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Abstract

This paper presents a novel method to distill knowl-

edge from a deep pose regressor network for efficient Vi-

sual Odometry (VO). Standard distillation relies on “dark

knowledge” for successful knowledge transfer. As this

knowledge is not available in pose regression and the

teacher prediction is not always accurate, we propose to

emphasize the knowledge transfer only when we trust the

teacher. We achieve this by using teacher loss as a confi-

dence score which places variable relative importance on

the teacher prediction. We inject this confidence score to

the main training task via Attentive Imitation Loss (AIL)

and when learning the intermediate representation of the

teacher through Attentive Hint Training (AHT) approach.

To the best of our knowledge, this is the first work which

successfully distill the knowledge from a deep pose regres-

sion network. Our evaluation on the KITTI and Malaga

dataset shows that we can keep the student prediction close

to the teacher with up to 92.95% parameter reduction and

2.12× faster in computation time.

1. Introduction

Deep Neural Networks (DNNs) have received increased

attention in the last decade due to their success in image

and natural language understanding. The availability of

large datasets, increased computing power, and advance-

ment of learning algorithms play a pivotal role in their glory.

Despite their successes, DNN-based approaches typically

require tens or hundreds of million weights. As a con-

sequence, the huge computational and space requirement

prevents DNN models from being widely implemented in

resource-constrained environment (e.g. mobile phones,

quadcopter, etc.). To compound the issue, these applica-

tions typically require near real-time inference.

Within the last few years, there have been tremendous

efforts towards compressing DNNs. State-of-the-art ap-

proaches for network compression such as quantization

[9, 6, 17], pruning [12, 10, 35], or low-rank decomposition

[30, 2] can yield significant speed-ups but at the cost of ac-

curacy. On the other hand, an approach called Knowledge

Distillation (KD) proposed by Hinton et al. [16] offers to

recover the accuracy drop by transferring the knowledge of

a large teacher model to a small student model. Some re-

cent works show that a small network trained by KD could

match or even exceed the accuracy of a large network if it

is trained with careful optimization [25].

Most works in network compression, including KD, fo-

cus on the problem of classification. KD works very well

in classification since it has the advantage of “dark knowl-

edge” which refers to the softened logits output of the

teacher. This provides more information than mere one-

hot encoding of the class label and contains hidden knowl-

edge about the correlations of class labels [16]. By using

the logits output for training, the student network can em-

ulate the generalization capability of the teacher network.

However, this advantage does not exist in regression. In

the regression problem, a deep regression network predicts

sequential, continuous, values which have the exact same

characteristics as the ground truth, with the exception of

being plagued with an unknown error distribution. With-

out access to any dark knowledge, it is unclear how KD

could help in compressing a regression network. In recent

surveys, it is even stated that the main drawback of KD is

that it only works for classification problems [5].

KD methods for classification [16, 25, 20, 36, 32, 19,

23] rely solely on the teacher prediction without considering

the error made w.r.t. ground truth. In regression however,

the real-valued predictions are unbounded, and hence the

teacher can give highly erroneous guidance to the student

network. Previous work [4] alleviated this issue by using

teacher loss as an upper bound. However, it was designed

for standard bounding box regression which has different

characteristic to pose regression as it belongs to SE(3) (Lie

Groups). Moreover, they directly transferred the knowledge

from the teacher without filtering which one is good and

which one is bad. To this end, our novel insight is to use

the teacher loss as a confidence score to decide when we

can trust the teacher. We demonstrate that this is key to

successfully distilling deep pose regression networks.

We will demonstrate our work in distillation for cam-
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Figure 1. Comparison between (a) standard Knowledge Distillation applied to classification problem and (b) our Knowledge Distillation

approach applied to regression problem. Note that in regression, we are unable to use the dark knowledge provided by soft teacher labels.

era pose regression problem which is widely known as Vi-

sual Odometry (VO). In particular, we employ DNN-based

VO methods [33, 34, 37, 38, 26, 1] which replaces the

conventional VO pipeline based on multiple-view geometry

[15, 27] to DNN-based pipeline which automatically learns

useful features for estimating 6 Degree-of-Freedom (DoF)

camera poses. To the best of our knowledge, this work is a

first attempt to distill the knowledge from a deep pose re-

gression network. Our key contributions are:

• We study different ways to blend the loss of the student

both w.r.t. ground truth and w.r.t. teacher, and propose

to use the teacher loss as a confidence score to atten-

tively learn from examples that the teacher is good at

predicting through Attentive Imitation Loss (AIL).

• We also propose Attentive Hint Training (AHT) as a

novel way to learn the intermediate representation of

the teacher, based on the teacher loss.

• We perform extensive experiment on KITTI and

Malaga datasets which show that our proposed ap-

proach can reduce the number of student parameters

by up to 92.95% (2.12× faster) whilst keeping the pre-

diction accuracy very close to that of the teacher.

2. Related Work

Many compression methods have been recently devel-

oped. Besides KD, there are other approaches available

such as quantization, pruning, and low-rank decomposition.

Network quantization reduces the number of bits re-

quired to compress the network. The quantization could be

applied by using 16-bit or 8-bit representation as proposed

by [31, 11]. As an extreme case, a 1-bit representation (or

binary network) could also be used as seen in [6, 17]. By

restricting the weights into two possible values (e.g. -1 or

1), binary networks can dramatically reduce both computa-

tion time and memory consumption at the cost of significant

reduction in accuracy [5].

Pruning, as the name implies, removes redundant and

non-informative weights. Weight pruning can be done by

using magnitude-based method [14, 10] or dropout-based

method [35, 22]. The pruning can be applied in the indi-

vidual neuron connection [14, 13] or in convolutional fil-

ter itself [21]. This approach promises significant param-

eter reduction without greatly affecting accuracy, although

it typically requires more training stages [13]. However,

in practice, it requires additional implementation of sparse

matrix multiplication which possibly needs more resource

consumption and specialized hardware and software [21].

Low-rank decomposition reduces DNN complexity by

exploiting the low-rank constraints on the network weights.

Most approaches, such as [24, 18, 2], factorize a fully con-

nected or convolutional layer through matrix/tensor decom-

position techniques such as SVD or CP-decomposition. By

using this factorization technique, the number of matrix

multiplications becomes smaller than the original network.

However, the obtained compression ratio is generally lower

than the pruning-based approach and the low-rank con-

straint imposed on the network might impact the network

performance if the rank is not selected with care.

3. Background: Distillation for Classification

Knowledege Distillation (KD) is an approach to transfer

the knowledge of a large teacher network to a small student

network. The main idea of KD is to allow the student to

capture the finer structure learned by the teacher instead of

learning solely from the true labels. Let T be the teacher

network where OT = softmax(aT ) is the teacher output
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probability and aT is the teacher’s logits (pre-softmax out-

put). A student network S with OS = softmax(aS) as the

prediction and aS as the logits is trained to mimic OT . Since

OT is usually very close to the one-hot representation of

the class labels, a temperature τ > 1 is used to soften the

output probability distribution of T . The same temperature

is used for training S such that Oτ
T = softmax( aT

τ
) and

Oτ
S = softmax( aS

τ
), but τ = 1 is then used for testing

S. If H is the cross-entropy and y is the one-hot encod-

ing of the true labels, then KD objective function is formed

by minimizing both hard label (y) error and soft label error

(illustrated in Fig. 1 (a)) as follows

LKD = αH(y,OS) + (1− α)H(OT ,OS) (1)

where α is a parameter to balance both cross-entropies.

The KD formulation with softened outputs (τ > 1) in (1)

gives more information for S to learn, as it provides infor-

mation about the relative similarity of the incorrect predic-

tions [16], [25]. For example, T may mistakenly predict an

image of a car as a truck, but that mistake still has a much

higher probability than mistaking it for a cat. These relative

probabilities of incorrect prediction convey how T tends to

generalize to new data [16]. However, this advantage does

not exist in the regression problem. As seen in Fig. 1 (b),

both teacher and ground truth label have the same character-

istic. Intuitively, we would prefer to minimize S’s predic-

tion directly w.r.t. the ground truth labels since the teacher

label is plagued with an unknown error distribution. How-

ever, our experiments show that training S only with the

ground truth labels gives very poor results.

4. Blending Teacher, Student, and Imitation

Loss

As it is unclear how we can take advantage of T ’s pre-

diction in distilling regression networks, we study differ-

ent ways to blend together the loss of S’s prediction w.r.t.

ground truth and w.r.t T ’s prediction. For simplicity, we re-

fer to the error of S w.r.t ground truth as student loss and

the loss of T w.r.t ground truth as teacher loss. We refer to

imitation loss (Limit) for the errors of S w.r.t. T (since S

tries to imitate T ’s prediction). The following outlines dif-

ferent formulations and rationales of blending teacher, stu-

dent, and imitation loss.

Minimum of student and imitation. In the simplest for-

mulation, we assume that T has good prediction accuracy

in all conditions. In this case, as T ’s prediction will be very

close to the ground truth, it does not really matter whether

we minimize S w.r.t. ground truth or w.r.t. T . Then, we

simply minimize whichever one is smaller between the stu-

dent loss and imitation loss as follows

Lreg =
1

n

n
∑

i=1

min
(

∥

∥pS − pgt

∥

∥

2
, ‖pS − pT ‖

2
)

(2)

where pS , pT , and pgt are S’s prediction, T ’s prediction,

and ground truth labels respectively.

Imitation loss as an additional loss. Instead of seeking

the minimum between the student and imitation loss, we

can use the imitation loss as an additional loss term for the

student loss. In this case, we regard the imitation loss as an-

other way to regularize the network and prevent the network

from overfitting [16]. Then, the objective function becomes

Lreg =
1

n

n
∑

i=1

α
∥

∥pS − pgt

∥

∥

2
+ (1− α) ‖pS − pT ‖

2
(3)

where α is a scale factor used to balance the student and

imitation loss. This formulation is similar to the original

formulation of KD for classification as seen in (1) except

the cross-entropy loss is replaced by regression loss.

Teacher loss as an upper bound. Equations (2) and (3)

assume that T has very good generalization capability in

most conditions. However in practice, T can give very erro-

neous guidance for S. There is a possibility that in adverse

environments, T may predict camera poses that are contra-

dictory to the ground truth pose. Hence, instead of directly

minimizing S w.r.t. T , we can utilize T as an upper bound.

This means that S’s prediction should be as close as possi-

ble to the ground truth pose, but we do not add additional

loss for S when its performance surpasses T [4]. In this

formulation, (3) becomes the following equation

Lreg =
1

n

n
∑

i=1

α
∥

∥pS − pgt

∥

∥

2
+ (1− α)Limit (4)

Limit =

{

‖pS − pT ‖
2
, if

∥

∥pS − pgt

∥

∥

2
>
∥

∥pT − pgt

∥

∥

2

0, otherwise

(5)

Probabilistic imitation loss (PIL). As stated before, T is

not always accurate in practice. Since there is some degree

of uncertainty in T ’s prediction, we can explicitly model

this uncertainty with a parametric distribution. For example,

we can model the imitation loss using Laplace’s distribution

IP (pS |pT , σ) =
1

2σ
exp

−‖pS − pT ‖

σ
(6)

where σ is an additional quantity that S should predict. In

this case, the imitation loss is turned into minimizing the

negative log likelihood of (6) as follows

− log IP (pS |pT , σ) =
‖pS − pT ‖

σ
+ log σ + const. (7)

The final objective is retrieved by replacing Limit in (4)

with (7). We can view (7) as a way for S to learn suit-

able coefficient (via σ) to down-weight unreliable T ’s pre-

diction. Besides Laplacian distribution, another parametric

distribution like Gaussian can be used as well.
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Attentive imitation loss (AIL). The main objective of mod-

eling the uncertainty in the imitation loss is that we could

then adaptively down-weight the imitation loss when a par-

ticular T ’s prediction is not reliable. However, modeling

T ’s prediction with a parametric distribution may not accu-

rately reflect the error distribution of T ’s prediction. Hence,

instead of relying on S to learn a quantity σ to down-weight

unreliable T ’s prediction, we can use the empirical error of

T ’s prediction w.r.t. ground truth (which is the teacher loss)

to do the job. Then, the objective function becomes

Lreg =
1

n

n
∑

i=1

α
∥

∥pS − pgt

∥

∥

2

i
+ (1− α)Φi ‖pS − pT ‖

2
i

(8)

Φi =

(

1−

∥

∥pT − pgt

∥

∥

2

i

η

)

(9)

η = max (eT )−min (eT ) (10)

eT = {
∥

∥pT − pgt

∥

∥

2

j
: j = 1, ..., N} (11)

where Φi is the normalized teacher loss for each i sample,

eT is a set of teacher loss from entire training data, and

η is a normalization parameter that we can retrieve from

subtracting the maximum and the minimum of eT . Note

that ‖.‖i and ‖.‖j are not p-norm symbol. Instead we use i

and j in ‖.‖i and ‖.‖j as index to differentiate which loss is

computed from the batch samples (i = 1, ..., n) and which

loss is calculated from entire training data (j = 1, ..., N ).

Fig. 1 (b) shows how each component in (8)-(11) blends

together. Note that we still keep α to govern the rela-

tionship between student and imitation loss. In this case,

Φi’s role is to put different relative importance, hence it

is called attentive, for each component in the imitation

loss as seen in weighted sum operation. Notice that (8)

can be rearranged into Lreg = α
n

∑n

i=1

∥

∥pS − pgt

∥

∥

2

i
+

1−α
n

∑n

i=1 Φi ‖pS − pT ‖
2
i . As Φi is computed differently

for each image sample and is intended to down-weight unre-

liable T ’s prediction, we could also say that by multiplying

the imitation loss with Φi, we rely more on the example data

which T is good at predicting in the process of knowledge

transfer between T and S.

5. Learning Intermediate Representations

Blending teacher, student, and imitation loss have set the

objective function for the main KD task. Another important

aspect in KD’s transfer process is Hint Training (HT). HT

is the process of training the intermediate representation of

S such that it could mimic the latent representation of T . It

was designed as an extension of the original KD [16] and

formulated by [25] to transfer the knowledge of T to S with

deeper but thinner architecture. Even if it is devised to help

training S with deeper layers than T , we would argue that

it is also an important step for training a regressor network

with shallow architecture. HT could act as another way to

regularize S such that it could better mimic the generaliza-

tion capability of T [25].

In Hint Training, a hint is defined as a layer in T that

is used to guide a guided layer in S. Let Wguided and

Whint be the parameters of S and T up to their guided

and hint layers respectively. With the standard HT formu-

lation, we can train S up to the guided layer by minimiz-

ing Lhint =
1
n

∑n

i=1 ‖ΨT (I;Whint)−ΨS(I;Wguided)‖
2
,

where ΨT and ΨS are T ’s and S’s deep neural functions up

to their respective hint or guided layers. The drawback with

this formulation is that it does not take into account the fact

that T is not a perfect function estimator and can give incor-

rect guidance to S. While in Section 4 we describe how to

tackle this issue through down-weighting unreliable T pre-

diction by multiplying it with normalized teacher loss, we

argue that this step is also required for HT. Then, we pro-

pose a modification of HT termed Attentive Hint Training

(AHT) as follows:

Lhint =
1

n

n
∑

i=1

Φi ‖ΨT (I;Whint)−ΨS(I;Wguided)‖
2
i

(12)

where Φi is the normalized teacher loss as seen in (9).

While (8) and (12) can be trained jointly, we found out that

training separately yields superior performance especially

in absolute pose error. Then, the knowledge transfer be-

tween T and S becomes 2 stages optimization procedures.

The 1st stage trains S up to the guided layer with (12) as

the objective. The 2nd stage trains the remaining layer of S

(from guided until the last layer) with (8) as the objective.

6. Implementation Details

6.1. Camera Pose Regression with DNNs

As we demonstrate our distillation approach for Visual

Odometry (VO) problem, we will briefly review VO ap-

proaches. Conventional VO estimates the camera poses by

finding feature correspondences between multiple images

and applying multiple-view geometry techniques [15, 27].

On the other hand, DNNs learn the camera ego-motion di-

rectly from raw image sequences by training the network in

an end-to-end manner. Let It−1,t ∈ IR2×(w×h×c) be two

concatenated images at times t − 1 and t, where w, h, and

c are the image width, height, and channels respectively.

DNNs essentially learn a mapping function to regress the

6-DoF camera poses {(IR2×(w×h×c))1:N} → {(IR6)1:N},

where N are the total number of image pairs. In the super-

vised case, learning 6-DoF camera poses can be achieved

by minimizing the discrepancy between the predicted poses

ppr ∈ IR6 and the ground truth poses pgt ∈ IR6 as fol-
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lows Lreg = 1
n

∑n

i=1

∥

∥ppr − pgt

∥

∥

2
, given n sample im-

ages. However, since translation and rotation have different

constraints, we usually decompose Lreg into

Lreg =
1

n

n
∑

i=1

β ‖tpr − tgt‖
2
+ (1− β) ‖rpr − rgt‖

2

(13)

where t ∈ IR3 and r ∈ IR3 are the translation and rotation

components in x, y, and z axes. β ∈ IR is used to balance

t and r. Here the rotation part is represented as an Euler

angle. Another representation such as quaternion or rotation

matrix can be used as well [33].

To apply our distillation approach to DNN-based VO, we

decompose each translation and rotation component in (13)

to (8). We also decompose AHT formulation in (12) into

translation and rotation representation, and apply Φi differ-

ently for each representation. As the teacher loss distribu-

tion is also different for translation and rotation (as seen in

Fig. 2), η in (9) is computed differently for each of them.

Figure 2. Empirical error distribution of the teacher network for

translation and rotation on KITTI dataset Seq 00-08.

6.2. Network Architecture

We employ ESP-VO [34] for the teacher network T in

which the architecture is depicted in Fig. 3 (left). It con-

sists of two main parts, namely the feature extractor net-

work and a pose regressor network. The feature extractor is

composed from a series of Convolutional Neural Networks

(CNNs) to extract salient features for VO estimation. Since

VO estimates the camera pose between consecutive frames,

optical-flow like feature extractor network (FlowNet [7]) is

used to initialize the CNNs. The pose regressor consists of

Long-Short Term Memory (LSTM) Recurrent Neural Net-

works (RNNs) and Fully Connected (FC) Layers to regress

6-DoF camera poses. The LSTM is utilized to learn long-

term motion dependencies among image frames [33].

Fig. 3 (right) depicts S with 92.95% distillation rate

(drate). The main building blocks of S are essentially the

same as T except we remove a number of layers from T to

construct a smaller network. To specify the structure of S,

in general, we can remove the layers from T which con-

tribute the most to the number of weights, but S should

still consist of a feature extractor (CNN) and a regressor

(LSTM/FC). In the feature extractor, the largest number of

weights usually corresponds to the few last layers of CNNs,

while in the regressor part it corresponds to the LSTM lay-

ers. Thus, for drate = 92.95%, we remove the last five

layers of the CNN and the two RNN-LSTM layers. How-

ever, we still initialize the CNN with the FlowNet’s weight

as in ESP-VO. To compensate for the loss of removing the

CNN and LSTM layers, we add 1 FC layer in the regressor

part for drate < 75% and 2 FC layers for drate > 75%.

This corresponds to fewer than 1% additional parameters.

Remove this 
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Figure 3. Details of network architecture for teacher (left) and stu-

dent network with 92.95% distillation rate (right).

6.3. Training Details

As stated in Section 5, we employ two stages of opti-

mization. The first stage is training the intermediate repre-

sentation of S through AHT. As seen in Fig. 3, we select the

1st FC layer of T as a hint and the 3rd FC layer of S (or the

2nd FC layer for drate < 75%) as the guided layer. We used

the FC layer of T as a hint not only to provide easier guid-

ance for training S, since both FC layers in T and S have

the same dimensions, but also to transfer the ability of T to

learn the long-term motion dynamics of camera poses as the

FC layer of T is positioned after the RNN-LSTM layers. In

the second stage, we freeze weights of S trained from the

first stage and train the remaining layers of S using (8) as

the objective.
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7. Experimental Results

7.1. Experiment Environments

We implemented T and S in Keras. We employed

NVIDIA TITAN V GPU for training and NVIDIA Jetson

TX2 for testing. The training for each stage goes up to 30

epochs. For both training stages, we utilize Adam Opti-

mizer with 1e − 4 learning rate. We also applied Dropout

[28] with 0.25 dropout rate for regularizing the network.

For the data, we used KITTI [8] and Malaga odometry

dataset [3]. We utilized KITTI Seq 00-08 for training and

Seq 09-10 for testing. Before training, we reduced the

KITTI image dimension to 192× 640. We only use Malaga

dataset for testing the model that has been trained on KITTI.

For this purpose, we cropped the Malaga images to the

KITTI image size. Since there is no ground truth in Malaga

dataset, we perform qualitative evaluation against GPS data.

7.2. Metrics

In this work, we want to measure the trade-off between

accuracy and parameter reduction. In VO, accuracy can be

measured by several metrics. We use Root Mean Square

(RMS) Relative Pose Error (RPE) for translation (t) and ro-

tation (r) and RMS Absolute Trajectory Error (ATE) as they

has been widely used in many VO or SLAM benchmarks

[29]. For parameter reduction, we measure the percentage

(%) of S’s parameters w.r.t. T ’s parameters. We also mea-

sure the associated computation time (ms) and the model

size (MB) for each reduction rate.

7.3. Sensitivity Analysis

The Impact of Different Methods for Blending Teacher,

Student, and Imitation Loss. In this experiment, we want

to understand the impact of different approaches to blending

teacher, student, and imitation loss as described in Section

4. We used S with drate = 72.78% constructed from re-

moving the last 3 CNNs and replacing 2 LSTMs with 1 FC

layer. In order to get a fair comparison without having bias

from the AHT process, we trained S with standard HT ap-

proach in the first stage. Then, we trained the remaining

layer(s) with all formulations described in Section 4 in the

second stage. For additional comparison, we add a baseline

approach, in which we only minimize the student loss.

Fig. 4 (a) and (b) depicts the RPE and the CDF of ATE

of different methods in blending the losses. It can be seen

that AIL has the best accuracy in both RPE and ATE. This

indicates that distilling knowledge from T to S only when

we trust T does not reduce the quality of knowledge trans-

fer, but instead improve the generalization capability of S.

Two approaches (minimum of student and imitation; imita-

tion loss as additional loss) that rely on the assumption that

T ’s prediction is always accurate have inferior performance

even if compared to the baseline. PIL, either using Lapla-
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Figure 4. The impact of different ways in blending teacher, stu-

dent, and imitation loss to (a) RPE and (b) ATE. Same legend is

used for both graphs.

Table 1. The impact of using Attentive Imitation Loss (AIL) and

Attentive Hint Training (AHT) algorithm

Architecture HT Final Rec. ATE

CNN-FCa Obj. Errorb (m)

1 6 - 2 (72.88%) - student 0.6242 80.842
2 6 - 2 (72.88%) HT student 0.0252 65.251
3 6 - 2 (72.88%) HT AIL 0.0252 36.459
4 6 - 2 (72.88%) AHT student 0.0166 52.320
5 6 - 2 (72.88%) AHT AIL 0.0166 32.259

6 5 - 3 (79.69%) - student 0.1341 68.350
7 5 - 3 (79.69%) HT student 0.0177 53.661
8 5 - 3 (79.69%) HT AIL 0.0177 29.751
9 5 - 3 (79.69%) AHT student 0.0168 37.645

10 5 - 3 (79.69%) AHT AIL 0.0168 25.857
a Total FC layers until intermediate layer used for HT and AHT. The number

in the bracket indicates drate.
b Reconstruction error of S’s output intermediate representation w.r.t. T ’s out-

put intermediate representation.

cian or Gaussian, yields good accuracy in RPE, but lacks ro-

bustness since they have larger overall drift (as seen in Fig.

4 (b)). This is probably due to the failure of the parametric

distribution function to model the teacher error distribution

accurately. The upper bound objective has good balance be-

tween RPE and ATE but the performance is inferior to AIL.

The Impact of Attentive Hint Training. As we want to in-

spect the effect of the proposed AHT approach, we trained

the model with 3 different procedures: without HT, with

HT, and with AHT. We also alternate between using the

student loss and AIL to see the effect of applying attentive

transfer mechanism in both intermediate (as AHT) and fi-

nal layer (as AIL), or only in one of them. We used the

same model architecture as the previous ablation to conduct

this experiment. We compare RMS Reconstruction Error
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of S’s output latent representation w.r.t. T ’s representation

and ATE w.r.t. ground truth.

Table 1 lists the results of this study which clearly shows

that as soon as HT is applied, S’s reconstruction error w.r.t.

T reduces dramatically (see row [1, 2] or [6, 7]). This shows

that without having guidance in the intermediate layer, it is

very difficult for S to imitate the generalization capability of

T . AHT then reduces further the reconstruction error of HT

by giving different relative importance to T ’s representation

and placing more emphasis on representations that produce

accurate T predictions. Fig. 5 visualizes the output latent

representation for different training procedures. It can be

seen that AHT’s output representation is very close to T .

Slight differences with T ’s representation are due to differ-

ent relative importance placed on T ’s predictions. However,

even if AHT does not try to blindly imitate T ’s representa-

tion, the average reconstruction error is still lower than the

HT approach which attempts to perfectly imitate T ’s repre-

sentation (see Table 1 row [2, 4] or [7, 9]).

The last column of Table 1 shows ATE for different com-

binations of applying attentive knowledge transfer. As it can

be seen in row [2, 4] (or [7, 9]) that applying attentive loss

in the intermediate layer (AHT) can significantly reduce the

ATE of S. However, the reduction rate is not as large as

when applying it in the final task (AIL) (see Table 1 row [2,

3] or [7, 8]) as it can reduce the ATE up to 1.8× smaller.

This is sensible because the accuracy of a DNN model de-

pends on the output from the final task. A better guidance

in the final layer (main task) can yield stronger performance

than a better guidance in the intermediate layer. Finally, ap-

plying attentive loss in both intermediate (AHT) and final

layers (AIL) consistently gives the best result for 6 and 5

CNNs architecture (see Table 1 row 5 and 10).
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Figure 5. The difference of latent feature representation between

T and S, trained without HT, with HT, and with AHT.

7.4. Tradeoff between Accuracy, Model Size, and
Execution Time

In this experiment, we want to understand the trade-off

between the model size, execution time, and accuracy for

different drate. Fig. 6 shows that our proposed distillation

approach can keep S very close to T up to drate = 92.95%.

It can even achieve better performance than the teacher

for drate = 65.77% and 79.69% as T might be over-

parameterized (see also the output trajectory in Fig. 7). For

drate > 92.95%, the performance starts to degrade more
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Figure 6. RMS absolute pose errors between Supervised and Dis-

tilled Student for different drate.
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Figure 7. Trajectory prediction from T and S trained with vari-

ous distillation approaches in KITTI Seq 09. The number in the

bracket indicates the percentage of S parameters w.r.t. T .

Table 2. Trade-off between the number of parameters, model

size, computation time, and accuracy (ATE)

Network Parameters Size Ex. Time ATE

(Weights %) (millions) (MB) (ms) (m)

T (100%) 33.64 286.9 87 26.74
S (55.28%) 18.59 74.6 82 26.92
S (41.25%) 13.88 55.7 71 29.69
S (34.23%) 11.52 46.3 62 18.09
S (27.22%) 9.16 36.8 58 32.26
S (20.30%) 6.83 27.5 47 25.86
S (7.05%) 2.37 7.3 41 29.03

rapidly as it becomes too difficult to transfer the knowledge

from T to S without other constraints. It can also be seen

that if S is trained directly to fit the ground truth with hard

loss (supervised student), it shows very poor performance.

Table 2 shows the comparison between T and S in terms

of number of parameters, model size, and computation time.

As we can see, with drate = 92.95% we can reduce the

model size from 286.9MB to 7.3MB (2.5%). Removing 2

LSTMs, which are responsible for 44.72% of T ’s parame-
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Table 3. Comparison with other distillation approaches

Method RMS RPE (t) RMS RPE (r) RMS ATE

Supervised T 0.1197 0.2377 26.7386
Supervised S 0.1367 0.1627 71.7517

KD [16] 0.1875 0.1439 165.2182
Chen’s OD [4] 0.1197 0.1416 46.2320
FitNets [25] 0.1450 0.1409 31.9624
Ours 0.1053 0.1406 29.0294

ters can already reduce T ’s model size to 78MB (27%) but

it has less impact in the computation time as the LSTM has

been implemented efficiently for NVIDIA cuDNN. With

drate = 92.95%, we reduce the computation time from

87ms to 41ms (2.12×), effectively doubling the frame rate.

This has significant practical implication. If we re-train T

given subsampled images such that the frame rate is simi-

lar to S with drate = 92.95%, T ’s prediction accuracy will

degrade 160% (see the trajectory in Fig. 7). This is proba-

bly due to the difficulty of estimating accurate optical flow

representation in large stereo baseline. Meanwhile with the

same computation budget, the distilled S yields stronger

performance than the subsampled T with only 8.63% ac-

curacy drop w.r.t supervised T as seen in Fig. 8.
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Figure 8. Distribution and histogram of ATE between distilled S

and supervised T with image sampling.

7.5. Comparison with Related Works

As there is no specific KD for pose regression, to com-

pare our proposed KD with other related works, we used

some well known KD approaches for classification and ob-

ject detection. However, we modify the objective function

to fit our regression problem. We used 3 baselines for this

experiment: KD [16], FitNets [25], and Chen’s Object De-

tection (OD) model [4]. For KD [16], we trained with

standard training procedure (without HT or AHT) and re-

placed the objective function with (3). For FitNets [25], we

used HT approach for the 1st stage of training and utilize

(3) as the objective in the 2nd stage. For Chen’s OD [4],

we also used standard HT for the 1st stage and employ (4)

as the objective in the 2nd stage. For all models, we used

drate = 92.95% to train S as an extreme example (see sup-

plementary material for experiment with drate = 65.77%).

Table 3 shows the result of this experiment. It can be

seen that our proposed approach have better accuracy for

20 m
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Figure 9. Qualitative evaluation in Malaga dataset Seq 04 and Seq

09. All model are only trained on KITTI Seq 00-08.

both RPE and ATE. Even if most of the competing ap-

proaches have better RPE than the supervised T , it has huge

bias in the relative pose prediction such that the integration

of these relative poses yields very large ATE. T tackle this

bias to some extent by using LSTM layers which are sup-

posed to learn the long-term motion dynamic of the camera

poses [33]. Since S removes the LSTM layers, most ap-

proaches fail to recover this knowledge from T but our pro-

posed approach is able to reduce ATE by focusing to learn

the good predictions from T . Fig. 7 shows the comparison

of the output trajectory between the competing approaches

on KITTI dataset. It can be seen that our distillation output

trajectory is closer to T than the competing approaches.

Fig. 9 depicts the qualitative evaluation in Malaga

dataset. Note that we have not trained on this dataset,

demonstrating generalization capacity. We can see that our

proposed approach yields a closer trajectory to GPS, even

when it is compared to T . This signifies that our distilla-

tion approach yields good generalization ability even when

it is tested on a different dataset. This result also shows

that T may overfit the training data as it has many redun-

dant parameters. However, this redundancy seems neces-

sary for the initial stage of training as a DNN requires large

degree-of-freedom to find better weights and connections

[16]. Meanwhile, directly training S without any supervi-

sion from T seems to be very difficult. Our results show

that we can have better generalization when distilling large

degree-of-freedom T to small degree-of-freedom S if we

transfer the knowledge from T to S only when we trust T .

8. Conclusion

We have presented an approach to distill the knowledge

from a deep pose regressor network to a much smaller net-

work with a small loss of accuracy. We have shown that

the teacher loss can be used as an effective attentive mech-

anism to transfer the knowledge between teacher and stu-

dent. For future work, we will investigate whether another

compression technique can be combined with our distilla-

tion approach to further reduce the computation time.
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