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“For object recognition, the visual system decomposes

shapes into parts, . . ., parts with their descriptions and spa-

tial relations provide a first index into a memory of shapes.”

— Hoffman & Richards [18]

Abstract

Data-driven generative modeling has made remarkable

progress by leveraging the power of deep neural networks.

A reoccurring challenge is how to enable a model to gen-

erate a rich variety of samples from the entire target distri-

bution, rather than only from a distribution confined to the

training data. In other words, we would like the generative

model to go beyond the observed samples and learn to gen-

erate “unseen”, yet still plausible, data. In our work, we

present CompoNet, a generative neural network for 2D or

3D shapes that is based on a part-based prior, where the key

idea is for the network to synthesize shapes by varying both

the shape parts and their compositions. Treating a shape

not as an unstructured whole, but as a (re-)composable set

of deformable parts, adds a combinatorial dimension to the

generative process to enrich the diversity of the output, en-

couraging the generator to venture more into the “unseen”.

We show that our part-based model generates richer vari-

ety of plausible shapes compared with baseline generative

models. To this end, we introduce two quantitative metrics

to evaluate the diversity of a generative model and assess

how well the generated data covers both the training data

and unseen data from the same target distribution.

1. Introduction

Learning generative models of shapes and images has

been a long standing research problem in visual comput-

ing. Despite the remarkable progress made, an inherent and

reoccurring limitation still remains: a generative model is

often only as good as the given training data, as it is always

trapped or bounded by the empirical distribution of the ob-

served data. More often than not, what can be observed

is not sufficiently expressive of the true target distribution.

(a) Baseline (b) Part-based generation

Figure 1: CompoNet, our part-based generative model (b)

covers the “unseen” data significantly more than the base-

line (a). Generated data (pink dots) by two methods are dis-

played over training data (purple crosses) and unseen data

(green crosses) from the same target distribution. The data

is displayed via PCA over a classifier feature space, with

the three distributions summarized by ellipses, for illustra-

tion only. A few samples of training, unseen, and generated

data are displayed to reveal their similarity/dissimilarity.

Hence, the generative power of a learned model should not

only be judged by the plausibility of the generated data as

confined by the training set, but also its diversity, in partic-

ular, by the model’s ability to generate plausible data that

is sufficiently far from the training set. Since the target dis-

tribution which encompasses both the observed and unseen

data is unknown, the main challenge is how to effectively

train a network to learn to generate the “unseen”, without

making any compromising assumption about the target dis-

tribution. Due to the same reason, even evaluating the gen-

erative power of such a network is a non-trivial task.

We believe that the key to generative diversity is to en-

able more drastic changes, i.e., non-local and/or structural

transformations, to the training data. At the same time, such

changes must be within the confines of the target data dis-

tribution. In our work, we focus on generative modeling of

2D or 3D shapes, where the typical modeling constraint is

to produce shapes belonging to the same category as the ex-
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Figure 2: The two training units of CompoNet, our part-based generative model: The first unit, the part synthesis unit, consists

of parallel generative AEs; an independent AE for each semantic part of the shape. The second unit, the part composition

unit, learns to compose the encoded parts. We use the pre-trained part encoders from the part synthesis unit. Then, a noise

vector z, is concatenated to the parts’ latent representation and fed to the composition network, which outputs transformation

parameters per part. The parts are then warped and combined to generate the entire input sample.

emplars, e.g., chairs or vases. We develop a generative deep

neural network based on a part-based prior. That is, we

assume that shapes in the target distribution are composed

of parts, e.g., chair backs or airplane wings. The network,

coined CompoNet, is designed to synthesize novel parts, in-

dependently, and compose them to form a complete shape.

It is well-known that object recognition is intricately tied

to reasoning about parts and part relations [18, 43]. Hence,

building a generative model based on varying parts and their

compositions, while respecting category-specific part pri-

ors, is a natural choice and also facilitates grounding of the

generated data to the target object category. More impor-

tantly, treating a shape as a (re-)composable set of parts, in-

stead of a whole entity, adds a combinatorial dimension to

the generative model and improves its diversity. By synthe-

sizing parts independently and then composing them, our

network enables both part variation and novel combination

of parts, which induces non-local and more drastic shape

transformations. Rather than sampling only a single dis-

tribution to generate a whole shape, our generative model

samples both the geometric distributions of individual parts

and the combinatorial varieties arising from part composi-

tions, which encourages the generative process to venture

more into the “unseen”, as shown in Figure 1.

While the part-based approach is generic and not strictly

confined to specific generative network architecture, we de-

velop a generative autoencoder to demonstrate its potential.

Our generative AE consists of two parts. In the first, we

learn a distinct part-level generative model. In the second

stage, we concatenate these learned latent representation

with a random vector, to generate a new latent represen-

tation for the entire shape. These latent representations are

fed into a conditional parts compositional network, which

is based on a spatial transformer network (STN) [22].

We are not the first to develop deep neural networks for

part-based modeling. Some networks learn to compose im-

ages [29, 3] or 3D shapes [23, 6, 53], by combining existing

parts sampled from a training set or provided as input to

the networks. In contrast, our network is fully generative as

it learns both novel part synthesis and composition. Wang

et al. [44] train a generative adversarial network (GAN) to

produce semantically segmented 3D shapes and then refine

the part geometries using an autoencoder network. Li et

al. [28] train a VAE-GAN to generate structural hierarchies

formed by bounding boxes of object parts and then fill in

the part geometries using a separate neural network. Both

works take a coarse-to-fine approach and generate a rough

3D shape holistically from a noise vector. In contrast, our

network is trained to perform both part synthesis and part

composition (with noise augmentation); see Figure 2. Our

method also allows the generation of more diverse parts,

since we place less constraints per part while holistic mod-

els are constrained to generate all parts at once.

We show that the part-based CompoNet produces plau-

sible outputs that better cover unobserved regions of the tar-

get distribution, compared to baseline approaches, e.g., [1].

This is validated over random splits of a set of shapes be-

longing to the same category into a “seen” subset, for train-

ing, and an “unseen” subset. In addition, to evaluate the

generative power of our network relative to baseline ap-

proaches, we introduce two quantitative metrics to assess

how well the generated data covers both the training data

and the unseen data from the same target distribution.

2. Background and Related Work

Generative neural networks. In recent years, generative

modeling has gained much attention within the deep learn-

ing framework. Two of the most commonly used deep gen-

erative models are variational auto-encoders (VAE) [25] and
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Figure 3: Novel shape generation at inference time. We

randomly sample the latent spaces for shape parts and part

composition. Using the pre-trained part-decoders and the

composition network, we generate novel parts and then

warp them to produce a coherent whole shape.

generative adversarial networks (GAN) [15]. Both methods

have made remarkable progress in image and shape genera-

tion problems [47, 21, 37, 54, 45, 49, 44].

Many works are devoted to improve the basic models

and their training. In [16, 31, 4], new cost functions are

suggested to achieve smooth and non-vanishing gradients.

Sohn et al. [41] and Odena et al. [35] proposed condi-

tional generative models, based on VAE and GAN, respec-

tively. Hoang et al. [17] train multiple generators to ex-

plore different modes of the data distribution. Similarly,

MIX+GAN [2] uses a mixture of generators to improve di-

versity of the generated distribution, while a combination

of multiple discriminators and a single generator aims at

constructing a stronger discriminator to guide the genera-

tor. GMAN [10] explores an array of discriminators to boost

generator learning. Some methods [20, 30, 51] use a global

discriminator together with multiple local discriminators.

Following PointNet [36], a generative model that works

directly on point clouds was proposed. Achlioptas et al. [1]

proposed an AE+GMM generative model for point clouds,

which is considered state-of-the-art.

Our work is orthogonal to these methods. We address the

case where the generator is unable to generate other valid

samples since they are not well represented in the training

data. We show that our part-based priors can assist the gen-

eration process and extend the generator’s capabilities.

Learning-based shape synthesis. Li et al. [28] present

a top-down and structure-oriented approach for 3D shape

generation. They learn symmetry hierarchies [46] of shapes

with an autoencoder and generate variations of these hier-

archies using an VAE-GAN. The nodes of the hierarchies

are independently instantiated with parts. However, these

parts are not necessarily connected and their aggregation

does not form a coherent connected shape. In our work, the

shapes are generated coherently as a whole, and special care

is given to the inter-parts relation and their connectivity.

Most relevant to our work is the shape variational auto-

encoder by Nash and Williams [34], where a point-cloud

based autoencoder is developed to learn a low-dimensional

latent space. Then novel shapes can be generated by sam-

pling vectors in the learned space. Like our method, the

generated shapes are segmented into semantic parts. In con-

trast however, they require a one-to-one dense correspon-

dence among the training shapes, since they represent the

shapes as an order vector. Their autoencoder learns the

overall (global) 3D shapes with no attention to the local

details. Our approach pays particular attention to both the

generated parts and their composition.

Inverse procedural modeling aims to learn a generative

procedure from a given set of exemplars. Some recent

works, e.g., [38, 52, 39], have focused on developing neural

models, such as autoencoders, to generate the shape syn-

thesis procedures or programs. However, current inverse

procedural modeling methods are not designed to generate

unseen data that are away from the exemplars.

Assembly-based synthesis. The early and seminal work

of Funkhouser et al. [14] composes new shapes by re-

trieving relevant shapes from a repository, extracting shape

parts, and gluing them together. Many follow-up works [5,

42, 7, 23, 48, 24, 12, 19] improve the modeling pro-

cess with more sophisticated techniques that consider the

part relations or shape structures, e.g., employing Bayesian

networks or modular templates. We refer to recent sur-

veys [32, 33] for an overview of these and related works.

In the image domain, recent works [29, 3] develop neu-

ral networks to assemble images or scenes from existing

components. These works utilized an STN [22] to compose

the components to a coherent image/scene. In our work, an

STN is integrated as an example for prior information re-

garding the data generation process. In contrast to previous

works, we first synthesize parts using multiple generative

AEs and then employ an STN to compose the parts.

Recent concurrent efforts [9, 27] also propose deep neu-

ral networks for shape modeling using a part-based prior,

but on voxelized representations. Dubrovina et al. [9] en-

code shapes into a factorized embedding space, where shape

composition and decomposition become simple linear oper-

ations on the embedding coordinates, allowing both shape

reconstruction and part exchange. While this work was not

going after generative diversity, the network of Li et al. [27]

also combines part generation with assembly. Their re-

sults reinforce our premise that shape generation using part

synthesis and composition does improve diversity, which is

measured using inception scores in their work.

3. Method

In this section, we present CompoNet, our generative

model which learns to synthesize shapes that can be repre-
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sented as a composition of distinct parts. At training time,

every shape is pre-segmented to its semantic parts, and we

assume that the parts are independent of each other. Thus,

every combination of parts is valid, even if the training set

may not include it. As shown in Figure 2, CompoNet con-

sists of two units: a generative model of parts and a unit that

combines the generated parts into a global shape.

3.1. Part synthesis unit

We first train a generative model that estimates the

marginal distribution of each part separately. In the 2D

case, we use a standard VAE as the part generative model,

and train an individual VAE for each semantic part. Thus,

each part is fed into a different VAE and is mapped onto

a separate latent distribution. The encoder consists of sev-

eral convolutional layers followed by Leaky-ReLU activa-

tion functions. The final layer of the encoder is a fully con-

nected layer producing the latent distribution parameters.

Using the reparameterization trick, the latent distribution is

sampled and decoded to reconstruct each individual input

part. The decoder mirrors the encoder network, applying

a fully connected layer followed by transposed convolution

layers with ReLU non-linearity functions. In the 3D case,

we borrow an idea from Achlioptas et al. [1], and replace

the VAE with an AE+GMM, where we approximate the la-

tent space of the AE by using a GMM. The encoder is based

on PointNet [36] architecture and the decoder consists of

fully-connected layers. The part synthesis process is visu-

alized in Figure 2, part synthesis unit.

Once the part synthesis unit is trained, the part encoders

are fixed, and are used to train the part composition unit.

3.2. Parts composition unit

This unit composes the different parts into a coherent

shape. Given a shape and its parts, where missing parts

are represented by null shapes (i.e., zeros), the pre-trained

encoders encode the corresponding parts (marked in blue

in Figure 2). At training time, these generated codes are

fed into a composition network which learns to produce

transformation parameters per part (scale and translation),

such that the composition of all the parts forms a coher-

ent complete shape. The loss measures the similarity be-

tween the input shape and the composed shape. We use

Intersection-over-Union (IoU) as our metric in the 2D do-

main, and Chamfer distance for the 3D domain, where the

Chamfer distance is given by

dC(Q,P ) =
∑

q∈Q

min
p∈P

(q − p)2 +
∑

p∈P

min
q∈Q

(p− q)2, (1)

where P and Q are points clouds which represent the 3D

shapes. Note that the composition network yields a set of

affine (similarity) transformations, which are applied on the

input parts, and does not directly synthesizes the output.

The composition network does not learn the composi-

tion based solely on part codes, but also relies on an input

noise vector. This network is another generative model on

its own, generating the scale and translation from the noise,

conditioned on the codes of the semantic parts. This addi-

tional generative model enriches the variation of the gener-

ated shapes, beyond the generation of the parts.

3.3. Novel shape generation

At inference time, we sample the composition vector

from a normal distribution. In the 2D case, since we use

VAEs, we sample the part codes from normal distribution

as well. For 3D, we sample the code of each part from

its GMM distribution, randomly sampling one of the Gaus-

sians. When generating a new shape with a missing part, we

use the embedding of the part’s null vector, and synthesize

the shape from that compound latent vector; see Figure 3.

We feed each section of the latent vector representing a part

to its associated pre-trained decoder from the part synthesis

unit, to generate novel parts. In parallel, the entire shape

representation vector is fed to the composition network to

generate scale and translation parameters for each part. The

synthesized parts are then warped according to the gener-

ated transformations and combined to form a novel shape.

4. Architecture and implementation details

The backbone architecture of our part based synthesis is

an AE: VAE for 2D and AE+GMM for 3D.

4.1. Part­based generation

2D Shapes. The input parts are assumed to have a size

of 64 × 64 × 1. We denote C(k) (TC(k)) as a 2D con-

volution (transpose convolution) layer with k filters of size

5 × 5 and stride 2, followed by batch normalization and

a leaky-ReLU (ReLU) activation. A fully-connected layer

with k outputs is denoted by L(k). The encoder takes a

2D part as input and has the structure of C(8) − C(16) −
C(32)−C(64)−L(10). The decoder mirrors the encoder as

L(1024)−TC(32)−TC(16)−TC(8)−TCS(1), where in

the last layer, TCS, we omitted batch normalization and re-

placed ReLU by a Sigmoid activation. The output of the de-

coder is equal in size to the 2D part input, (64×64×1). We

use an Adam optimizer with learning rate = 2e−4, β1 = 0.5
and β2 = 0.999. The batch size is set to 64.

3D point clouds. Our input parts are assumed to have a

fixed number of point for each part. Different parts can

vary in number of points, but this becomes immutable once

training has started. We used 400 points per part. We de-

note MP as a feature-wise max-pooling layer and 1DC(k)
as a 1D convolution layer with k filters of size 1 and stride

1, followed by a batch normalization layer and a ReLU ac-

tivation function. The encoder takes a part with 400 × 3
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as input. The encoder structure is 1DC(64)− 1DC(64)−
1DC(64) − 1DC(128) − 1DC(64) − MP . The decoder

consist of fully-connected layers. We denote L(k) to be a

fully-connected layer with k output nodes, followed by a

batch normalization layer and a ReLU activation function.

The decoder takes a latent vector of size 64 as input. The de-

coder structure is L(256)−L(256)−LC(400× 3), where

in the last layer, LC, we omitted the batch-normalization

layer and the ReLU activation function. The output of the

decoder is equal in size to the input (400×3). For each AE,

we use a GMM with 20 Gaussians, to model their latent

space distribution. We use an Adam optimizer with learn-

ing rate = 0.001, β1 = 0.9 and β2 = 0.999. The batch size

is set to 64.

4.2. Part composition

2D. The composition network encodes each semantic part

by the associated pre-trained VAE encoder, producing a 10-

dim vector for each part. The composition noise vector is

set to be 8-dim. The part codes are concatenated together

with the noise, yielding a 48-dim vector. The composition

network structure is L(128)− L(128)− L(16). Each fully

connected layer is followed by a batch normalization layer,

a ReLU activation function, and a Dropout layer with keep

rate of 0.8, except for the last layer. The last layer outputs

a 16-dim vector, four values per part. These four values

represent the scale and translation in the x and y axes. We

use the grid generator and sampler, suggested by [22], to

perform differential transformation. The scale is initialized

to 1 and the translation to 0. We use a per-part IoU loss and

an Adam optimizer with learning rate = 0.001, β1 = 0.9
and β2 = 0.999. The batch size is set to 64.

3D. The composition network encodes each semantic part

by the associated pre-trained AE encoder, producing a 64-

dim vector for each part. The composition noise vector is

set to size 16. The parts codes are concatenated together

with the noise vector, yielding a 272-dim vector. The com-

position network structure is L(256) − L(128) − L(24).
Each fully connected layer is followed by a batch normal-

ization layer and a ReLU activation function, except for the

last layer. The last layer outputs a 24-dim vector, six values

per part. These six values represent the scale and translation

in the x, y and z axes. The scale is initialized to 1 and the

translation to 0. We then reshape the output vector to match

an affine transformation matrix:

M =





sx 0 0 tx
0 sy 0 ty
0 0 sz tz



 (2)

The task of performing an affine transformation on point

clouds is easy, we simply concatenate 1 to each point

(x, y, z, 1) and multiply the transformation matrix with each

point. We use Chamfer distance loss and an Adam opti-

mizer with learning rate = 0.001, β1 = 0.9 and β2 = 0.999.

The batch size is set to 64.

5. Results and evaluation

In this section, we analyze the results of applying our

generative approach to 2D and 3D shape collections.

5.1. Datasets

Projected COSEG. We used the COSEG dataset [40]

which consists of 300 vases, segmented to four different se-

mantic labels: top, handle, body and base (each vase may

or may not contain any of these parts). Similar to the pro-

jection procedure in [13], each vase is projected from the

main view to constitute a collection of 300 silhouettes of

size 64 × 64, where each semantic part is stored in a dif-

ferent channel. In addition, we create four sets, one per

part. The parts are normalized by finding their axis-aligned

bounding box and stretching it to a 64× 64 resolution.

Shape-Net. For 3D data, we chose to demonstrate our

method on point clouds taken from ShapeNet part dataset

[50]. We chose to focus on two categories: chairs and air-

planes. Point clouds, compared to 3D voxels, enable higher

resolution while keeping the model complexity relatively

low. Similar to the 2D case, each shape is divided into its

semantic parts (Chair: legs, back, seat and arm-rests, Air-

plane: tail, body, engine and wings). We first normalize

each shape to the unit square. We require an equal number

of points N in each point cloud, thus, we randomly sample

each part to N = 400 points. If a part consists of M < N

points, we randomly duplicate N − M of its points (since

our non-local operation preforms only max global pooling,

the duplication of points has no affect on the embedding

of the shape). This random sampling process occurs ev-

ery epoch. For consistency between the shape and its parts,

we first normalize the original parts to the unit square, and

only then sample (or duplicate) the same points that were

selected to generate the complete sampled shape.

Seen and Unseen splits. To properly evaluate the diver-

sity of our generative model, we divide the resulting collec-

tions into two subsets: (i) training (seen) set and (ii) unseen

set. The term unseen emphasizes that unlike the nominal

division into train and test sets, the unseen set is not rep-

resented well in the training set. Thus, there exists an un-

bridgeable gap, by an holistic approach, between the unseen

set and the training set. To avoid bias during evaluation,

we preform several random splits for each seen-unseen split

percentage (e.g., 15%-85% seen-unseen in the 3D case; see

Table 1). In the 2D case, since the dataset is much smaller,

we used 50%-50% split between the training and unseen

sets. In both cases, the unseen set is used to evaluate the

ability of a model to generate diverse shapes.
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Figure 4: Representative samples of 3D shapes generated by our part-based generative network, CompoNet.

Figure 5: A gallery of 10 randomly sampled vases gener-

ated by CompoNet (top row) and below, their 3-nearest-

neighbors from the training set, based on pixel-wise Eu-

clidean distance. One can observe that the generated vases

are different from their nearest neighbors.

5.2. Baselines

For 2D shapes, we use a naive model - a one-channel

VAE. Its structure is identical to the part VAE with a latent

space of 48-dim. We feed it with a binary representation of

the data (a silhouette) as input. We use an Adam optimizer

with learning rate = 2e−4, β1 = 0.5 and β2 = 0.999. The

batch size is set to 64. In the 3D case, we use two baselines;

(i) a WGAN-GP [16] for point clouds and (ii) an AE+GMM

model [1], which generates remarkable 3D point cloud re-

sults. We train the baseline models using our 400-points per

part data set (1600×3 per shape). We use [1] official imple-

mentation and parameters, which also includes the WGAN-

GP implementation.

5.3. Qualitative evaluation

We evaluate our network, CompoNet, on 2D data and 3D

point clouds. Figure 4 shows some generated 3D results.

Unlike other naive approaches, we are able to generate ver-

satile samples beyond the empirical distribution. In order

to visualize the versatility, we present the nearest neighbor

of the generated samples in the training set. As shown in

Figure 5, for the 2D case, samples generated by our gener-

ative approach differ from the closest training samples. In

Figure 6 we also compare this qualitative diversity measure

with the baseline [1], showing that our generated samples

are more distinct from their nearest neighbors in the train-

ing set, compared to those generated by the baseline. In the

following sections, we quantify this attribute. More gener-

ated results can be found in the supplementary material.

5.4. Quantitative evaluation

We quantify the ability of our model to generate realistic

unseen samples using two novel metrics. To evaluate our

model, we use 5,000 randomly sampled shapes from our

trained model and from the baselines.

k-set-coverage. We define the k-set-coverage of set A by

set B as the percentage P of shapes from A which are one

of the k-nearest-neighbors of some shape in B. Thus, if

the set B is similar only to a small part of set A, the k-

Set-Coverage will be small and vice-versa. In our case, we

calculate the nearest neighbors using Chamfer distance. In

Figure 7, we compare the k-set-coverage of the unseen set

and the training set by our generated data and by the base-

line [1] generated data. It is clear that the baseline covers

the training better, since most of its samples lie close to it.

However, the unseen set is covered poorly by the baseline,

for all k, while, our method, balances between generating

seen samples and unseen samples.

Diversity. We develop a second measure to quantify the

generated unseen data, which relies on a trained classifier to

distinguish between the training and the unseen set. Then,

we measure the percentage of generated shapes which are

classified as belonging to the unseen set. The classifier ar-

chitecture is a straight-forward adaption of the encoder from

the part synthesis unit of the training process, followed by

fully connected layers which classify between unseen and

train sets (see supplementary file for details).

Table 1 shows some classification results for generated

vases, chairs, and airplanes by our method and two base-

lines. We can observe that when the seen set is relatively

small, e.g., 5% or 15% of the total, our model clearly per-

forms better than the baselines in terms of generative di-

versity, as exhibited by the higher levels of coverage over

the unseen set. However, as the seen set increases in size,

8764



Baseline [1] Ours

Figure 6: Qualitative comparison of diversity. The generated data of both methods (first row) is realistic. However, searching

for the nearest neighbors of the generated data in the training set (rows two to four) reveals that our method (right side)

exhibits more diversity compared to the baseline [1] (left side). Please note that the baseline’s shapes are presented in gray to

emphasize that the baseline generates the entire shape, which is not segmented to semantic parts.

Figure 7: k-set-overage comparison for chairs (left) and air-

planes (right) point clouds sets. We generate an equal num-

ber of samples in both our method and the baseline [1] and

calculate the k-set-coverage of both the training set and un-

seen set by them. While the baseline covers the training set

almost perfectly, it has lower coverage of the unseen set.

Our method CompoNet balances between generating sam-

ples similar to the training set and the unseen set.

e.g., to 30%, the difference between our method and the

baselines becomes smaller. We believe that this trend is not

a reflection that our method starts to generate less diverse

samples, but rather that the unseen set is becoming more

similar to the seen set, hence less diverse itself.

To visualize the coverage of seen/unseen regions by the

generated samples, we use the classifier’s embedding (the

layer before the final fully-connected layer) and reduce its

dimension by projecting it onto the 2D PCA plane, as shown

in Figures 1 and 8. The training and unseen sets have over-

Category Vase Chair Airplane

VAE 0.3±0.08 - -

WGAN-GP - 0.67±0.02 0.66±0.03

AE+GMM [1] - 0.61±0.03 0.67±0.12

Ours 0.46±0.08 0.76±0.06 0.8±0.02

(a) 2D vase: 50%-50% (seen-unseen); 3D: 15%-85% (seen-unseen)

Category WGAN-GP AE+GMM [1] Ours

Chair 0.75±0.05 0.57±0.06 0.87±0.05

Airplane 0.76±0.07 0.43±0.1 0.86±0.04

(b) 5%-95% (seen-unseen)

Category WGAN-GP AE+GMM [1] Ours

Chair 0.54±0.07 0.63±0.07 0.55±0.01

Airplane 0.61±0.07 0.52±0.12 0.65±0.1

(c) 30%-70% (seen-unseen)

Table 1: Comparing generative diversity between baselines

and CompoNet. We report the percentage of generated sam-

ples that are classified as belonging to the unseen set, aver-

aged over five random splits, for three split percentages.

lap in this representation, reflecting data which is similar be-

tween the two sets. While both methods are able to generate

unseen samples in the overlap region, the baseline samples

are biased toward the training set. In contrary, our generated

samples are closer to the unseen.
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Figure 8: A visualization of the classifiers’ feature spaces

for 3D data. The classifier is trained to distinguish between

the training set (purple crosses) and the unseen set (green

crosses). The two sets are clearly visible in the resulting

space. While the baseline method [1] (pink dots) generates

samples similar to the seen set, CompoNet (pink dots) gen-

erates samples in the unseen region.

Category WGAN-GP AE+GMM [1] Ours

Chair 0.3±0.02 0.19±0.006 0.02±0.003

Airplanes 0.32±0.016 0.14±0.007 0.07±0.013

Table 2: The JSD distance between the unseen set and the

generated samples from CompoNet and the baselines, aver-

aged over five random seen-unseen splits.

JSD. The Jensen-Shannon divergence is a distance mea-

sure between two probability distributions and is given by

JSD (S||T ) =
1

2
D (S||M) +

1

2
D (T ||M) , (3)

where S, T are probability distributions, M = 1

2
(S + T )

and D is the KL-divergence [26]. Following [1] we de-

fine the occupancy probability distribution for a set of point

clouds by counting the number of points lying within each

voxel in a regular voxel grid. Assuming the point clouds

are normalized and axis-aligned, the JSD between two such

probabilities measure the degree to which two point cloud

sets occupy similar locations. Thus, we calculate the occu-

pancy matrix for the unseen set and compare it to the occu-

pancy matrix of samples generated by our method and the

baselines. The results are summarized in Table 2 and clearly

show that our generated samples are closer to the unseen set

structure. The number of voxels used is 283, as in [1] and

the size of all point clouds sets is equal.

6. Conclusion, limitation, and future work

We believe that effective generative models should strive

to venture more into the “unseen” data of a target distribu-

tion, beyond the observed exemplars from the training set.

Covering both the seen and the unseen implies that the gen-

erated data is both fit and diverse [48]. Fitness constrains

the generated data to be close to data from the target do-

main, both the seen and the unseen. Diversity ensures that

the generated data is not confined only to the seen data.

We have presented a generic approach for “fit-n-diverse”

shape modeling based on a part-based prior, where a shape

is not viewed as an unstructured whole but as the result of

a coherent composition of a set of parts. This is realized by

CompoNet, a novel deep generative network composed of

a part synthesis unit and a part composition unit. Novel

shapes are generated via inference over random samples

taken from the latent spaces of shape parts and part com-

positions. Our work also contributes two novel measures to

evaluate generative models: the k-set-coverage and a diver-

sity measure which quantifies the percentage of generated

data classified as “unseen” vs. data from the training set.

Compared to baseline approaches, our generative net-

work demonstrates superiority, but still somewhat limited

diversity, since the generative power of the part-based ap-

proach is far from being fully realized. Foremost, an in-

trinsic limitation of our composition mechanism is that it

is still “in place”: it does not allow changes to part struc-

tures or feature transfers between different part classes. For

example, enabling a simple symmetric switch in part com-

position would allow the generation of right hand images

when all the training images are of the left hand.

CompoNet can be directly applied for generative mod-

eling of organic shapes. But in terms of plausibility, such

shapes place a more stringent requirement on coherent and

smooth part connections, an issue that our current method

does not account for. Perfecting part connections can be a

post process. Learning a deep model for the task is worth

pursuing for future work. Our current method is also lim-

ited by the spatial transformations allowed by the STN dur-

ing part composition. As a result, we can only deal with

man-made shapes without part articulation.

As more immediate future work, we would like to apply

our approach to more complex datasets, where parts can be

defined during learning. In general, we believe that more

research shall focus on other generation related prior infor-

mation, besides parts-based priors. Further down the line,

we envision that the fit-n-diverse approach, with generative

diversity, will form a baseline for creative modeling [8], po-

tentially allowing part exchanges across different object cat-

egories. This may have to involve certain perceptual studies

or scores, to judge creativity. The compelling challenge is

how to define a generative neural network with sufficient

diversity to cross the line of being creative [11].
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Alexei A Efros. Generative visual manipulation on the nat-

ural image manifold. In Proc. Euro. Conf. on Computer Vi-

sion, pages 597–613, 2016. 3

8768


