
On the Global Optima of Kernelized Adversarial Representation Learning

Bashir Sadeghi

Michigan State University

sadeghib@msu.edu

Runyi Yu

Eastern Mediterranean University

yu@ieee.org

Vishnu Boddeti

Michigan State University

vishnu@msu.edu

Abstract

Adversarial representation learning is a promising

paradigm for obtaining data representations that are invari-

ant to certain sensitive attributes while retaining the infor-

mation necessary for predicting target attributes. Existing

approaches solve this problem through iterative adversar-

ial minimax optimization and lack theoretical guarantees.

In this paper, we first study the “linear” form of this prob-

lem i.e., the setting where all the players are linear func-

tions. We show that the resulting optimization problem is

both non-convex and non-differentiable. We obtain an ex-

act closed-form expression for its global optima through

spectral learning and provide performance guarantees in

terms of analytical bounds on the achievable utility and

invariance. We then extend this solution and analysis to

non-linear functions through kernel representation. Nu-

merical experiments on UCI, Extended Yale B and CIFAR-

100 datasets indicate that, (a) practically, our solution is

ideal for “imparting” provable invariance to any biased

pre-trained data representation, and (b) the global optima

of the “kernel” form can provide a comparable trade-off

between utility and invariance in comparison to iterative

minimax optimization of existing deep neural network based

approaches, but with provable guarantees.

1. Introduction

Adversarial representation learning (ARL) is a promis-

ing framework for training image representation models

that can control the information encapsulated within it.

ARL is practically employed for learning representations

for a variety of applications, including, unsupervised do-

main adaptation of images [7], censoring sensitive infor-

mation from images [6], learning fair and unbiased repre-

sentations [17, 18], learning representations that are con-

trollably invariant to sensitive attributes [26] and mitigating

unintended information leakage [23], amongst others.

At the core of the ARL formulation is the idea of jointly

optimizing three entities: (i) An encoder E that seeks to

distill the information from input data and retains the in-

x E z

T ŷ

A ŝ

Figure 1: Adversarial Representation Learning consists

of three entities, an encoder E that obtains a compact rep-

resentation z of input data x, a predictor T that predicts

a desired target attribute y and an adversary that seeks to

extract a sensitive attribute s, both from the embedding z.

formation relevant to a target task while intentionally and

permanently eliminating the information corresponding to a

sensitive attribute, (ii) A predictor T that seeks to extract a

desired target attribute, and (iii) A proxy adversary A, play-

ing the role of an unknown adversary, that seeks to extract a

known sensitive attribute. Figure 1 shows a pictorial illus-

tration of the ARL problem.

Typical instantiations of ARL represent these entities

through non-linear functions in the form of deep neural

networks (DNNs) and formulate parameter learning as a

minimax optimization problem. Practically, optimization is

performed through simultaneous gradient descent, wherein,

small gradient steps are taken simultaneously in the param-

eter space of the encoder, predictor and proxy adversary.

The solutions thus obtained have been effective in learning

data representations with controlled invariance across ap-

plications such as image classification [23], multi-lingual

machine translation [26] and domain adaptation [7].

Despite its practical promise, the aforementioned ARL

setup suffers from a number of drawbacks:

– Representation learning under adversarial settings is chal-

lenging in its own right. The minimax formulation of

the problem leads to an optimization problem that is non-

convex in the parameter space, both due to the adversar-

ial loss function as well as due to the non-linear nature of

modern DNNs. As we show in this paper, even for simple

instances of ARL where each entity is characterized by a
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x′ F (x′;ΘF )
x ∈ R

d

φ(x) z = ΘEφ(x)

Θyz+by ŷ

Θsz+ bs ŝ

Figure 2: Overview: Illustration of adversarial representa-

tion learning for imparting invariance to a fixed biased pre-

trained image representation x = F (x′;ΘF ). An encoder

E, in the form of a kernel mapping, produces a new repre-

sentation z. A target predictor and an adversary, in the form

of linear regressors, operate on this new representation. We

theoretically analyze this ARL setup to obtain a closed form

solution for the globally optimal parameters of the encoder

ΘE . Provable bounds on the trade-off between the utility

and fairness of the representation are also derived.

linear function, the problem remains non-convex in the pa-

rameter space. Similar observations [22] have been made

in a different but related context of adversarial learning in

generative adversarial networks (GANs) [11].

– Current paradigm of simultaneous gradient descent to

solve the ARL problem provides no provable guarantees

while suffering from instability and poor convergence [23,

18]. Again, similar observations [19, 22] have been made in

the context of GANs, demonstrating the difficulty posed by

the minimax formulation of the optimization and exposing

the limitations of standard simultaneous optimization.

– In applications of ARL related to fairness, accountabil-

ity and transparency of machine learning models, it is crit-

ically important to be able to provide performance bounds

in addition to empirical evidence of their efficacy. A major

shortcoming of existing works is the difficulty and lack of

performance analysis and provable guarantees of unfairness

or information leakage.

In this paper, we take a step back and analytically study

the simplest version of the ARL problem from an optimiza-

tion perspective with the goal of addressing the aforemen-

tioned limitations. Doing so enables us to delineate the con-

tributions of the expressivity of the entities in ARL (i.e.,

shallow vs deep models) and the challenges of optimizing

the parameters (i.e., local optima through simultaneous gra-

dient descent vs global optima).

Contributions: We first consider the “linear” form of ARL,

where the encoder is a linear transformation, the target pre-

dictor is a linear regressor and proxy adversary is a lin-

ear regressor. We show that this Linear-ARL leads to an

optimization problem that is both non-convex and non-

differentiable. Despite this fact, by reducing it into a set

of trace problems on a Stiefel manifold we obtain an exact

closed form solution for the global optima. As part of our

solution, we also determine optimal dimensionality of the

embedding space. We then obtain analytical bounds (lower

and upper) on the target and adversary objectives and pre-

scribe a procedure to explicitly control the maximal leakage

of sensitive information. Finally, we extend the Linear-ARL

formulation to allow non-linear functions through a kernel

extension while still enjoying an exact closed-form solution

for the global optima. Numerical experiments on multiple

datasets, both small and large scale, indicate that the global

optima solution for the linear and kernel formulations of

ARL are competitive and sometimes even outperform DNN

based ARL trained through simultaneous stochastic gradi-

ent descent. Practically, we also demonstrate the utility of

Linear-ARL and Kernel-ARL for “imparting” provable in-

variance to any biased pre-trained data representation. Fig-

ure 2 provides an overview of our contributions. We refer

to our proposed algorithm for obtaining the global optima

as Spectral-ARL and abbreviate it as SARL.

Notation: Scalars are denoted by regular lower case or

Greek letters, e.g. n, λ. Vectors are denoted by boldface

lowercase letters, e.g. x, y. Matrices are uppercase bold-

face letters, e.g. X. A k × k identity matrix is denoted by

Ik or I. Centered (mean subtracted w.r.t. columns) data

matrix is indicated by “˜”, e.g. X̃. Assume that X contains

n columns, then X̃ = XD, where D = In − 1

n
11T and

1 denotes the vector of ones with length of n. Given ma-

trix M ∈ R
m×m, we use Tr[M] to denote its trace (i.e.,

the sum of its diagonal elements); its Frobenius norm is de-

noted by ‖M‖F , which is related to the trace as ‖M‖2F=
Tr[MMT ] = Tr[MTM]. The subspace spanned by the

columns of M is denoted by R(M) or simply M (in cal-

ligraphy); the orthogonal complement of M is denoted by

M⊥. The null space of M is denoted by N (M). The or-

thogonal projection onto M is PM = M(MTM)†MT ,

where superscript “†” indicates the Moore-Penrose pseudo

inverse [16].

Let x ∈ R
d be a random vector. We denote its expec-

tation by E[x], and its covariance matrix by Cx ∈ R
d×d

as Cx = E
[

(x − E[x])(x − E[x])T
]

. Similarly, the cross-

covariance Cxy ∈ R
d×r between x ∈ R

d and y ∈ R
r is

denoted as Cxy = E
[

(x− E[x])(y− E[y])T
]

. For a d× d

positive definite matrix C ≻ 0, its Cholesky factorization

results in a full rank matrix Q ∈ R
d×d such that

C = QTQ (1)

2. Prior Work

Adversarial Representation Learning: In the context of

image classification, adversarial learning has been utilized

to obtain representations that are invariant across domains

[8, 9, 25], thereby enabling classifiers to be trained on a

source domain and utilized on a target domain. In the con-

text of learning fair and unbiased representations a number
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of approaches [6, 28, 3, 26, 20, 23, 1] have used and ar-

gued [18] for explicit adversarial networks as a proxy to

mimic an unknown adversary seeking to extract the sensi-

tive attributes from the encoded data. With the exception

of [23] all the other methods are set up as a minimax game

between the encoder, a target task and the adversary. The

encoder is setup to achieve fairness by maximizing the loss

of the adversary i.e. minimizing negative log-likelihood of

sensitive variables as measured by the adversary. Roy et

al. [23] identify and address the instability in the optimiza-

tion in the zero-sum minimax formulation of ARL and pro-

pose an alternate non-zero sum solution, demonstrating sig-

nificantly improved empirical performance. All of them use

deep neural networks to represent the ARL entities, opti-

mize their parameters through simultaneous stochastic gra-

dient descent and rely on empirical validation. However,

none of them seek to study the nature of the ARL formula-

tion itself i.e., in terms of decoupling the role of the expres-

siveness of the models and convergence/stability properties

of the optimization tools for learning said models. This pa-

per seeks to bridge this gap by studying simpler forms of

ARL from a global optimization perspective.

Privacy, Fairness and Invariance: Concurrent work on

learning fair or invariant representations of data included an

encoder and a target predictor but did not involve an ex-

plicit adversary. The role of the adversary is played by an

explicit hand designed objective that, typically, competes

with that of the target task. The concept of learning fair

representations was first introduced by Zemel et al. [27],

where the goal was to learn a representation of data by “fair

clustering” while maintaining the discriminative features of

the prediction task. Building upon this work many tech-

niques have been proposed to learn an unbiased representa-

tion of data while retaining its effectiveness for a prediction

task, including the Variational Fair Autoencoder [17] and

the more recent information bottleneck based objective by

Moyer et al. [21]. As with the ARL methods above, these

approaches rely on empirical validation without providing

any provable guarantees or studying their non-convex ob-

jectives from an optimization perspective. The competing

nature of the objectives considered in this body of work

shares resemblance to the non-convex objectives that we

study in this paper. While it is not the focus of this paper,

the analysis we perform here could potentially be useful for

these methods.

Optimization Theory for Adversarial Learning: The

non-convex nature of the ARL formulation poses unique

challenges from an optimization perspective. Practically,

the parameters of the models in ARL are optimized through

stochastic gradient descent, either jointly [6, 19] or alterna-

tively [8], with the former being a generalization of gradient

descent. While the convergence properties of gradient de-

scent and its variants are well understood, there is relatively

little work on the convergence and stability of simultane-

ous gradient descent in adversarial minimax problems. Re-

cently, Mescheder et al. [19] and Nagarajan et al. [22] both

leveraged tools from non-linear systems theory [12] to an-

alyze the convergence properties of simultaneous gradient

descent in the context of GANs around a given equilibrium.

They show that without the introduction of additional reg-

ularization terms to the objective of the zero-sum game, si-

multaneous gradient descent does not converge. However,

their analysis is restricted to the two player GAN setting and

is not concerned with its global optima.

In the context of fair representation learning, Komiyama

et al. [15] consider the problem of enforcing fairness con-

straints in linear regression and provide a solution to ob-

tain the global optima of the resulting non-convex prob-

lem. While we derive inspiration from this work, our prob-

lem and technical solution are both notably different from

theirs. Their setting does not involve an explicit adversary,

nor does it involve an encoder that is tasked with disentan-

gling and discarding the sensitive information in the data.

3. Adversarial Representation Learning

Let the data matrix X = [x1, . . . ,xn] ∈ R
d×n be n re-

alizations of d-dimensional data x ∈ R
d. Assume that x

is associated with a sensitive attribute s ∈ R
q and a target

attribute y ∈ R
p. We denote n realizations of sensitive and

target attributes as S = [s1, · · · , sn] and Y = [y1, · · · ,yn]
respectively. Treating the attributes as vectors enables us to

consider both multi-class classification and regression un-

der the same setup.

3.1. Problem Setting

The adversarial representation learning problem is for-

mulated with the goal of learning parameters of an embed-

ding function E(·;ΘE) that maps x to z with two objec-

tives: (i) aiding a target predictor T (·;Θy) to accurately

infer the target attribute y from z, and (ii) preventing an

adversary A(·;Θs) from inferring the sensitive attribute s

from z. The ARL problem can be formulated as,

min
ΘE

min
Θy

Ly (T (E(x;ΘE);Θy),y)

s.t. min
Θs

Ls (A(E(x;ΘE);Θs), s) ≥ α
(2)

where Ly and Ls are the loss functions (averaged over train-

ing dataset) for the target predictor and the adversary, re-

spectively, α ∈ [0,∞) is a user defined value that deter-

mines the minimum tolerable loss α for the adversary on the

sensitive attribute, and the minimization in the constraint is

equivalent to the encoder operating against an optimal ad-

versary. Existing instances of this problem adopt deep neu-

ral networks to represent E, T and A and learn their respec-

tive parameters {ΘE ,Θy,Θs} through simultaneous SGD.
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3.2. The Linear Case

We first consider the simplest form of the ARL problem

and analyze it from an optimization perspective. We model

both the adversary and the target predictors as linear regres-

sors,

ŷ = Θyz+ by, ŝ = Θsz+ bs (3)

where z is an encoded version of x, and ŷ and ŝ are the pre-

dictions corresponding to the target and sensitive attributes.

We also model the encoder through a linear mapping,

ΘE ∈ R
r×d : x 7→ z = ΘEx (4)

where r < d1 is the dimensionality of the projected space.

While existing DNN based solutions select r on an ad-

hoc basis, our approach for this problem determines r as

part of our solution to the ARL problem. For both adver-

sary and target predictors, we adopt the mean squared error

(MSE) to assess the quality of their respective predictions

i.e., Ly(y, ŷ) = E[‖y − ŷ‖2] and Ls(s, ŝ) = E[‖s− ŝ‖2].

3.2.1 Optimization Problem

For any given encoder ΘE the following Lemma2 gives the

minimum MSE for a linear regressor in terms of covariance

matrices and ΘE . The following Lemma assumes that x is

zero-mean and the covariance matrix Cx is positive definite.

These assumptions are not restrictive since we can always

remove the mean and dependent features from x.

Lemma 1. Let x and t be two random vectors with E[x] =
0, E[t] = b, and Cx ≻ 0. Consider a linear regressor,

t̂ = Wz + b, where W ∈ R
m×r is the parameter matrix,

and z ∈ R
r is an encoded version of x for a given ΘE:

x 7→ z = ΘEx, ΘE ∈ R
r×d. The minimum MSE that

can be achieved by designing W is,

min
W

E[‖t− t̂‖2] = Tr
[

Ct

]

−
∥

∥PMQ−T
x Cxt

∥

∥

2

F

where M = QxΘ
T
E ∈ R

d×r, and Qx ∈ R
d×d is a

Cholesky factor of Cx as shown in (1).

Applying this result to the target and adversary regres-

sors, we obtain their minimum MSEs,

Jy(ΘE) = min
Θy

Ly (T (E(x;ΘE);Θy),y)

= Tr
[

Cy

]

−
∥

∥PMQ−T
x Cxy

∥

∥

2

F
(5)

Js(ΘE) = min
Θs

Ls (A(E(x;ΘE);Θs), s)

= Tr
[

Cs

]

−
∥

∥PMQ−T
x Cxs

∥

∥

2

F
(6)

1When r is equal to d, the encoder will be unable to guard against the

adversary who can simply learn to invert ΘE .
2We defer the proofs of all lemmas and theorems to the supplementary.

Given the encoder, Jy(ΘE) is related to the performance

of the target predictor; whereas Js(ΘE) corresponds to the

amount of sensitive information that an adversary is able to

leak. Note that the linear model for T and A enables us

to obtain their respective optimal solutions for a given en-

coder ΘE . On the other hand, when T and A are modeled

as DNNs, doing the same is analytically infeasible and po-

tentially impractical.

The orthogonal projector PM in Lemma 1 is a func-

tion of two factors, a data dependent term Qx and the en-

coder parameters ΘE . While the former is fixed for a given

dataset, the latter is our object of interest. Pursuantly, we

decompose PM in order to separably characterize the effect

of these two factors. Let the columns of Lx ∈ R
d×d be an

orthonormal basis for the column space of Qx. Due to the

bijection GE = L−1
x QxΘ

T
E ⇔ ΘE = GT

EL
T
xQ

−T
x from

LxGE = QxΘ
T
E , determining the encoder parameters ΘE

is equivalent to determining GE . The projector PM can

now be expressed in terms of PG , which is only dependent

on the free parameter GE .

PM = M
(

MTM
)†
MT = LxPGL

T
x (7)

where we used the equality M = QxΘ
T
E and the fact that

LT
xLx = I.

Now, we turn back to the ARL setup and see how the

above decomposition can be leveraged. The optimization

problem in (2) reduces to,

min
GE

Jy(GE)

s.t. Js(GE) ≥ α
(8)

where GE has replaced ΘE in the minimum MSE measures

of (5) and (6).

Before solving this optimization problem we will first

interpret it geometrically. Consider a simple example where

x is a white random vector i.e., Cx = I. Under this setting,

Qx = Lx = I and GE = ΘT
E . As a result, the optimization

problem in (8) can alternatively be solved in terms of GE =

ΘT
E as Jy(GE) = Tr

[

Cy

]

−
∥

∥PGCxy

∥

∥

2

F
and Js(GE) =

Tr
[

Cs

]

−
∥

∥PGCxs

∥

∥

2

F
.

The constraint Js(GE) ≥ α implies
∥

∥PGCxs

∥

∥

2

F
≤

(

Tr
[

Cs

]

− α
)

which is geometrically equivalent to the

subspace G being outside (or tangent to) the cone around

Cxs. Similarly, minimizing Jy(GE) implies maximizing
∥

∥PGCxy

∥

∥

2

F
, which in turn is equivalent to minimizing the

angle between the subspace G and the vector Cxy . There-

fore, the global optima of (8) is any hyper plane G which is

outside the cone around Cxs while subtending the smallest

angle to Cxy . An illustration of this observation is shown

in Figure 3 for d = 3, r = 2 and p = q = 1.

Constrained optimization problems such as (8) are com-

monly solved through their respective unconstrained La-
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Figure 3: Geometric Interpretation: An illustration of a

three-dimensional input space x and one-dimensional target

and adversary regressors. Therefore, both Cxs and Cxy are

one-dimensional. We locate the y-axis in the same direction

of Cxs. The feasible space for the solution GE = ΘT
E im-

posed by the constraint Js(ΘE) ≥ α corresponds to the

region outside the cone (specified by Cs and α) around

Cxs. The non-convexity of the problem stems from the non-

convexity of this feasible set. The objective min Jy(ΘE)
corresponds to minimizing the angle between the line Cxy

and the plane G. When Cxy is outside the cone, the line

Cxy itself or any plane that contains the line Cxy and does

not intersect with the cone, is a valid solution. When Cxy

is inside the cone, the solution is either a line or, as we il-

lustrate, a tangent hyperplane to the cone that is closest to

Cxy . The non-differentiability stems from the fact that the

solution can either be a plane or a line.

grangian [2] formulations as shown below,

min
GE∈Rd×r

{

(1− λ)Jy(GE)− (λ)Js(GE)
}

(9)

for some parameter 0 ≤ λ ≤ 1. Such an approach affords

two main advantages and one disadvantage; (a) A direct and

closed-form solution can be obtained. (b) Framing (9) in

terms of λ and (1 − λ) allows explicit control between the

two extremes of no privacy (λ = 0) and no target (λ =
1). As a consequence, it can be shown that for every λ ∈
[0, 1] ∃ α ∈ [αmin, αmax] (see supplementary for proof). In

practice, given a user specified value of αmin ≤ αtol ≤
αmax , we can solve (8) by iterating over λ ∈ [0, 1] until the

solution of (9) yields the same specified αtol. (3) The vice-

versa on the other hand does not necessarily hold i.e., for

a given tolerable loss α there may not be a corresponding

λ ∈ [0, 1]. This is the theoretical limitation3 of solving

Lagrangian problem instead of the constrained problem.

Before we obtain the solution to the Lagrangian formu-

lation (9), we characterize the nature of the optimization

3Practically, as we show in the supplementary, all values of α ∈

[αmin, αmax] appear to be reachable as we sweep through λ ∈ [0, 1].

problem in the following theorem.

Theorem 2. As a function of GE ∈ R
d×r, the objective

function in (9) is neither convex nor differentiable.

3.2.2 Learning

Despite the difficulty associated with the objective in (9),

we derive a closed-form solution for its global optima. Our

key insight lies in partitioning the search space R
d×r based

on the rank of the matrix GE . For a given rank i, let Si be

the set containing all matrices GE of rank i,

Si =
{

GE ∈ R
d×r

∣

∣ rank(GE) = i
}

, i = 0, 1, · · · , r

Obviously,
⋃r

i=0
Si = R

d×r. As a result, the optimization

problem in (9) can be solved by considering r minimization

problems, one for each possible rank of GE :

min
i∈{1,...,r}

{

min
GE∈Si

(1− λ)Jy(GE)− (λ)Js(GE)
}

(10)

We observe from (5), (6) and (7), that the optimization

problem in (9) is dependent only on a subspace G. As such,

the solution GE is not unique as many different matrices

can span the same subspace. Therefore, it is sufficient to

solve for any GE that spans the optimal subspace G. With-

out loss of generality we solve for an orthonormal basis

spanning the optimal subspace G as our desired solution by

constraining GE ∈ R
d×i to be an orthonormal matrix i.e.,

GT
EGE = Ii where i is the dimensionality of G. Ignoring

the constant terms in Jy and Js, for each i = 1, . . . , r, the

minimization problem over Si in (10) reduces to,

min
GT

E
GE=Ii

Jλ(GE) (11)

where

Jλ(GE) = λ‖LxGEG
T
EL

T
xQ

−T
x Cxs‖

2

F

− (1− λ)‖LxGEG
T
EL

T
xQ

−T
x Cxy‖

2

F(12)

From basic properties of trace, we have, Jλ(GE) =
Tr

[

GT
EBGE

]

where B ∈ R
d×d is a symmetric matrix:

B = LT
xQ

−T
x

(

λCT
sxCsx − (1− λ)CT

yxCyx

)

Q−1

x Lx (13)

The optimization problem in (11) is equivalent to trace min-

imization on a Stiefel manifold which has closed-form so-

lution(s) (see [14] and [5]).

In view of the above discussion the solution to the opti-

mization problem in (9) or equivalently (10) can be stated

in the next theorem.

Theorem 3. Assume that the number of negative eigenval-

ues (β) of B in (13) is j. Denote γ = min{r, j}. Then, the

minimum value in (10) is given as,

β1 + β2 + · · ·+ βγ (14)
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where β1 ≤ β2 ≤ . . . ≤ βγ < 0 are the γ least eigenvalues

of B. And the minimum can be attained by GE = V, where

the columns of V are eigenvectors corresponding to all the

γ negative eigenvalues of B.

Note that, including the eigenvectors corresponding to

zero eigenvalues of B into our solution GE in Theorem 3

does not change the minimum value in (14). But, consider-

ing only negative eigenvectors results in GE with the least

rank and thereby an encoder that is more robust to perturba-

tions. Once GE is constructed, we can obtain our desired

encoder as, ΘE = GT
EL

T
xQ

−T
x . Recall that the solution in

Theorem 3 is under the assumption that the covariance Cx

is a full-rank matrix. In the supplementary we develop a

solution for the more practical and general case where em-

pirical moments are used instead.

3.3. Non­Linear Extension Through Kernelization

We extend the “linear” version of the ARL problem stud-

ied thus far to a “non-linear” version through kernelization.

We model the encoder in the ARL problem as a linear func-

tion over a non-linearly mapped function of inputs as illus-

trated in Figure 2. Let the data matrix X be mapped non-

linearly by a possibly unknown and infinite dimensional

function φx(·) to Φx. Let the corresponding reproducing

kernel function be kx(·, ·). The centered kernel matrix can

be obtained as,

K̃x = Φ̃T
x Φ̃x = DTΦT

xΦxD = DTKxD (15)

where Kx is the kernel matrix on the original data X.

If the co-domain of φx(·) is infinite dimensional (e.g.,

RBF kernel), then the encoder in (4) would be also be in-

finite dimensional i.e., ΘE ∈ R
r×∞, which is infeasible

to learn directly. However, the representer theorem [24] al-

lows us to construct the encoder as a linear function of Φ̃T ,

i.e, ΘE = ΛΦ̃T
x = ΛDTΦT

x . Hence, a data sample x can

be mapped through the “kernel trick” as,

ΘEφx(x) = ΛDTΦT
xφx(x)

= ΛDT [kx(x1,x), · · · , kx(xn,x)]
T .

Hence, designing ΘE is equivalent to designing Λ ∈
R

r×n. The Lagrangian formulation of this Kernel-ARL

setup and its solution shares the same form as that of the

linear case (9). The objective function remains non-convex

and non-differentiable, while the matrix B is now depen-

dent on the kernel matrix Kx as opposed to the covariance

matrix Cx (see supplementary).

B = LT
x

(

λ S̃T S̃− (1− λ) ỸT Ỹ
)

Lx (16)

where the columns of Lx are the orthonormal basis for K̃x.

Once GE is obtained through the eigendecomposition of B,

we can find Λ as Λ = GT
EL

T
x K̃

†
x. This non-linear exten-

sion in the form of kernelization serves to study the ARL

problem under a setting where the encoder possess greater

representational capacity while still being able to obtain the

global optima and bounds on objectives of the target pre-

dictor and the adversary as we show next. Algorithm 1 in

the supplementary provides a detailed procedure for solving

both the Linear-ARL and Kernel-ARL formulations.

4. Theoretical Properties

In this section we determine the minimum and maxi-

mum achievable objective values for the target predictor

and adversary. We start by noting that min Jy(ΘE) and

max Js(ΘE) are obtained at λ = 0, i.e., when the encoder

is trained without the adversary. Similarly, max Jy(ΘE)
and min Js(ΘE) occurs at λ = 1, i.e, when the encoder is

trained without the target.

Lemma 4. Let the columns of Lx be the orthonormal basis

for K̃x (in linear case K̃x = X̃T X̃). Further, assume that

the columns of Vs are the singular vectors corresponding to

zero singular values of S̃Lx and the columns of Vy are the

singular vectors corresponding to non-zero singular values

of ỸLx. Then, the MSE for the adversary and the target

are bounded on both sides i.e., αmin ≤ Js ≤ αmax and

γmin ≤ Jy ≤ γmax:

γmin =
1

n

∥

∥ỸT
∥

∥

2

F
−

1

n
‖ỸLx‖

2

F

γmax =
1

n

∥

∥ỸT
∥

∥

2

F
−

1

n

∥

∥ỸLxVs

∥

∥

2

F

αmin =
1

n

∥

∥S̃T
∥

∥

2

F
−

1

n

∥

∥S̃LxVy

∥

∥

2

F

αmax =
1

n

∥

∥S̃T
∥

∥

2

F

5. Numerical Experiments

We evaluate the efficacy of the proposed Spectral-ARL

(SARL) algorithm in finding the global optima, and com-

pare it with other ARL baselines that are based on the stan-

dard simultaneous SGD optimization (henceforth referred

to as SSGD). In all experiments we refer to our solution for

“linear” ARL as Linear-SARL and the solution to the “ker-

nel” version of the encoder with linear classifiers for the

predictor and adversary as Kernel-SARL.

5.1. Mixture of Four Gaussians

We first consider a simple example in order to visu-

alize and compare the learned embeddings from different

ARL solutions. We consider a three-dimensional problem

where each data sample consists of two attributes, color and

shape. Specifically, the input data X is generated from a

mixture of four different Gaussian distributions correspond-

ing to different possible combinations of the attributes i.e.,
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Figure 4: Mixture of Gaussians: (a) Data from the four Gaussian distributions with two attributes, shape and color. (b)-(e)

Visualization of the embedding after linear projection for different values of λ trading-off the relative emphasis on the target

(shape) and sensitive attributes (color). At λ = 0 the weight on the adversary is 0, so color is still separable. As the value of

λ increases, we observe that the colors are less and less separable.

{©,©,×,×} with means at µ1 = (1, 1, 0), µ2 = (2, 2, 0),
µ3 = (2, 2.5, 0), µ4 = (2.5, 3, 0) and identical covariance

matrices Σ = diag
(

0.32, 0.32, 0.32
)

. The shape attribute is

our target while color is the sensitive attribute. The goal of

the ARL problem is to learn a linear encoder that projects

the data such that it remains separable with respect to the

shape and non-separable with respect to the color attribute.
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Figure 5: Pareto front of target predictor and adversary.

We sample 4000 points to learn linear and non-linear

(degree five polynomial kernel) encoders across λ ∈ [0, 1].
To train the encoder, the one-hot encoding of target and

sensitive labels are treated as the regression targets. Then,

we freeze the encoder and train logistic regressors for the

adversary and target task for each λ. We evaluate their

classification performance on a separate set of 1000 sam-

ples. The resulting Pareto fronts of the target and adver-

sary performance are shown in Figure 5a. We make the

following observations, (1) As expected, the accuracy of

both target task and adversary decline as λ increases. (2)

For λ = 1, all methods achieve an accuracy of 50% for

the adversary which indicates perfect hiding of sensitive at-

tribute via our encoding, (3) At small values of λ the ob-

jective of Linear-ARL is close to being convex, hence the

similarity in the Pareto fronts of Linear-SARL and SSGD in

that region. However, everywhere else due to the iterative

nature of SSGD, it is unable to find the global solution and

achieve the same trade-off as Linear-SARL. (4) The non-

linear encoder in the Kernel-SARL solution significantly

outperforms both Linear-SARL and SSGD. Figure 4 illus-

trates the setup and learned embedding space z for different

trade-offs between the target and adversary objectives.

5.2. Fair Classification

We consider the task of learning representations that are

invariant to a sensitive attribute on two datasets, Adult and

German, from the UCI ML-repository [4]. For compari-

son, apart from the raw features X, we consider several

baselines that use DNNs and trained through simultaneous

SGD; LFR [27], VAE [13], VFAE [17], ML-ARL [26] and

MaxEnt-ARL [23].

The Adult dataset contains 14 attributes. There are

30, 163 and 15, 060 instances in the training and test sets,

respectively. The target task is binary classification of an-

nual income i.e., more or less than 50K and the sensitive

attribute is gender. Similarly, the German dataset contains

1000 instances of individuals with 20 different attributes.

The target is to classify the credit of individuals as good or

bad with the sensitive attribute being age.

Table 1: Fair Classification Performance (in %)
Adult Dataset German Dataset

Method Target Sensitive ∆∗ Target Sensitive ∆∗

(income) (gender) (credit) (age)

Raw Data 85.0 85.0 17.6 80.0 87.0 6.0

LFR [27] 82.3 67.0 0.4 72.3 80.5 0.5

VAE [13] 81.9 66.0 1.4 72.5 79.5 1.5

VFAE [17] 81.3 67.0 0.4 72.7 79.7 1.3

ML-ARL [26] 84.4 67.7 0.3 74.4 80.2 0.8

MaxEnt-ARL [23] 84.6 65.5 1.9 72.5 80.0 1.0

Linear-SARL 84.1 67.4 0.0 76.3 80.9 0.1

Kernel-SARL 84.1 67.4 0.0 76.3 80.9 0.1
∗ Absolute difference between adversary accuracy and random guess

We learn encoders on the training set, after which, fol-

lowing the baselines, we freeze the encoder and train the

target (logistic regression) and adversary (2 layer network

with 64 units) classifiers on the training set. Table 1 shows

the performance of target and adversary on both datasets.

Both Linear-SARL and Kernel-SARL outperform all DNN
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based baselines. For either of these tasks, the Kernel-SARL

does not afford any additional benefit over Linear-SARL.

5.3. Illumination Invariant Face Classification

This task pertains to face classification under different il-

lumination conditions on the Extended Yale B dataset [10].

It comprises of face images of 38 people under five differ-

ent directions of the light source, namely, upper right, lower

right, lower left, upper left, and front. The target task is to

determine the identity of the person in the image with the

direction of the light being the sensitive attribute. We first

followed the experimental setup of Xie et al. [26] in terms

of the train/test split strategy i.e., 190 samples (5 from each

class) for training and 1096 images for testing. Surpris-

ingly, our global solution was able to completely remove

illumination from the embedding resulting in the adversary

accuracy being 20% i.e., random chance. To investigate fur-

ther, we consider different variations of this problem, flip-

ping target and sensitive attributes and exchanging training

and test sets. The complete set of results, including DNN

based baselines are reported in Table 2 ([EX] corresponds to

exchanging training and testing sets). In all these cases our

solution was able to significantly hinder the adversary while

being competitive with the baselines on the target task.

Table 2: Extended Yale B Performance (in %)

Method Adversary Target Adversary Target

(illumination) (identity) (identity) (illumination)

Raw Data 96 78 - -

VFAE [17] 57 85 - -

ML-ARL [26] 57 89 - -

MaxEnt-ARL [23] 40 89 - -

Linear-SARL 21 81 3 94

Linear-SARL [EX] 20 86 3 97

Kernel-SARL 20 86 3 96

Kernel-SARL [EX] 20 88 3 96

5.4. CIFAR­100

The CIFAR-100 dataset consists of 50,000 images from

100 classes that are further grouped into 20 superclasses.

Each image is therefore associated with two attributes, a

“fine” class label and a “coarse” superclass label. We con-

sider a setup where the “coarse” and “fine” labels are the

target and sensitive attributes, respectively. For Linear-

SARL, Kernel-SARL (degree five polynomial kernel) and

SSGD we use features (64-dimensional) extracted from a

pre-trained ResNet-110 model as an input to the encoder,

instead of raw images. From these features, the encoder is

tasked with aiding the target predictor and hindering the ad-

versary. This setup serves as an example to illustrate how

invariance can be “imparted” to an existing pre-trained rep-

resentation. We also consider two DNN baselines, ML-

ARL[26] and MaxEnt-ARL[23]. Here the entire encoder,

including the pre-trained layers of ResNet-18 that we treat

as fixed, have been optimized for this task. For evaluation,

once the encoder is learned and frozen, we train a discrim-

inator and adversary as 2-layer networks with 64 neurons

each. Therefore, although our approach uses linear regres-

sor as adversary at training, we evaluate against stronger

adversaries at test time. In contrast, the baselines train and

evaluate against adversaries with equal capacity.

Figure 5b shows the Pareto front of accuracy between

the target predictor and adversary. We observe that, (1)

Kernel-ARL significantly outperforms Linear-ARL. Since

the Kernel-ARL implicitly maps the data into an higher di-

mensional space, the sensitive features are potentially dis-

entangled sufficiently for the linear encoder in that space

to discard such information. Therefore, even for large val-

ues of λ the Kernel-ARL is able to simultaneously achieve

high target accuracy while keeping the adversary perfor-

mance low. (2) Despite being handicapped by the fact that

Kernel-ARL is evaluated against stronger adversaries than

it is trained against, its performance is comparable to that of

the DNN baselines. In fact, it outperforms both ML-ARL

and MaxEnt-ARL with respect to the target task. (3) SSGD

is highly unstable across most datasets and often got stuck

in a local optima and failed to find good solutions despite re-

peated attempts with different hyper-parameters and choice

of optimizers.

6. Concluding Remarks

We studied the “linear” form of adversarial representa-

tion learning, where all the entities are linear functions. We

showed that the optimization problem even for this sim-

plified version is both non-convex and non-differentiable.

Using tools from spectral learning we obtained a closed

form expression for the global optima and derived analyt-

ical bounds on the achievable utility and invariance. We

also extended these results to non-linear parameterizations

through kernelization. Numerical experiments on multi-

ple datasets indicated that the global optima solution of the

“kernel” form of ARL is able to provide a comparable trade-

off between utility and invariance in comparison to the local

optima of deep neural network based ARL, while enjoying

provable guarantees.

Admittedly, the results presented in this paper do not ex-

tend directly to deep neural network based formulations of

ARL. However, we believe it sheds light on nature of the

ARL optimization problem and aids our understanding of

the ARL problem. It helps delineate the role of the opti-

mization algorithm and the choice of embedding function,

highlighting the trade-off between the expressivity of the

functions and our ability to obtain the global optima of the

adversarial game. We consider our contribution as the first

step towards controlling the non-convexity that naturally

appears in adversarial representation learning.
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