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Abstract

A phrase grounding system localizes a particular object

in an image referred to by a natural language query. In pre-

vious work, the phrases were restricted to have nouns that

were encountered in training, we extend the task to Zero-

Shot Grounding(ZSG) which can include novel, “unseen”

nouns. Current phrase grounding systems use an explicit

object detection network in a 2-stage framework where one

stage generates sparse proposals and the other stage eval-

uates them. In the ZSG setting, generating appropriate pro-

posals itself becomes an obstacle as the proposal genera-

tor is trained on the entities common in the detection and

grounding datasets. We propose a new single-stage model

called ZSGNet which combines the detector network and

the grounding system and predicts classification scores and

regression parameters. Evaluation of ZSG system brings

additional subtleties due to the influence of the relationship

between the query and learned categories; we define four

distinct conditions that incorporate different levels of dif-

ficulty. We also introduce new datasets, sub-sampled from

Flickr30k Entities and Visual Genome, that enable evalu-

ations for the four conditions. Our experiments show that

ZSGNet achieves state-of-the-art performance on Flickr30k

and ReferIt under the usual “seen” settings and performs

significantly better than baseline in the zero-shot setting.

1. Introduction

Detecting objects in an image is a fundamental objec-

tive of computer vision. A variation of this task is phrase

grounding (also called visual grounding and referring ex-

pressions) where the objective is to detect objects refer-

enced by noun phrases in a text query [7, 18, 39, 44]. It

can be directly applied to other tasks such as visual ques-

tion answering [1, 50] and image retrieval [5] and has thus

garnered wide interest.

While existing phrase grounding systems accept novel

query phrases as inputs, they are limited to the nouns en-

†This work was done while the author was at USC.

(a) red car (b) blue shirt (c) blue car

(d) blue chair (e) red minivan (f) silver moped
Figure 1. Illustration of the key difference between current scope

of phrase grounding and the proposed zero-shot grounding. The

query word is italicized in all cases. (a)-(f) denote the image-query

pairs input to the system. (a) and (b) are examples of training

images. A test image query pair for phrase grounding could be

(c). Zero-shot grounding additionally can be tested on (d), (e) and

(f) in which “chair”, “minivan” and “moped” are object categories

not annotated in the training data. (f) additionally contains a “car”

object which is a trained category, indicating that both novel and

related trained category objects may be present in a test image.

countered in the training data (i.e. the referred object types

need to have been “seen” in training images before). As an

important extension, we define zero-shot grounding (ZSG)

to allow the use of phrases with nouns that the grounding

system has not encountered in training set before. Fig 1

illustrates this concept with examples.

To enable grounding of novel object categories, we need

to relate the appearance of referred objects to their linguis-

tic descriptions. Current, state-of-art phrase grounding sys-

tems [7, 9, 33, 44, 48] rely on an explicit object detector

to obtain proposed object bounding boxes and their ROI-

pooled features as a pre-processing step. This essentially

limits these systems to a fixed set of object categories that

the detector was trained on. In ZSG, we need to have a

reasonable proposal box for the novel object, classify it as a

foreground and regress the box to be a more accurate spatial

fit. In traditional phrase grounding, a key challenge is to dis-
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ambiguate between similar objects using the query phrase,

but ZSG requires us to also first find likely image regions

that may contain the referenced objects.

To address the above issues, we replace the traditional

two-stage approach, where the first stage generates proposal

bounding boxes and the second stage does the classification,

by a single-stage network with dense proposals; we call this

network ZSGNet. It takes combined language query fea-

tures and visual features from the image proposals and pre-

dicts classification scores and regression parameters. The

system is trained directly on the grounding training data, in

an end-to-end manner, and does not utilize any externally

trained object detector. We show that, besides enabling

grounding of novel categories, it does not degrade perfor-

mance on learned categories even though our method does

not utilize external training data. Moreover, our design is

computationally efficient especially during inference owing

to its single-stage architecture akin to SSD [28].

Evaluating the performance of a ZSG method is complex

due to the influence of the relationship of the new query

category to the learned categories. To make the evaluations

and distinctions clearer, we define four specific cases for

different conditions: (i) when the query word is novel (Fig 1

d-f) (ii) when the referred object belongs to a novel category

(Fig 1-d) (iii) when the referred object is “similar” to objects

seen during training but none of the latter are present (Fig

1-e) (iv) when at least one similar object also exists in the

test image (Fig 1-f)(more details in Section 3.1).

To support evaluation of zero-shot grounding for the four

cases, we introduce new datasets which are sub-sampled

from the existing Visual Genome [22] and Flickr30k En-

tities [34]. We create examples of the four cases outlined

above (dataset creation details are in Section 4.1, experi-

ments on these datasets are in Section 4.5).

Our contributions can be summarized as follows: (i)

we introduce the problem of Zero-shot grounding, (ii) we

propose a simple yet effective architecture ZSGNet to ad-

dress limitations of current phrase grounding systems for

this task, (iii) we create new datasets suitable for evaluating

zero-shot grounding and (iv) we evaluate performance on

these datasets and show the effectiveness of our approach.

Our code and datasets are publicly released1.

2. Related Work

Phrase grounding: Extensive work in creating ground-

ing datasets like Flickr30k, ReferIt, RefCoCo, RefCoCo+,

RefCoCog, Visual Genome, GuessWhat [8, 19, 22, 30, 34,

43, 45] have been crucial to the success of phrase ground-

ing. Early works use reconstruction based approach [39] or

integrate global context with the spatial configurations [18].

Recent approaches [7, 33, 48] learn directly in the multi-

1https://github.com/TheShadow29/zsgnet-pytorch

modal feature space and use attention mechanisms [9, 44]

which have also been extended to phrase grounding in di-

alogue systems [8, 51]. Few approaches also look at unsu-

pervised learning using variational context [49] and semi-

supervised learning via gating mechanisms [6].

Above techniques use an object detector like FasterR-

CNN [38] or MaskR-CNN [15] as a pre-processing step to

get the bounding boxes and ROI-pooled features which ef-

fectively limits them to the object categories of the detector.

We combine the detection and the grounding networks and

learn directly from the grounding dataset and thus no pre-

processing step is involved.

Multi-modal feature representation has many flavors

like linear transformation, concatenation, hadamard prod-

uct [20], bilinear pooling [27] and have shown success in

vision-language tasks like VQA [3, 4, 13, 46, 47], Scene

Graph Generations [24,42] and Image Captioning [29]. We

stick to feature concatenation for simplicity and a fair com-

parison with previous works in phrase grounding.

Single stage networks used in object detection are pop-

ular for their real-time inference speed. Prominent works

include SSD [28], YOLO [35–37] and more recently FPN

[25] and RetinaNet [26]. In this work, we combine a single-

stage detection network directly into the grounding frame-

work; besides enabling zero-shot grounding, it also results

in highly efficient inference.

Zero-shot grounding is unexplored but there are a few

similar works. [14] aims at open-vocabulary object retrieval

though it still assumes the entity of the referred object is

seen at train time. Recently [2] proposed zero-shot detec-

tion (ZSD) where they consider a set of unseen classes for

which no bounding box information at train time. At test

time, all the objects including the unseen classes must be

detected. However, the set of background classes is needed

prior to training, but this is not needed in ZSG.

3. Design Considerations for ZSG

We fist discuss the zero-shot grounding cases and then

describe the limitations in extending current phrase ground-

ing systems to ZSG. Finally, we present a new architecture

to address the limitations.

3.1. ZSG Cases

We now describe the four cases for zero-shot grounding

in detail. For brevity, we use the notations in Table 1. Each

case defines the scope for what is classified as a zero-shot

grounding example. Further, we assume that Q (the word

which refers to the object in the image) is not an OOV (out

of vocabulary word) which is reasonable if we use word

embeddings which are trained on a large language corpus.

Case 0: Q /∈ W . The query noun, Q, is not included

in any training example before. We only look at the lem-

matized word so synonyms are considered to be different
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Notation Meaning Example

T Test Image Fig 1-(f)

P Test query phrase silver moped

A Referred object at test time Moped

Q Word in P referring to A moped

B
Set of objects close to A
and seen during training

{Car}

C
Set of categories

seen during training

{Vehicles,

Clothing}

W
Set of words seen

during training

{red, blue,

car, shirt}

Table 1. Notations used to describe ZSG with examples (Fig 1).

By close objects we mean their word embeddings are similar.

(novel) words. Fig 1(d)-(f) are examples of this case. Fig

1-c with the phrase “blue automobile” would also be consid-

ered zero-shot since we haven’t seen the word automobile

before even though it is a synonym of “car”.

Case 1: A /∈ C. Here, we assume that objects seen at train

time belong to a set of pre-defined categories and the re-

ferred object A doesn’t belong to these categories. In Fig

1-d, “chair” is considered zero-shot as this category was not

seen at train time.

Case 2: ∃B but ∀b ∈ B we have b /∈ T . Here, objects that

are semantically close (similar) to the referred object A are

present in the training set but not in the test image. Fig 1-e

is an example as “minivan” (novel object) is semantically

close to “car” (seen in train set) but there is no other similar

object like “car” in the test image.

Case 3: ∃B and ∃b ∈ B such that b ∈ T . Same as Case

2 but at least one of the objects semantically close (similar)

to A is also present in the test image. For example, Fig 1-f

containing “moped” (a novel object) and “car” (seen in the

training set) which are semantically close.

For Case 2 and Case 3, there can be multiple interpreta-

tions for being “semantically close”. Here, we assume two

objects are “close” if their word embeddings are similar. In

our implementation, we cluster the word embeddings of the

objects and objects belonging to the same cluster are con-

sidered semantically close (more details in Section 4.1).

3.2. Limitations in Phrase Grounding Systems

Prior works view phrase grounding either as an entity se-

lection problem [9,44] or that of regressing sparse proposals

to a tighter bounding box [7,33,48]. In either case, given an

image I , we have N candidate boxes and their ROI-pooled

features {oi}
N
i=1. Given a query phrase P , the problem re-

duces to finding a good candidate box with a possible addi-

tional regression step.

Grounding systems using this framework don’t have a

mechanism to generalize to object categories not in the de-

tection dataset. Consider a novel category X whose in-

Image

Query

Pre-trained 

Proposal 

Generator

Proposal Features

Language 

Feature

LSTM Regression & 

Classification

Stage 1

Stage 2

Image

Query

Image 

Feature Map

CNN

Language 

Feature

LSTM

Regression & 

Classification
Stage 1

Proposal generation and

Feature Extraction

Anchor boxes

(a) Vanilla 2-stage phrase grounding system

(b) Our 1-stage phrase grounding system

Anchor 

Generator

Figure 2. Previous phrase grounding systems (a) produce a small

subset of proposals without considering the query restricting it to

the entities of the detection network. Our system (b) considers

dense proposals, looks at the query to disambiguate and learns di-

rectly from grounding dataset

stances may be present in the training images but not an-

notated. The object detector learns to classify X as back-

ground and this error is propagated to the grounding sys-

tem. [7, 33] suggest fine-tuning the detector on the ground-

ing categories (entities) but the grounding datasets are not

densely annotated, i.e. not all object instances of X in ev-

ery image are annotated. Additionally, some grounding

datasets like ReferIt [19] don’t have entity information so

fine-tuning is not feasible.

Object detectors also favor features invariant to intra-

class changes but grounding systems need to capture intra-

class variations as well.

3.3. Model Design

We propose the following new formulation: Given an

image I with fixed candidate boxes (also called anchor

boxes or dense proposals) DP = [dp1, . . . dpN ] and a query

phrase P , the task is to choose the best candidate box dpi
and regress it to a tight bounding box bi. Since our candi-

date boxes depend only on the size of the image, we can use

any image encoder to compute the visual features at run-

time and remove the need for a pre-trained object detector

as illustrated in Fig 2. This design is similar to single-shot

architecture used in object detection [26, 28].

Framework: Our model consists of a language module

to encode the query phrase, a visual module to obtain image

feature maps followed by fully convolutional networks to

output a 5d vector (for each candidate box) one for score
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K Image Feature Maps 
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Figure 3. A schematic of the ZSGNet Architecture. Input to the system is an image-query pair. A deep network is used to produce K image

feature maps taken at different resolutions. The anchor generator uses the image size to produce anchors at different scales and resolution.

We append the anchor centers at each cell of each feature map. The query phrase is encoded using a bidirectional LSTM (Bi-LSTM)

and the language feature obtained is appended at every cell location of every feature map along the channel dimension. The resulting

multi-modal feature maps are input to a Fully Convolution Network (FCN) block to output a prediction score and regression parameters

which are trained using focal-loss (Lpred)) and SmoothL1-loss(Lreg)) respectively.

and the rest for regressing to a tighter bounding box. Fig 3

provides an overview of our proposed architecture.

ZSGNet directly learns about the entities in a grounding

dataset in an end-to-end fashion. Moreover, since a query

phrase refers to a particular object with possibly different

attributes, the visual features are no longer invariant to intra-

class changes. This way, we address the limitations posed

by previous systems. Finally, owing to its single-stage ap-

proach, the network is computationally efficient.

Language module consists of an embedding layer fol-

lowed by a Bi-LSTM [17, 41] to encode the input query

phrase. Given a query phrase P = {wi}
n
i=1 we use GloVe

vectors [32] to encode each word in P as word embedding

vectors {wi}
n
i ∈ R

dq , where dq is the dimension of the em-

bedding vector. These are fed into a Bi-LSTM [17, 41]. We

use the normalized last hidden state vector {ĥ} ∈ R
2dl of

Bi-LSTM as the query feature, where dl is the dimension of

the hidden layer of a single LSTM.

Visual Module consists of an image encoder to produce

K feature maps {vi}
K
i=1 at different resolutions. We use

ResNet-50 [16] with FPN [25] as our default image encoder.

We first normalize the visual feature maps along the chan-

nel dimension. Then we expand the language feature to the

same dimensions of the visual feature maps and concatenate

it along the channel dimension for each normalized visual

feature map v̂i. Finally, we append the normalized loca-

tions of the feature maps (Cx, Cy = [cx/W, cy/H]) along

the channel dimension to aid in location based grounding

(phrases which contain location information) and obtain the

multi-modal feature maps mi. At a particular index of the

ith feature map (indexed by x, y) we have

mi[x, y] = [v̂i[x, y]; ĥ;Cx;Cy] (1)

where ; denotes the concatenation operation.

Anchor Matching Following [26] we match 9 candidate

boxes to every index of a feature map. We use a fully convo-

lutional network (FCN) to process the multi-modal features

to output a 5 dimensional output (score and regression pa-

rameters) for each box. In the anchor matching step, we use

an IoU threshold of 0.5 (found ideal via experimentation).

Loss Function For the binary classification into fore-

ground and background we use the focal loss as described

in [26]. For regressing to a tighter box we use the same

encoding scheme as [38] with smooth-L1 loss.

Let dpj denote the jth anchor and gt denote the ground

truth bounding box. Let

gdpj
= 1IoU(dpj ,gt)≥0.5 (2)

G = {gdpj
|gdpj

= 1} (3)

Here 1 denotes the indicator random variable. Thus,

gdpj
= 1 means the candidate box dpj matches with the

ground-truth box and G is the set of all such candidate

boxes. Now denoting focal loss [26] with default param-

eters (α = 0.25,γ = 2) by LF and the predicted score for

the box dpj as pdpj
we get

Lpred =
1

|G|

|DP |∑

j=1

LF (pdpj
, gdpj

) (4)

Similarly, denoting SmoothL1-loss by LS , the predicted

regression parameters by rdpj
and the ground-truth regres-

sion parameters by gtdpj
we get

Lreg =
1

|G|

|DP |∑

j=1

gdpj
LS(rdpj

, gtdpj
) (5)

The final loss is calculated as L = Lpred + λLreg . Here λ
is a hyper-parameter (we set λ = 1).
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Training: We match the candidate boxes (anchors) to

each feature map generated by the feature encoder. We clas-

sify each candidate box as a foreground or a background us-

ing a prediction loss (Lpred) and regress it to get a tighter

box (Lreg). Foreground means that the candidate box shares

IoU ≥ 0.5 with the ground truth box. For the regression

loss we only consider the foreground candidate boxes.

Testing At test time, we choose the candidate box with

the highest score and use its regression parameters to obtain

the required bounding box.

4. Experiments

This section describes the dataset construction methods,

followed by experiments and visualization.

4.1. Dataset Construction

We sub-sample Flickr30k [34] and Visual Genome [22]

to create datasets for the cases described in Section 3.1.

Flickr30k Entities contains 5 sentences per image with

every sentence containing 3.6 queries and has bounding

box information of the referred object and its category (e.g.

“people”, “animal”).

Visual Genome (VG) has a scene graph for every image.

The objects in the scene-graph are annotated with bounding

boxes, region description and a synset (obtained from [31]).

We briefly describe the steps taken to create the ZSG

datasets (more details can be found in the supplementary

material). We follow the notation described in Table 1.

Case 0 is sampled from Flickr30k Entities [34]. We need

to ensure that Q /∈ W . For this, we first obtain lemmatized

representation of the query words. As the query phrases are

noun-phrases of a complete annotated sentence, the query

word Q referring to the noun is almost always the last word

of the query phrase P , we take it be so. We do a 70:30 split

of the extracted words to obtain “included” and “excluded”

word lists respectively. We then create a training set from

the included list and validation and tests from the excluded

list, removing images that have overlap between train, vali-

dation or test lists. We call the resulting split Flickr-Split-0.

Case 1 is also sampled from Flickr30k Entities [34] but

this time we also the use predefined entity information. We

need the referred object A to belong to a category which is

not in C. Flickr30k has 7 common object categories (e.g.

“people”, “animals”) and one category called “other” for

objects which do not belong to the seven categories. We

take images with “other” objects and split them evenly to

create validation and test sets, The remaining images com-

prise the train set; we remove any box annotations that be-

long to the “other” category to create Flickr-Split-1.

Case 2 and Case 3 are sampled from Visual Genome

[22]. In addition to region phrases, visual genome also

provides entity names mapped to synsets in wordnet [31].

We count all the objects present in the dataset, choose

topI(= 1000) objects and get their word embeddings, skip-

ping without an embedding (we use GloVe [32] trained

on common crawl corpus). We apply K-Means clustering

(K = 20) to cluster similar words. We sort the words in

each cluster k by their frequency in the dataset and take the

top half to be in the seen objects set (Sk) and the bottom half

to be in the unseen objects set (Uk). If an image contains an

object oi such that oi ∈ Uk and another object oj ∈ Sk

then it is an example of Case 3. If no such oj exists then it

is Case 2. Finally, we take the union of images of the two

cases to constitute the test set. We call the resulting splits

VG-Split-2 and VG-Split-3. This design ensures that for

both Cases 2 and 3 the referred object A (in the test set)

has a set of objects B (in the training set) which are in the

same semantic cluster.

We consider the remaining images to be candidates for

the training set and include them if they contain at least one

object oi in S (where S = ∪kSk) and remove the annota-

tions for any object oj ∈ U (where U = ∪kUk). This en-

sures that the training set contains objects in S and does not

contain any objects in U . However, such a training set turns

out to be extremely imbalanced with respect to the clusters

as clusters containing common entities such as “person” are

much more prevalent than clusters containing “cakes”. We

balance the training set following a simple threshold based

sampling strategy (details in supplementary material) which

results in most clusters (except 2) to have similar number of

query phrases. We follow the same strategy to create bal-

anced test splits of VG-Split-2 and VG-Split-3.

Dataset Caveats: (i) We note that polysemy is not taken

care of i.e. the same word can have different meanings. (ii)

Neither Visual Genome nor Flickr30k is a true referring

expressions dataset i.e. the query phrase may not always

uniquely identify an object.

4.2. Datasets Used

Flickr30k Entities [34] contains 30k images each with

5 sentences and each sentences has multiple query phrases.

We use the same splits used in [7, 18, 39].

ReferIt(RefClef) [19] is a subset of Imageclef [11] con-

taining 20k images with 85k query phrases. We use the

same split as [7, 18, 39].

Flickr-Split-0 We create an unseen split of Flickr30k

based on the method outlined in Section 4.1. It contains

19K train images with 11K queries, 6K validation images

with 9K queries and 6K test images with 9K queries.

Flickr-Split-1 This split of Flickr30k has “other” cate-

gory only in the validation and test images. It contains 19k

training images with 87k query phrases and 6k images with

26k query phrases for validation and test each.

VG-Split We use a balanced training set (as described

in Section 4.1) containing 40K images and 264K query

phrases. We use a subset (25%) for validation. VG-Split-2
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contains 17K images and 23K query phrases in the unbal-

anced set, 10K images and 12K query phrases in the bal-

anced set. VG-Split-3 contains 41K images with 68K query

phrases in the unbalanced set, 23K images and 25K query

phrases in the balanced set.

4.3. Experimental Setup

Evaluation Metric: We use the same metric as in [7].

For each query phrase, we assume that there is only one

ground truth bounding box. Given an image and a query

phrase if the IoU of our predicted bounding box and the

ground truth box is more than 0.5 we mark it as correct.

However, in the case of Visual Genome splits, the anno-

tations are not precise so we use 0.3 as the threshold. The

final accuracy is averaged over all image query phrase pairs.

Baselines: To explicitly compare the performance of

dense proposals, we create a new baseline QRG based on

QRC [7] which uses GloVe embeddings instead of embed-

dings learned from the data. We benchmark it on Flickr30k

to show there is no drop in performance compared to QRC.

We further use it as a strong baseline on the unseen splits. In

all cases, we use a fasterR-CNN [38] pretrained on Pascal-

VOC [12] and fine-tune it on the target dataset. For Flickr-

Split-0 we fine-tune on all the entities, for Flickr-Split-1

we fine-tune on all entities except “other”. We use the top-

100 box predictions provided by the fine-tuned network af-

ter applying non-maxima suppression to be consistent with

implementation in [7]. For VG-Split, we train on all the

seen-classes, i.e. union of all seen objects in every cluster

(∪kSk). In this case, we don’t use non-maxima suppres-

sion and instead consider all the 300 boxes provided by the

fine-tuned region-proposal network.

Implementation details: We train ZSGNet and baseline

models till validation accuracy saturates and report our val-

ues on the test set. We found Adam [21] with learning rate

1e−4 for 20 epochs to be sufficient in most cases. For ZS-

GNet, to generate image feature maps at different scales,

we use two variations: (i) SSD [28] with VGG network

(ii) RetinaNet [26] with Resnet-50 [16] network. Note that

these are not pretrained on any detection dataset. Initially,

we resize the image to 300×300 for faster training and later

retrain with image sizes 600× 600 which gives a consistent

2 − 3% improvement. We note that while image augmen-

tations (like horizontal flipping) are crucial for object de-

tectors it is harmful for grounding as the query phrases of-

ten have location information (like “person standing on the

left”, “person to the right of the tree”).

4.4. Results on Existing Grounding datasets

Table 2 compares ZSGNet with prior works on Flickr30k

Entities [34] and ReferIt [19]. We use “det” and “cls” to de-

note models using Pascal VOC [12] detection weights and

ImageNet [10,40] classification weights. Networks marked

Method Net Flickr30k ReferIt

SCRC [18] VGG 27.8 17.9

GroundeR (cls) [39] VGG 42.43 24.18

GroundeR (det) [39] VGG 48.38 28.5

MCB (det) [13] VGG 48.7 28.9

Li (cls) [23] VGG - 40

QRC* (det) [7] VGG 60.21 44.1

CITE* (cls) [33] VGG 61.89 34.13

QRG* (det) VGG 60.1 -

ZSGNet (cls) VGG 60.12 53.31

ZSGNet (cls) Res50 63.39 58.63

Table 2. Comparison of our model with other state of the art meth-

ods. We denote those networks which use classification weights

from ImageNet [40] using “cls” and those networks which use

detection weights from Pascal VOC [12] using “det”. The re-

ported numbers are all Accuracy@IoU = 0.5 or equivalently

Recall@1. Models marked with “*” fine-tune their detection net-

work on the entities in the Flickr30k.

with “*” fine-tune their object detector pretrained on Pascal-

VOC [12] on the fixed entities of Flickr30k [34].

However, such information is not available in ReferIt

dataset which explains ∼ 9% increase in performance of

ZSGNet over other methods. This shows that our model

learns about the entities directly from the grounding dataset.

For Flickr30k we also note entity-wise accuracy in Ta-

ble 3 and compare against [7, 33]. We don’t compare to

the full model in [7] since it uses additional context queries

from the sentence for disambiguation. As these models

use object detectors pretrained on Pascal-VOC [12], they

have somewhat higher performance on classes that are com-

mon to both Flickr30k and Pascal-VOC (“animals”, “peo-

ple” and “vehicles”). However, on the classes like “cloth-

ing” and “bodyparts” our model shows much better perfor-

mance; likely because both “clothing” and “bodyparts” are

present along with “people” category and so the other meth-

ods choose the “people” category. Such biases are not ex-

hibited in our results as our model is category agnostic.

4.5. Results on ZSG Datasets

Table 4 shows the performance of our ZSGNet model

compared to QRG on the four unseen splits described in

Section 4.1 and 4.2. Across all splits, ZSGNet shows 4−8%
higher performance than QRG even though the latter has

seen more data (the object detector is pretrained on Pascal

VOC [12]). Next, we observe that the accuracy obtained

on Flickr-Split-0,1 are higher than the VG-split likely due

to larger variation of the referred objects in Visual Genome.

Finally, the accuracy remains the same across the balanced

and unbalanced sets indicating the model performs well

across all clusters as our training set is balanced.

We also study the relationship between accuracy and the
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Method Overall people clothing bodyparts animals vehicles instruments scene other

QRC - VGG(det) 60.21 75.08 55.9 20.27 73.36 68.95 45.68 65.27 38.8

CITE - VGG(det) 61.89 75.95 58.50 30.78 77.03 79.25 48.15 58.78 43.24

ZSGNet - VGG (cls) 60.12 72.52 60.57 38.51 63.61 64.47 49.59 64.66 41.09

ZSGNet - Res50 (cls) 63.39 73.87 66.18 45.27 73.79 71.38 58.54 66.49 45.53

Table 3. Category-wise performance with the default split of Flickr30k Entities.

Method Net
Flickr-

Split-0

Flickr-

Split-1

VG-2B VG-2UB VG-3B VG-3UB

0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.5

QRG VGG 35.62 24.42 13.17 7.64 12.39 7.15 14.21 8.35 13.03 7.52

ZSGNet
VGG 39.32 29.35 17.09 11.02 16.48 10.55 17.63 11.42 17.35 10.97

Res50 43.02 31.23 19.95 12.90 19.12 12.37 20.77 13.77 19.72 12.82

Table 4. Accuracy across various unseen splits. For Flickr-Split-0,1 we use Accuracy with IoU threshold of 0.5. Since Visual Genome

annotations are noisy we additionally report Accuracy with IoU threshold of 0.3. The second row denotes the IoU threshold at which the

Accuracy is calculated. “B” and “UB” denote the balanced and unbalanced sets.

Method
Semantic Distances

3-4 4-5 5-6 6-7 7-8

VG

2B

# I-P 310 1050 3543 5321 1985

QRG

(Vgg)
25.16 16.67 15.16 10.96 12.54

ZSGNet

(Vgg)
28.71 21.52 19.02 15.37 14.76

ZSGNet

(Res50)
31.94 25.14 21.99 17.89 17.98

VG

3B

# I-P 974 3199 7740 9873 3765

QRG

(Vgg)
23.1 20.13 14.73 12.19 11.24

ZSGNet

(Vgg)
23.82 25.73 17.16 16 14.56

ZSGNet

(Res50)
29.57 27.85 21.3 18.77 16.71

Table 5. Accuracy of various models on the balanced VG-Splits-

2,3 w.r.t the semantic distance of the referred object (A) to the

closest object seen at train time. VG-2B and VG-3B refer to the

balanced test set for Case2, 3. #I-P denotes the number of image-

phrase pairs in the given semantic distance range.

distance of the referred object at test time (A) from the

training set. We re-use the clusters obtained while cre-

ating the VG-Split and consider the closest-seen object

which lies in the same cluster as that of the referred ob-

ject. For every unseen object (oi) in a particular cluster k
(oi ∈ Uk) we find the closest seen object in the same clus-

ter oj = argminoj∈Sk
dist(oi, oj). For dist calculation, we

use the GloVe embeddings [32] corresponding to the objects

and take the L2-norm of their difference. We group the dis-

tances into 5 intervals of unit length and report the accuracy

of the subset where the distance of the referred object from

the training set lies in that interval in Table 5.

We note few examples of various intervals. We use the

Model Accuracy on RefClef

BM + Softmax 48.54

BM + BCE 55.20

BM + FL 57.13

BM + FL + Img-Resize 61.75

Table 6. Ablation study: BM=Base Model, softmax means we

classify only one candidate box as foreground, BCE = Binary

Cross Entropy means we classify each candidate box as the fore-

ground or background, FL = Focal Loss, Img-Resize: use images

of dimension 600× 600

notation (A, b) i.e. a tuple of the referred object and the

closest object in the same cluster. Examples for the inter-

val 3-4 are {(bouquet, flower), (cupcake, cake), (tablecloth,

curtain)} and for 7-8 are {(printer, paper), (notebook, pen),

(tattoo, poster)}. As expected, the accuracy declines with

the semantic distance but smoothly i.e. there is no sudden

drop in performance.

4.6. Ablation Study

We show the performance of our model with different

loss functions using the base model of ZSGNet on the val-

idation set of ReferIt [19] in Table 6. Note that using soft-

max loss by itself places us higher than the previous meth-

ods. Further using Binary Cross Entropy Loss and Focal

loss [26] give a significant (7%) performance boost which

is expected in a single shot framework. Finally, image re-

sizing gives another 4% increase.

4.7. Visualization

To qualitatively analyze our model we show a few visu-

alizations in Fig 4. The first row shows grounding results on

Flickr30k (first, second column) and ReferIt (third, fourth

column). Our model learns about the attribute(s) (“red”),

location (“leftmost”) and entities (“cap”, “nightstand”) and
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a group of older men a red beanie cap rightmost animal nightstand between beds microphones

a cigar a two-seat kayak a handstand couch countertop

a rocky cliff (hill) large boulders (rock) stairway (wall) shorts (person) planter (plant)

Figure 4. Few grounding visualizations. In all cases, red denotes the ground truth box; green is the box predicted by ZSGNet. Row-

1:Flickr30k, ReferIt; Row-2: Flickr-Split-0, 1; Row-3: VG-Split-2,3. In Row-3, the query word Q is emphasised and the closest seen

object is provided in parenthesis. The last column shows incorrect predictions.

predicts very tight bounding box. In the last column our

model incorrectly predicts only one “microphone”.

The second row shows Flickr-Split-0 (first, second col-

umn) and Flickr-Split-1 (second, third column) predic-

tions. The query phrases “cigar”, “kayak” are never en-

countered in the training set though close synonyms like

“cigarettes”, “kayakers” are i.e. our model generalizes to

unseen words even if they haven’t been explicitly seen be-

fore. This generalization can be attributed to pre-trained

GloVe [32] embedding. On Flickr-Split-1 the model pre-

dicts a good bounding box even though referred objects lies

in a different category. However, when there are too many

objects in the image the model gets confused (last column).

The third row shows predictions on VG-Split-2 (first,

second column) and VG-Split-3 (third, fourth column). Ad-

ditionally, we italicize the query word Q which refers to the

object A in the image and mention the closest object en-

countered during training in parenthesis. In VG-Split-2 our

model effectively utilizes word embedding knowledge and

performs best when the closest object seen during training

is visually similar to the referred object. In VG-Split-3 our

model additionally needs to disambiguate between a seen

object and the referred object and performs well when they

are visually distinct like “shorts” and “person”. However,

when the two are visually similar as in the case of “planter”

and “plants” our model incorrectly grounds the seen object.

5. Conclusion

In this work, we introduce the task of Zero-Shot ground-

ing (ZSG) which aims at localizing novel objects from a

query phrase. We outline four cases of zero-shot ground-

ing to perform finer analysis. We address the limitations

posed by previous systems and propose a simple yet effec-

tive architecture ZSGNet. Finally, we create new datasets

by sub-sampling existing datasets to evaluate each of the

four grounding cases. We verify that our proposed model

ZSGNet performs significantly better than existing baseline

in the zero-shot setting.

Acknowledgment: We thank Jiyang Gao for helpful dis-

cussions and the anonymous reviewers for helpful sugges-

tions. This paper is based , in part, on research sponsored

by the Air Force Research Laboratory and the Defense Ad-

vanced Research Projects Agency under agreement num-

ber FA8750-16-2-0204. The U.S. Government is authorized

to reproduce and distribute reprints for Governmental pur-

poses notwithstanding any copyright notation thereon. The

views and conclusions contained herein are those of the au-

thors and should not be interpreted as necessarily represent-

ing the official policies or endorsements, either expressed

or implied, of the Air Force Research Laboratory and the

Defense Advanced Research Projects Agency or the U.S.

Government.

4701



References

[1] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret

Mitchell, Dhruv Batra, C Lawrence Zitnick, and Devi Parikh.

Vqa: Visual question answering. In ICCV, 2015. 1

[2] Ankan Bansal, Karan Sikka, Gaurav Sharma, Rama Chel-

lappa, and Ajay Divakaran. Zero-shot object detection.

ECCV, 2018. 2
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