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Figure 1: Pixel-aligned Implicit function (PIFu): We present pixel-aligned implicit function (PIFu), which allows recovery

of high-resolution 3D textured surfaces of clothed humans from a single input image (top row). Our approach can digitize

intricate variations in clothing, such as wrinkled skirts and high-heels, including complex hairstyles. The shape and textures

can be fully recovered including unseen regions such as the back of the subject. PIFu can be also extended to multi-view input

images (bottom row).

Abstract

We introduce Pixel-aligned Implicit Function (PIFu), an

implicit representation that locally aligns pixels of 2D images

with the global context of their corresponding 3D object.

Using PIFu, we propose an end-to-end deep learning method

for digitizing highly detailed clothed humans that can infer

both 3D surface and texture from a single image, and

optionally, multiple input images. Highly intricate shapes,

such as hairstyles, clothing, as well as their variations and

deformations can be digitized in a unified way. Compared

to existing representations used for 3D deep learning, PIFu

produces high-resolution surfaces including largely unseen

regions such as the back of a person. In particular, it

is memory efficient unlike the voxel representation, can

handle arbitrary topology, and the resulting surface is

* - indicates equal contribution

spatially aligned with the input image. Furthermore, while

previous techniques are designed to process either a single

image or multiple views, PIFu extends naturally to arbitrary

number of views. We demonstrate high-resolution and robust

reconstructions on real world images from the DeepFashion

dataset, which contains a variety of challenging clothing

types. Our method achieves state-of-the-art performance

on a public benchmark and outperforms the prior work for

clothed human digitization from a single image. The project

website can be found at https://shunsukesaito.

github.io/PIFu/

1. Introduction

In an era where immersive technologies and sensor-

packed autonomous systems are becoming increasingly

prevalent, our ability to create virtual 3D content at scale
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goes hand-in-hand with our ability to digitize and understand

3D objects in the wild. If digitizing an entire object in

3D would be as simple as taking a picture, there would be

no need for sophisticated 3D scanning devices, multi-view

stereo algorithms, or tedious capture procedures, where a

sensor needs to be moved around.

For certain domain-specific objects, such as faces, human

bodies, or known man made objects, it is already possible

to infer relatively accurate 3D surfaces from images with

the help of parametric models, data-driven techniques, or

deep neural networks. Recent 3D deep learning advances

have shown that general shapes can be inferred from very

few images and sometimes even a single input. However,

the resulting resolutions and accuracy are typically limited,

due to ineffective model representations, even for domain

specific modeling tasks.

We propose a new Pixel-aligned Implicit Function (PIFu)

representation for 3D deep learning for the challenging

problem of textured surface inference of clothed 3D humans

from a single or multiple input images. While most

successful deep learning methods for 2D image processing

(e.g., semantic segmentation [47], 2D joint detection [51],

etc.) take advantage of “fully-convolutional” network

architectures that preserve the spatial alignment between

the image and the output, this is particularly challenging

in the 3D domain. While voxel representations [53] can

be applied in a fully-convolutional manner, the memory

intensive nature of the representation inherently restrict its

ability to produce fine-scale detailed surfaces. Inference

techniques based on global representations [17, 27, 1] are

more memory efficient, but cannot guarantee that details of

input images are preserved. Similarly, methods based on

implicit functions [10, 41, 35] rely on the global context

of the image to infer the overall shape, which may not

align with the input image accurately. On the other hand,

PIFu aligns individual local features at the pixel level to the

global context of the entire object in a fully convolutional

manner, and does not require high memory usage, as in

voxel-based representations. This is particularly relevant

for the 3D reconstruction of clothed subjects, whose shape

can be of arbitrary topology, highly deformable and highly

detailed. While [23] also utilize local features, due to the lack

of 3D-aware feature fusion mechanism, their approach is

unable to reason 3D shapes from a single-view. In this work

we show that combination of local features and 3D-aware

implicit surface representation makes a significant difference

including highly detailed reconstruction even from a single

view.

Specifically, we train an encoder to learn individual

feature vectors for each pixel of an image that takes into

account the global context relative to its position. Given this

per-pixel feature vector and a specified z-depth along the

outgoing camera ray from this pixel, we learn an implicit

function that can classify whether a 3D point corresponding

to this z-depth is inside or outside the surface. In particular,

our feature vector spatially aligns the global 3D surface

shape to the pixel, which allows us to preserve local details

present in the input image while inferring plausible ones in

unseen regions.

Our end-to-end and unified digitization approach can

directly predict high-resolution 3D shapes of a person with

complex hairstyles and wearing arbitrary clothing. Despite

the amount of unseen regions, particularly for a single-view

input, our method can generate a complete model similar

to ones obtained from multi-view stereo photogrammetry

or other 3D scanning techniques. As shown in Figure 1,

our algorithm can handle a wide range of complex clothing,

such as skirts, scarfs, and even high-heels while capturing

high frequency details such as wrinkles that match the input

image at the pixel level.

By simply adopting the implicit function to regress RGB

values at each queried point along the ray, PIFu can be

naturally extended to infer per-vertex colors. Hence, our

digitization framework also generates a complete texture of

the surface, while predicting plausible appearance details

in unseen regions. Through additional multi-view stereo

constraints, PIFu can also be naturally extended to handle

multiple input images, as is often desired for practical

human capture settings. Since producing a complete textured

mesh is already possible from a single input image, adding

more views only improves our results further by providing

additional information for unseen regions.

We demonstrate the effectiveness and accuracy of our

approach on a wide range of challenging real-world and

unconstrained images of clothed subjects. We also show

for the first time, high-resolution examples of monocular

and textured 3D reconstructions of dynamic clothed human

bodies reconstructed from a video sequence. We provide

comprehensive evaluations of our method using ground truth

3D scan datasets obtained using high-end photogrammetry.

We compare our method with prior work and demonstrate

the state-of-the-art performance on a public benchmark for

digitizing clothed humans.

2. Related Work

Single-View 3D Human Digitization. Single-view digiti-

zation techniques require strong priors due to the ambiguous

nature of the problem. Thus, parametric models of human

bodies and shapes [4, 32] are widely used for digitizing

humans from input images. Silhouettes and other types

of manual annotations [18, 62] are often used to initialize

the fitting of a statistical body model to images. Bogo et

al. [8] proposed a fully automated pipeline for unconstrained

input data. Recent methods involve deep neural networks

to improve the robustness of pose and shape parameters

estimations for highly challenging images [27, 43]. Methods

that involve part segmentation as input [30, 39] can produce

more accurate fittings. Despite their capability to capture

human body measurements and motions, parametric models
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only produce a naked human body. The 3D surfaces of

clothing, hair, and other accessories are fully ignored. For

skin-tight clothing, a displacement vector for each vertex is

sometimes used to model some level of clothing as shown

in [2, 58, 1]. Nevertheless, these techniques fail for more

complex topology such as dresses, skirts, and long hair. To

address this issue, template-free methods such as BodyNet

[53] learn to directly generate a voxel representation of

the person using a deep neural network. Due to the high

memory requirements of voxel representations, fine-scale

details are often missing in the output. More recently, [36]

introduced a multi-view inference approach by synthesizing

novel silhouette views from a single image. While multi-

view silhouettes are more memory efficient, concave regions

are difficult to infer as well as consistently generated views.

Consequentially, fine-scale details cannot be produced

reliably. In contrast, PIFu is memory efficient and is able

to capture fine-scale details present in the image, as well as

predict per-vertex colors.

Multi-View 3D Human Digitization. Multi-view acquisi-

tion methods are designed to produce a complete model of

a person and simplify the reconstruction problem, but are

often limited to studio settings and calibrated sensors. Early

attempts are based on visual hulls [34, 54, 13, 12] which

uses silhouettes from multiple views to carve out the visible

areas of a capture volume. Reasonable reconstructions can

be obtained when large numbers of cameras are used, but

concavities are inherently challenging to handle. More

accurate geometries can be obtained using multi-view stereo

constraints [49, 65, 57, 14] or using controlled illumination,

such as multi-view photometric stereo techniques [55, 59].

Several methods use parametric body models to further

guide the digitization process [48, 15, 5, 22, 3, 1]. The

use of motion cues has also been introduced as additional

priors [44, 60]. While it is clear that multi-view capture tech-

niques outperform single-view ones, they are significantly

less flexible and deployable.

A middle ground solution consists of using deep learning

frameworks to generate plausible 3D surfaces from very

sparse views. [11] train a 3D convolutional LSTM to

predict the 3D voxel representation of objects from arbitrary

views. [29] combine information from arbitrary views using

differentiable unprojection operations. [25] also uses a

similar approach, but requires at least two views. All of

these techniques rely on the use of voxels, which is memory

intensive and prevents the capture of high-frequency details.

[23, 16] introduced a deep learning approach based on a

volumetric occupancy field that can capture dynamic clothed

human performances using sparse viewpoints as input. At

least three views are required for these methods to produce

reasonable output.

Texture Inference. When reconstructing a 3D model from

a single image, the texture can be easily sampled from the

input. However, the appearance in occluded regions needs

to be inferred in order to obtain a complete texture. Related

to the problem of 3D texture inference are view-synthesis

approaches that predict novel views from a single image [63,

40] or multiple images [50]. Within the context of texture

mesh inference of clothed human bodies, [36] introduced

a view synthesis technique that can predict the back view

from the front one. Both front and back views are then

used to texture the final 3D mesh, however self-occluding

regions and side views cannot be handled. Akin to the image

inpainting problem [42], [37] inpaints UV images that are

sampled from the output of detected surface points, and

[52, 20] infers per voxel colors, but the output resolution

is very limited. [28] directly predicts RGB values on a

UV parameterization, but their technique can only handle

shapes with known topology and are therefore not suitable

for clothing inference. Our proposed method can predict

per vertex colors in an end-to-end fashion and can handle

surfaces with arbitrary topology.

3. PIFu: Pixel-Aligned Implicit Function

Given a single or multi-view images, our goal is to

reconstruct the underlining 3D geometry and texture of a

clothed human while preserving the detail present in the

image. To this end, we introduce Pixel-Aligned Implicit

Functions (PIFu) which is a memory efficient and spatially-

aligned 3D representation for 3D surfaces. An implicit

function defines a surface as a level set of a function f ,

e.g. f(X) = 0 [46]. This results in a memory efficient

representation of a surface where the space in which the

surface is embedded does not need to be explicitly stored.

The proposed pixel-aligned implicit function consists of

a fully convolutional image encoder g and a continuous

implicit function f represented by multi-layer perceptrons

(MLPs), where the surface is defined as a level set of

f(F (x), z(X)) = s : s ∈ R, (1)

where for a 3D point X , x = π(X) is its 2D projection,

z(X) is the depth value in the camera coordinate space,

F (x) = g(I(x)) is the image feature at x. We assume

a weak-perspective camera, but extending to perspective

cameras is straightforward. Note that we obtain the pixel-

aligned feature F (x) using bilinear sampling, because the

2D projection of X is defined in a continuous space rather

than a discrete one (i.e., pixel).

The key observation is that we learn an implicit function

over the 3D space with pixel-aligned image features rather

than global features, which allows the learned functions to

preserve the local detail present in the image. The continuous

nature of PIFu allows us to generate detailed geometry with

arbitrary topology in a memory efficient manner. Moreover,

PIFu can be cast as a general framework that can be extended

to various co-domains such as RGB colors.

Digitization Pipeline. Figure 2 illustrates the overview of

our framework. Given an input image, PIFu for surface
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Figure 2: Overview of our clothed human digitization pipeline: Given an input image, a pixel-aligned implicit function

(PIFu) predicts the continuous inside/outside probability field of a clothed human. Similarly, PIFu for texture inference

(Tex-PIFu) infers an RGB value at given 3D positions of the surface geometry with arbitrary topology.

reconstruction predicts the continuous inside/outside prob-

ability field of a clothed human, in which iso-surface can

be easily extracted (Sec. 3.1). Similarly, PIFu for texture

inference (Tex-PIFu) outputs an RGB value at 3D positions

of the surface geometry, enabling texture inference in self-

occluded surface regions and shapes of arbitrary topology

(Sec. 3.2). Furthermore, we show that the proposed approach

can handle single-view and multi-view input naturally, which

allows us to produce even higher fidelity results when more

views are available (Sec. 3.3).

3.1. Single­view Surface Reconstruction

For surface reconstruction, we represent the ground truth

surface as a 0.5 level-set of a continuous 3D occupancy field:

f∗

v (X) =

{

1, if X is inside mesh surface

0, otherwise
. (2)

We train a pixel-aligned implicit function (PIFu) fv by

minimizing the average of mean squared error:

LV =
1

n

n
∑

i=1

|fv(FV (xi), z(Xi))− f∗

v (Xi)|
2
, (3)

where Xi ∈ R
3, FV (x) = g(I(x)) is the image feature

from the image encoder g at x = π(X) and n is the

number of sampled points. Given a pair of an input

image and the corresponding 3D mesh that is spatially

aligned with the input image, the parameters of the image

encoder g and PIFu fv are jointly updated by minimizing

Eq. 3. As Bansal et al. [6] demonstrate for semantic

segmentation, training an image encoder with a subset of

pixels does not hurt convergence compared with training

with all the pixels. During inference, we densely sample

the probability field over the 3D space and extract the

iso-surface of the probability field at threshold 0.5 using

the Marching Cube algorithm [33]. This implicit surface

representation is suitable for detailed objects with arbitrary

topology. Aside from PIFu’s expressiveness and memory-

efficiency, we develop a spatial sampling strategy that is

critical for achieving high-fidelity inference.

Spatial Sampling. The resolution of the training data

plays a central role in achieving the expressiveness and

accuracy of our implicit function. Unlike voxel-based

methods, our approach does not require discretization of

ground truth 3D meshes. Instead, we can directly sample

3D points on the fly from the ground truth mesh in the

original resolution using an efficient ray tracing algorithm

[56]. Note that this operation requires water-tight meshes. In

the case of non-watertight meshes, one can use off-the-shelf

solutions to make the meshes watertight [7]. Additionally,

we observe that the sampling strategy can largely influence

the final reconstruction quality. If one uniformly samples

points in the 3D space, the majority of points are far

from the iso-surface, which would unnecessarily weight

the network toward outside predictions. On the other hand,

sampling only around the iso-surface can cause overfitting.

Consequently, we propose to combine uniform sampling

and adaptive sampling based on the surface geometry. We

first randomly sample points on the surface geometry and

add offsets with normal distribution N (0, σ) (σ = 5.0 cm

in our experiments) for x, y, and z axis to perturb their

positions around the surface. We combine those samples
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with uniformly sampled points within bounding boxes using

a ratio of 16 : 1. We provide an ablation study on our

sampling strategy in the supplemental materials.

3.2. Texture Inference

While texture inference is often performed on either a

2D parameterization of the surface [28, 19] or in view-space

[36], PIFu enables us to directly predict the RGB colors on

the surface geometry by defining s in Eq. 1 as an RGB vector

field instead of a scalar field. This supports texturing of

shapes with arbitrary topology and self-occlusion. However,

extending PIFu to color prediction is a non-trivial task as

RGB colors are defined only on the surface while the 3D

occupancy field is defined over the entire 3D space. Here,

we highlight the modification of PIFu in terms of training

procedure and network architecture.

Given sampled 3D points on the surface X ∈ Ω, the

objective function for texture inference is the average of L1

error of the sampled colors as follows:

LC =
1

n

n
∑

i=1

|fc(FC(xi), z(Xi))− C(Xi)|, (4)

where C(Xi) is the ground truth RGB value on the surface

point Xi ∈ Ω and n is the number of sampled points. We

found that naively training fc with the loss function above

severely suffers from overfitting. The problem is that fc is

expected to learn not only RGB color on the surface but

also the underlining 3D surfaces of the object so that fc can

infer texture of unseen surface with different pose and shape

during inference, which poses a significant challenge. We

address this problem with the following modifications. First,

we condition the image encoder for texture inference with

the image features learned for the surface reconstruction FV .

This way, the image encoder can focus on color inference

of a given geometry even if unseen objects have different

shape, pose, or topology. Additionally, we introduce an

offset ǫ ∼ N (0, d) to the surface points along the surface

normal N so that the color can be defined not only on the

exact surface but also on the 3D space around it. With the

modifications above, the training objective function can be

rewritten as:

LC =
1

n

n
∑

i=1

∣

∣fc(FC(x
′

i, FV ), X
′

i,z)− C(Xi)
∣

∣, (5)

where X ′

i = Xi + ǫ · Ni. We use d = 1.0 cm for all the

experiments. Please refer to the supplemental material for

the network architecture for texture inference.

3.3. Multi­View Stereo

Additional views provide more coverage about the person

and should improve the digitization accuracy. Our formula-

tion of PIFu provides the option to incorporate information

from more views for both surface reconstruction and texture

!"(Φ%, … ,Φ() = +,  Φ, = !%(-, ., , /,(0))

Multi-View PIFu

- -% -(

0

. = 1(0)

/(0)
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0

⋯.% = 1%(0)
.( = 1((0)
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Figure 3: Multi-view PIFu: PIFu can be extended to

support multi-view inputs by decomposing implicit function

f into a feature embedding function f1 and a multi-view

reasoning function f2. f1 computes a feature embedding

from each view in the 3D world coordinate system, which

allows aggregation from arbitrary views. f2 takes aggregated

feature vector to make a more informed 3D surface and

texture prediction.

inference. We achieve this by using PIFu to learn a feature

embedding for every 3D point in space. Specifically the

output domain of Eq. 1 is now a n-dimensional vector

space s ∈ R
n that represents the latent feature embedding

associated with the specified 3D coordinate and the image

feature from each view. Since this embedding is defined

in the 3D world coordinate space, we can aggregate the

embedding from all available views that share the same 3D

point. The aggregated feature vector can be used to make a

more confident prediction of the surface and the texture.

Specifically we decompose the pixel-aligned function

f into a feature embedding network f1 and a multi-view

reasoning network f2 as f := f2 ◦ f1. See Figure 3 for

illustrations. The first function f1 encodes the image feature

Fi(xi) : xi = πi(X) and depth value zi(X) from each view

point i into latent feature embedding Φi. This allows us

to aggregate the corresponding pixel features from all the

views. Now that the corresponding 3D point X is shared by

different views, each image can project X on its own image

coordinate system by πi(X) and zi(X). Then, we aggregate

the latent features Φi by average pooling operation and

obtain the fused embedding Φ̄ = mean({Φi}). The second

function f2 maps from the aggregated embedding Φ̄ to our

target implicit field s (i.e., inside/outside probability for

surface reconstruction and RGB value for texture inference).

The additive nature of the latent embedding allows us to

incorporate arbitrary number of inputs. Note that a single-

view input can be also handled without modification in the

same framework as the average operation simply returns the

original latent embedding. For training, we use the same

training procedure as the aforementioned single-view cases

including loss functions and the point sampling scheme.
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While we train with three random views, our experiments

show that the model can incorporate information from more

than three views (See Sec. 4).

4. Experiments

We evaluate our proposed approach on a variety of

datasets, including RenderPeople [45] and BUFF [61], which

has ground truth measurements, as well as DeepFashion [31]

which contains a diverse variety of complex clothing.

Implementation Detail. Since the framework of PIFu

is not limited to a specific network architecture, one can

technically use any fully convolutional neural network as

the image encoder. For surface reconstruction, we found

that stacked hourglass [38] architectures are effective with

better generalization on real images. The image encoder

for texture inference adopts the architecture of CycleGAN

[64] consisting of residual blocks [26]. The implicit

function is based on a multi-layer perceptron, whose layers

have skip connections from the image feature F (x) and

depth z in spirit of [10] to effectively propagate the depth

information. Tex-PIFu takes FC(x) together with the image

feature for surface reconstruction FV (x) as input. For

multi-view PIFu, we simply take an intermediate layer

output as feature embedding and apply average pooling to

aggregate the embedding from different views. Please refer

to the supplemental materials for more detail on network

architecture and training procedure.

4.1. Quantitative Results

We quantitatively evaluate our reconstruction accuracy

with three metrics. In the model space, we measure the

average point-to-surface Euclidean distance (P2S) in cm

from the vertices on the reconstructed surface to the ground

truth. We also measure the Chamfer distance between the

reconstructed and the ground truth surfaces. In addition,

we introduce the normal reprojection error to measure

the fineness of reconstructed local details, as well as the

projection consistency from the input image. For both

reconstructed and ground truth surfaces, we render their

normal maps in the image space from the input viewpoint

respectively. We then calculate the L2 error between these

two normal maps.

Single-View Reconstruction. In Table 1 and Figure 5, we

evaluate the reconstruction errors for each method on both

Buff and RenderPeople test set. Note that while Voxel

Regression Network (VRN) [24], IM-GAN [10], and ours

are retrained with the same High-Fidelity Clothed Human

dataset we use for our approach, the reconstruction of

[36, 53] are obtained from their trained models as off-the-

shelf solutions. Since single-view inputs leaves the scale

factor ambiguous, the evaluation is performed with the

known scale factor for all the approaches. In contrast to

the state-of-the-art single-view reconstruction method using

implicit function (IM-GAN) [9] that reconstruct surface from

one global feature per image, our method outputs pixel-

aligned high-resolution surface reconstruction that captures

hair styles and wrinkles of the clothing. We also demonstrate

the expressiveness of our PIFu representation compared with

voxels. Although VRN and ours share the same network

architecture for the image encoder, the higher expressiveness

of implicit representation allows us to achieve higher fidelity.

In Figure 6, we also compare our single-view texture

inferences with a state-of-the-art texture inference method

on clothed human, SiCloPe [36], which infers a 2D image

from the back view and stitches it together with the input

front-view image to obtain textured meshes. While SiCloPe

suffers from projection distortion and artifacts around the

silhouette boundary, our approach predicts textures on the

surface mesh directly, removing projection artifacts.

Multi-View Reconstruction. In Table 2 and Figure 7, we

compare our multi-view reconstruction with other deep

learning-based multi-view methods including LSM [29],

and a deep visual hull method proposed by Huang et al.

[21]. All approaches are trained on the same High-Fidelity

Clothed Human Dataset using three-view input images. Note

that Huang et al. can be seen as a degeneration of our

method where the multi-view feature fusion process solely

relies on image features, without explicit conditioning on

the 3D coordinate information. To evaluate the importance

of conditioning on the depth, we denote our network

architecture removing z from input of PIFu as Huang

et al. in our experiments. We demonstrate that PIFu

achieves the state-of-the-art reconstruction qualitatively and

quantitatively in our metrics. We also show that our multi-

view PIFu allows us to increasingly refine the geometry and

texture by incorporating arbitrary number of views in Figure

8.

4.2. Qualitative Results

In Figure 4, we present our digitization results using

real world input images from the DeepFashion dataset [31].

We demonstrate our PIFu can handle wide varieties of

clothing, including skirts, jackets, and dresses. Our method

can produce high-resolution local details, while inferring

plausible 3D surfaces in unseen regions. Complete textures

are also inferred successfully from a single input image,

which allows us to view our 3D models from 360 degrees.

We refer to the supplemental video2 for additional static

and dynamic results. In particular, we show how dynamic

clothed human performances and complex deformations can

be digitized in 3D from a single 2D input video.

5. Discussion

We introduced a novel pixel-aligned implicit function,

which spatially aligns the pixel-level information of the

input image with the shape of the 3D object, for deep

2https://youtu.be/S1FpjwKqtPs
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reconstructed geometry textured reconstructioninput

Figure 4: Qualitative single-view results on real images from DeepFashion dataset [31]. The proposed Pixel-Aligned

Implicit Functions, PIFu, achieves a topology-free, memory efficient, spatially-aligned 3D reconstruction of geometry and

texture of clothed human.

ours VRN IM-GAN SiCloPe BodyNet

Figure 5: Comparison with other human digitization methods from a single image. For each input image on the left, we

show the predicted surface (top row), surface normal (middle row), and the point-to-surface errors (bottom row).

RenderPeople Buff

Methods Normal P2S Chamfer Normal P2S Chamfer

BodyNet 0.262 5.72 5.64 0.308 4.94 4.52

SiCloPe 0.216 3.81 4.02 0.222 4.06 3.99

IM-GAN 0.258 2.87 3.14 0.337 5.11 5.32

VRN 0.116 1.42 1.56 0.130 2.33 2.48

Ours 0.084 1.52 1.50 0.0928 1.15 1.14

Table 1: Quantitative evaluation on RenderPeople and BUFF

dataset for single-view reoncstruction.

learning based 3D shape and texture inference of clothed

humans from a single input image. Our experiments

RenderPeople Buff

Methods Normal P2S Chamfer Normal P2S Chamfer

LSM 0.251 4.40 3.93 0.272 3.58 3.30

Deep V-Hull 0.093 0.639 0.632 0.119 0.698 0.709

Ours 0.094 0.554 0.567 0.107 0.665 0.641

Table 2: Quantitative comparison between multi-view

reconstruction algorithms using 3 views.

indicate that highly plausible geometry can be inferred

including largely unseen regions such as the back of a

person, while preserving high-frequency details present
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SiCloPe ours

input

Figure 6: Comparison with SiCloPe [36] on texture inference.

While texture inference via a view synthesis approach suffers

from projection artifacts, proposed approach does not as it directly

inpaints textures on the surface geometry.

LSM [Huang et al.] oursinput

Figure 7: Comparison with learning-based multi-view meth-

ods. Ours outperforms other learning-based multi-view methods

qualitatively and quantitatively. Note that all methods are trained

with three view inputs from the same training data.

in the image. Unlike voxel-based representations, our

method can produce high-resolution output since we are

not limited by the high memory requirements of volumetric

representations. Furthermore, we also demonstrate how this

method can be naturally extended to infer the entire texture

on a person given partial observations. Unlike existing

methods, which synthesize the back regions based on frontal

views in an image space, our approach can predict colors in

unseen, concave and side regions directly on the surface. In

particular, our method is the first approach that can inpaint

textures for shapes of arbitrary topology. Since we are

capable for generating textured 3D surfaces of a clothed

person from a single RGB camera, we are moving a step

closer toward monocular reconstructions of dynamic scenes

from video without the need of a template model. Our ability

to handle arbitrary additional views also makes our approach

particularly suitable for practical and efficient 3D modeling

1 view 6 view 9 view3 view

Figure 8: Our surface and texture predictions increasingly

improve as more views are added.

settings using sparse views, where traditional multi-view

stereo or structure-from-motion would fail.

Future Work. While our texture predictions are reason-

able and not limited by the topology or parameterization of

the inferred 3D surface, we believe that higher resolution

appearances can be inferred, possibly using generative adver-

sarial networks or increasing the input image resolution. In

this work, the reconstruction takes place in pixel coordinate

space, aligning the scale of subjects as pre-process. As in

other single-view methods, inferring scale factor remains an

open-question, which future work can address. Lastly, in all

our examples, none of the segmented subjects are occluded

by any other objects or scene elements. In real-world settings,

occlusions often occur and perhaps only a part of the body

is framed in the camera. Being able to digitize and predict

complete objects in partially visible settings could be highly

valuable for analyzing humans in unconstrained settings.
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