
Zero-Shot Anticipation for Instructional Activities

Fadime Sener

University of Bonn, Germany

sener@cs.uni-bonn.de

Angela Yao

National University of Singapore

ayao@comp.nus.edu.sg

Figure 1: We learn procedural knowledge from large text corpora and transfer it to the visual domain to anticipate the future. Our system

is composed of four RNNs: a sentence encoder and decoder, a video encoder and a recipe network.

Abstract

How can we teach a robot to predict what will happen

next for an activity it has never seen before? We address

this problem of zero-shot anticipation by presenting a hi-

erarchical model that generalizes instructional knowledge

from large-scale text-corpora and transfers the knowledge

to the visual domain. Given a portion of an instructional

video, our model predicts coherent and plausible actions

multiple steps into the future, all in rich natural language.

To demonstrate the anticipation capabilities of our model,

we introduce the Tasty Videos dataset, a collection of 2511

recipes for zero-shot learning, recognition and anticipation.

1. Introduction

Imagine a not-so-distant future, where your kitchen is

serviced by a robot chef1. How should we teach robots to

cook? By reading all the recipes on the web? By watching

all the cooking videos on YouTube? The ability to learn and

generalize from a set of instructions, be it in text, image, or

video form, is a highly challenging and open problem faced

by those working in machine learning and robotics.

In this work, we limit our scope of training the next

robo-chef to predicting subsequent steps as it watches a hu-

man cook a never-before-seen dish. We frame our problem

as one of future action prediction in a zero- and/or few-

shot learning scenario. This best reflects the situation un-

der which service robots will be introduced [18, 49]. The

robot is pre-trained extensively, but not necessarily with

knowledge matching exactly the deployment environment,

thereby forcing it to generalize from prior knowledge. At

1Robots cooking specific recipes [3, 9, 51] already exist!

the same time, it is important for the robot to anticipate what

will happen in the future, to ensure a safe and smooth col-

laborative experience with the human [28, 56].

Instructional data and in particular cooking recipes can

be readily found on the web [1, 2]. The richest forms are

multimodal, e.g. images plus text, or videos with narrations.

Such data fits well into our scenario in which the service

robot visually recognizes the current context and makes fu-

ture predictions. However, learning complex, multi-step

activities requires significant amounts of data, and despite

their online abundance, it is still difficult to find sufficient

examples in multi-modal form. Furthermore, learning the

visual appearance of specific steps would require tempo-

rally aligned data, which is less common and/or expensive

to obtain. Our strategy is therefore to separate the procedu-

ral learning from the visual appearance learning. Procedural

knowledge is learned from text, which is readily available in

large corpora on the scale of millions [46]. This knowledge

is then transferred to video, so that the learning of visual ap-

pearances can then be simplified to only a grounding model

done via aligned video and text (Fig. 1). More specifically,

we encode text and/or video into context vectors. The con-

text is fed to a recipe network, which models the sequential

structure of the recipe and makes following step predictions

in vector form which are then decoded back into sentences.

Our work is highly novel in two key regards. First and

foremost, we are working with zero-shot action anticipa-

tion under a semi-supervised setting, as we target predic-

tion for never-before-seen dishes. We achieve this by gen-

eralizing cooking knowledge from large-scale text corpora

and then transferring the knowledge to the visual domain.

This relieves us of the burden and impracticality of provid-

862



ing annotations for a domain in which there are virtually

unlimited number of categories (dishes) and sub-categories

(instructional steps). We are the first to tackle such a prob-

lem in this form; prior works in complex activity recogni-

tion are severely limited in the number of categories and

steps [6, 29, 30, 43], while works in action anticipation rely

on strong supervision [5, 31, 61].

Second, we do not work with closed categories derived

from word tags; instead we train with and also predict full

sentences, e.g. ‘Cook the chicken wing until both sides are

golden brown.’ vs. ‘cook chicken’. This design choice

makes our problem significantly more challenging, but also

offers several advantages. First of all, it adds richness to

the instruction, since natural language conveys much more

information than simple text labels [32, 59]. It also allows

for anticipation of not only actions but also objects and at-

tributes. Finally, as a byproduct, it facilitates data collec-

tion, as the number of class-based annotations grows expo-

nentially with the number of actions, objects and attributes

and leads to very long-tailed distributions [16].

When transferring knowledge from text recipes to

videos, we need to ground the two domains with video with

temporally aligned captions. To the best of our knowledge,

YoucookII [59] is currently the only dataset with such la-

bels. However, it lacks diversity in the number of dishes

and therefore unique recipe steps. As such, we collect and

present our new Tasty Videos dataset, a diverse set of 2511

different cooking recipes2 accompanied by a video, ingredi-

ent list, and temporally aligned recipe steps. Video footage

is taken from a fixed birds-eye view and focuses almost ex-

clusively on the cooking instructions, making it well-suited

for understanding the procedural steps.

We summarize our main contributions as follows:

• We are the first to explore zero-shot action anticipa-

tion by generalizing knowledge from large-scale text-

corpora and transferring it to the visual domain.

• We propose a modular hierarchical model for learning

multi-step procedures with text and visual context.

• Our model generalizes cooking knowledge and is able

to predict coherent and plausible instructions for mul-

tiple steps into the future. The predictions, in rich nat-

ural language, score higher in standard NLP metrics

than video captioning methods which actually observe

the visual data on YouCookII and Tasty Videos.

• We demonstrate how the proposed approach can be

useful for making future step predictions in a zero-shot

scenario compared to a supervised setting.

• We present a new and highly diverse dataset of 2511

cooking recipes which will be made publicly available

and be of interest for those working in anticipation,

complex activity recognition and video captioning.

2 Collected from the website https://tasty.co/

2. Related Works

Understanding complex activities and their sub-

activities has been addressed typically as a supervised

video segmentation and recognition problem [29, 40, 43].

Newer works are weakly-supervised, using cues from nar-

rations [34, 48, 6] or receiving ordered sequences of the ac-

tions in videos [11, 24, 41], or fully unsupervised [47]. Our

work is similar to those using text cues; however, we do

not rely on aligned visual-text data for learning the activity

models [6, 48] but rather for grounding visual data.

Action prediction is a new and fast-growing area. Meth-

ods for early event recognition [45, 23, 57] are sometimes

(confusingly) also referred to as action prediction, but are

incomplete inference methods, since a portion of the ac-

tion has been observed. Prior work in forecasting activi-

ties before making any observations have been limited to

simple movement primitives [28], or personal interactions

[31, 55]. Single predictions are made and the anticipated

actions typically occur within a few seconds time frame.

Recently, [5] predicts multiple actions into the future; our

method also predicts multiple steps but unlike [5], we do

not require repetitions of activity sequences for training.

The cooking domain is popular in NLP research, since

recipes are rich in natural language yet are reasonably lim-

ited in scope. Modelling the procedural aspects of text

and generating coherent recipes span several decades of

work [15, 19, 25, 36, 37]. In multimedia, recipes are in-

volved in tasks such as food recognition [21], recommender

systems [35] and indexing and retrieval [12, 46]. In com-

puter vision, cooking has been well-explored for complex

and fine-grained activity recognition [30, 43, 17, 42, 16, 59],

temporal segmentation [30, 59] and captioning [44, 39, 60].

Several cooking and kitchen-related datasets have been pre-

sented [16, 34, 43, 30, 59] and feature a wide variety of la-

bels depending on the task. Two [34, 59] are similar to our

new dataset, in that they include recipe texts and accompa-

nying videos. However, YouCookII [59] has limited diver-

sity in activities with only 89 dishes; [34] is larger in scale,

but lacks temporal alignments between texts and videos.

3. Modelling Sequential Instructions

Sequence-to-sequence learning [50] has made it possible

to successfully generate continuous text and build dialogue

systems [13, 54]. Recurrent neural networks (RNNs) are

used to learn rich representations of sentences [22, 7, 27]

in an unsupervised manner, using the extensive amount of

text that exists in books and web corpuses. However, for

instructional text such as cooking recipes, such represen-

tations tend to do poorly, and suffer from coherence from

one time step to the next, since they do not fully capture

the underlying sequential nature of the instruction set. As

such, we propose a hierarchical model with four compo-

nents, where the sentences and the steps of the recipe are

863



Figure 2: Left: our visual model, composed of video encoder, sentence decoder and recipe RNN. Given the ingredients as initial input and

context in visual form, the recipe RNN predicts future steps decoded back into natural language. Right: next step prediction of our visual

model. The blue sentences are our model’s predictions. Note that our model predicts the next steps before seeing these segments!

represented by two dedicated RNNs: the sentence encoder

and the recipe RNN respectively. A third RNN decodes

predicted recipe steps back into sentence form for human-

interpretable results (sentence decoder). These three RNNs

are learned jointly as an auto-encoder in an initial training

step. A fourth RNN encoding visual evidence (video en-

coder) is then learned in a subsequent step to replace the

sentence encoder to enable interpretation and future predic-

tion from video. An overview is shown in Fig. 1, while

details of the RNNs are given in Sections 3.1 to 3.3.

3.1. Sentence Encoder and Decoder

The sentence encoder produces a fixed-length vector

representation of each recipe step. We use a bi-directional

LSTM and following [14] we apply a max pooling over

each dimension of the hidden units. More formally, let

sentence sj from step j of a recipe (we assume each step

is one sentence) be represented by M words, i.e. sj =
{wt

j }t =1 :::M and x t
j be the word embedding of word wt

j .

For each sentence j , at each (word) step t , the bi-directional

LSTMse outputs y t
j , where

y t
j =

�
LSTMse

�
{x1

j ; :::; x t
j }

�
; LSTMse

�
{xM

j ; :::; x t
j }

��
(1)

which is a concatenation of the hidden states from the for-

wards and backwards pass of LSTMse. The overall sentence

representation r j is determined by a dimension-independent

max-pooling over the time steps, i.e.

(r j )d = max
t 2f 1;:::;M g

(y t
j )d; (2)

where (·)d; d∈{1; :::; D} indicates the d-th element of the

D -dimensional bi-directional LSTM outputs y t
j . The de-

coder is an LSTM-based neural language model which con-

verts the fixed-length representation of the steps back into

sentences. More specifically, given the prediction r̂ j from

the recipe RNN of step j , it decodes the sentence ŝj

ŝj = LSTMd(r̂ j ) = {ŵ1
j ; :::; ŵM̂

j }: (3)

3.2. Recipe RNN

We model the sequential ordering of recipe steps with an

LSTM which takes as input {r j }j =1 ;:::;N , i.e. fixed-length

representations of the steps of a recipe with N steps, where

j indicates the step index. At each (recipe) step, the hidden

state of the recipe RNN h j can be considered a fixed-length

representation of all recipe steps {s1; :::; sj } seen up to step

j ; we directly use this hidden state vector as a prediction of

the sentence representation for step j + 1 , i.e.

r̂ j +1 = h j = LSTMr({r 0; :::; r j }): (4)

The hidden state of the last step hN can be considered a rep-

resentation of the entire recipe. Due to the standard recur-

sion of the hidden states in LSTMr, each hidden state vector

and therefore each future step prediction is conditioned on

the previous steps. This allows to predict recipe steps which

are plausible and coherent with respect to previous steps.

Recipes usually include an ingredient list which is a rich

source of information that can also serve as a strong mod-

elling cue [25, 46]. To incorporate the ingredients, we form

an ingredient vector I for each recipe in the form of a one-

hot encoding over a vocabulary of ingredients. I is then

transformed with a separate fully connected layer in the

recipe RNN to serve as the initial input, i.e. r 0 = f (I ):

3.3. Video Encoder

For inference, we would like the recipe RNN to interpret

sentences from text inputs and also visual evidence. Due

to the modular nature of our proposed model, we can con-

veniently replace the sentence encoder with an analogous

video encoder. Suppose the j th video segment cj is com-

posed of L frames, i.e. cj = {f t
j }t =1 ;:::;L . Each frame f t

j is

represented as a high-level CNN feature vector – we use the

last fully connected layer output of ResNet-50 [20] before

the softmax layer. Similar to the sentence encoding r j in

Eqs. 1 and 2, we determine the video encoding vector v j

by applying a dimension-independent max pooling over the

time steps of zt
j , where :

zt
j =

�
LSTMve

�
{f 1

j ; :::; f t
j }

�
; LSTMve

�
{f M

j ; :::; f t
j }

��
: (5)

The video encoding LSTMve is trained such that v j can di-

rectly replace r j , as detailed in the following.

864
















