine Learning Research,

9(Nov):2579–2605, 2008. 7

[37] Jonathan Masci, Michael M Bronstein, Alexander M Bron-

stein, and Jürgen Schmidhuber. Multimodal Similarity-

Preserving Hashing. IEEE Trans. on Pattern Analysis and

Machine Intelligence, 36(4):824–830, 2014. 1

[38] Gilles Meyer, Silvère Bonnabel, and Rodolphe Sepulchre.

Regression on Fixed-Rank Positive Semidefinite Matrices:

a Riemannian Approach. Journal of Machine Learning Re-

search, 12(Feb):593–625, 2011. 2

[39] B Mishra, G Meyer, S Bonnabel, and R Sepulchre. Fixed-

Rank Matrix Factorizations and Riemannian Low-Rank Opti-

mization. Computational Statistics, 29(3-4):591–621, 2014.

2, 3

[40] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio

Savarese. Deep Metric Learning via Lifted Structured Feature

Embedding. In CVPR, pages 4004–4012, 2016. 1, 2, 3, 7, 8

[41] Florian Schroff, Dmitry Kalenichenko, and James Philbin.

Facenet: A Unified Embedding for Face Recognition and

Clustering. In CVPR, pages 815–823, 2015. 1, 3, 6, 7, 8

[42] Edgar Simo-Serra, Eduard Trulls, Luis Ferraz, Iasonas Kokki-

nos, Pascal Fua, and Francesc Moreno-Noguer. Discrimina-

tive Learning of Deep Convolutional Feature Point Descrip-

tors. In ICCV, pages 118–126, 2015. 1

[43] Kihyuk Sohn. Improved Deep Metric Learning with Multi-

class N-pair Loss Objective. In NIPS, pages 1857–1865, 2016.

1, 2, 3, 7, 8

[44] Jeany Son, Mooyeol Baek, Minsu Cho, and Bohyung Han.

Multi-Object Tracking with Quadruplet Convolutional Neural

Networks. In CVPR, pages 5620–5629, 2017. 1

[45] Hyun Oh Song, Stefanie Jegelka, Vivek Rathod, and Kevin

Murphy. Deep Metric Learning via Facility Location. In

CVPR, 2017. 1, 2, 3, 7, 8

[46] Yi Sun, Yuheng Chen, Xiaogang Wang, and Xiaoou Tang.

Deep Learning Face Representation by Joint Identification-

Verification. In NIPS, pages 1988–1996, 2014. 3

[47] Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deep Learn-

ing Face Representation from Predicting 10,000 Classes. In

CVPR, pages 1891–1898, 2014. 1

[48] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going Deeper with

Convolutions. In CVPR, pages 1–9, 2015. 2, 7

[49] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior

Wolf. Deepface: Closing the Gap to Human-Level Perfor-

mance in Face Verification. In CVPR, pages 1701–1708, 2014.

1, 3

[50] Ran Tao, Efstratios Gavves, and Arnold WM Smeulders.

Siamese Instance Search for Tracking. In CVPR, pages 1420–

1429, 2016. 1

[51] Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun,

and Christoph Bregler. Efficient Object Localization using

Convolutional Networks. In CVPR, pages 648–656, 2015. 1

[52] Eleni Triantafillou, Richard Zemel, and Raquel Urtasun. Few-

Shot Learning Through an Information Retrieval Lens. In

NIPS, 2017. 1, 3

[53] Evgeniya Ustinova and Victor Lempitsky. Learning Deep

Embeddings with Histogram Loss. In NIPS, pages 4170–

4178, 2016. 1, 3, 7, 8

[54] Rahul Rama Varior, Mrinal Haloi, and Gang Wang. Gated

Siamese Convolutional Neural Network Architecture for Hu-

man Re-Identification. In ECCV, pages 791–808, 2016. 1

[55] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona,

and Serge Belongie. The Caltech-UCSD Birds-200-2011

Dataset. Technical report, California Institute of Technology,

2011. 7, 8

[56] Feng Wang, Xiang Xiang, Jian Cheng, and Alan Loddon

Yuille. Normface: L2 Hypersphere Embedding for Face

Verification. In Proceedings of the 25th ACM international

conference on Multimedia, pages 1041–1049. ACM, 2017. 3

[57] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong,

Jingchao Zhou, Zhifeng Li, and Wei Liu. Cosface: Large

Margin Cosine Loss for Deep Face Recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 5265–5274, 2018. 3

[58] Jian Wang, Feng Zhou, Shilei Wen, Xiao Liu, and Yuanqing

Lin. Deep Metric Learning with Angular Loss. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 2593–2601, 2017. 7, 8

[59] Kilian Q Weinberger and Lawrence K Saul. Distance Metric

Learning for Large Margin Nearest Neighbor Classification.

Journal of Machine Learning Research, 10(Feb):207–244,

2009. 3

[60] Zaiwen Wen and Wotao Yin. A Feasible Method for Op-

timization with Orthogonality Constraints. Mathematical

Programming, 142(1):397–434, 2013. 5

[61] Chao-Yuan Wu, R Manmatha, Alexander J Smola, and Philipp

Krähenbühl. Sampling Matters in Deep Embedding Learning.

In ICCV, 2017. 1, 3, 7, 8

[62] Yongqin Xian, Christoph H Lampert, Bernt Schiele, and

Zeynep Akata. Zero-Shot Learning-a Comprehensive Evalua-

tion of the Good, the Bad and the Ugly. IEEE transactions

on pattern analysis and machine intelligence, 2018. 3

[63] Tsun-Yi Yang, Jo-Han Hsu, Yen-Yu Lin, and Yung-Yu

Chuang. DeepCD: Learning Deep Complementary Descrip-

tors for Patch Representations. In CVPR, pages 3314–3322,

2017. 1

[64] Sergey Zagoruyko and Nikos Komodakis. Learning to Com-

pare Image Patches via Convolutional Neural Networks. In

CVPR, pages 4353–4361, 2015. 1

[65] Hongguang Zhang, Jing Zhang, and Piotr Koniusz. Few-

Shot Learning via Saliency-Guided Hallucination of Samples.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2019. 1

3055

