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Figure 1: Image generation learned from a single training image. We propose SinGAN–a new unconditional generative

model trained on a single natural image. Our model learns the image’s patch statistics across multiple scales, using a

dedicated multi-scale adversarial training scheme; it can then be used to generate new realistic image samples that preserve

the original patch distribution while creating new object configurations and structures.

Abstract

We introduce SinGAN, an unconditional generative

model that can be learned from a single natural image.

Our model is trained to capture the internal distribution of

patches within the image, and is then able to generate high

quality, diverse samples that carry the same visual content

as the image. SinGAN contains a pyramid of fully convolu-

tional GANs, each responsible for learning the patch distri-

bution at a different scale of the image. This allows generat-

ing new samples of arbitrary size and aspect ratio, that have

significant variability, yet maintain both the global struc-

ture and the fine textures of the training image. In contrast

to previous single image GAN schemes, our approach is not

limited to texture images, and is not conditional (i.e. it gen-

erates samples from noise). User studies confirm that the

generated samples are commonly confused to be real im-

ages. We illustrate the utility of SinGAN in a wide range of

image manipulation tasks.

1. Introduction

Generative Adversarial Nets (GANs) [19] have made a

dramatic leap in modeling high dimensional distributions

of visual data. In particular, unconditional GANs have

shown remarkable success in generating realistic, high qual-

ity samples when trained on class specific datasets (e.g.,

faces [33], bedrooms[47]). However, capturing the distribu-

tion of highly diverse datasets with multiple object classes

(e.g. ImageNet [12]), is still considered a major challenge

and often requires conditioning the generation on another

input signal [6] or training the model for a specific task (e.g.

super-resolution [30], inpainting [41], retargeting [45]).

Here, we take the use of GANs into a new realm – un-

conditional generation learned from a single natural image.

Specifically, we show that the internal statistics of patches

within a single natural image typically carry enough infor-

mation for learning a powerful generative model. SinGAN,

our new single image generative model, allows us to deal

with general natural images that contain complex structures

and textures, without the need to rely on the existence of a

database of images from the same class. This is achieved by

a pyramid of fully convolutional light-weight GANs, each

is responsible for capturing the distribution of patches at

a different scale. Once trained, SinGAN can produce di-

verse high quality image samples (of arbitrary dimensions),

which semantically resemble the training image, yet contain

new object configurations and structures (Fig. 1).

Modeling the internal distribution of patches within a

single natural image has been long recognized as a pow-

erful prior in many computer vision tasks [64]. Classi-

cal examples include denoising [65], deblurring [39], su-

per resolution [18], dehazing [2, 15], and image editing

[37, 21, 9, 11, 50]. The most closley related work in

this context is [48], where a bidirectional patch similar-

ity measure is defined and optimized to guarantee that the

patches of an image after manipulation are the same as the

original ones. Motivated by these works, here we show
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Figure 2: Image manipulation. SinGAN can be used in various image manipulation tasks, including: transforming a paint

(clipart) into a realistic photo, rearranging and editing objects in the image, harmonizing a new object into an image, image

super-resolution and creating an animation from a single input. In all these cases, our model observes only the training image

(first row) and is trained in the same manner for all applications, with no architectural changes or further tuning (see Sec. 4).

how SinGAN can be used within a simple unified learning

framework to solve a variety of image manipulation tasks,

including paint-to-image, editing, harmonization, super-

resolution, and animation from a single image. In all these

cases, our model produces high quality results that preserve

the internal patch statistics of the training image (see Fig. 2

and our project webpage). All tasks are achieved with the

same generative network, without any additional informa-

tion or further training beyond the original training image.

1.1. Related Work

Single image deep models Several recent works pro-

posed to “overfit” a deep model to a single training example

[51, 60, 46, 7, 1]. However, these methods are designed

for specific tasks (e.g., super resolution [46], texture ex-

pansion [60]). Shocher et al. [44, 45] were the first to in-

troduce an internal GAN based model for a single natural

image, and illustrated it in the context of retargeting. How-

ever, their generation is conditioned on an input image (i.e.,

mapping images to images) and is not used to draw random

samples. In contrast, our framework is purely generative

(i.e. maps noise to image samples), and thus suits many dif-

ferent image manipulation tasks. Unconditional single im-

age GANs have been explored only in the context of texture

generation [3, 27, 31]. These models do not generate mean-

ingful samples when trained on non-texture images (Fig. 3).

Our method, on the other hand, is not restricted to texture

and can handle general natural images (e.g., Fig. 1).

Training Image

SinGAN (Ours)

PSGAN

Deep Texture Synthesis

Figure 3: SinGAN vs. Single Image Texture Generation.
Single image models for texture generation [3, 16] are not

designed to deal with natural images. Our model can pro-

duce realistic image samples that consist of complex tex-

tures and non-reptititve global structures.

Generative models for image manipulation The power

of adversarial learning has been demonstrated by recent

GAN-based methods, in many different image manipulation

tasks [61, 10, 62, 8, 53, 56, 42, 53]. Examples include in-

teractive image editing [61, 10], sketch2image [8, 43], and

other image-to-image translation tasks [62, 52, 54]. How-

ever, all these methods are trained on class specific datasets,

and here too, often condition the generation on another in-

put signal. We are not interested in capturing common

features among images of the same class, but rather con-
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Figure 4: SinGAN’s multi-scale pipeline. Our model consists of a pyramid of GANs, where both training and inference are

done in a coarse-to-fine fashion. At each scale, Gn learns to generate image samples in which all the overlapping patches

cannot be distinguished from the patches in the down-sampled training image, xn, by the discriminator Dn; the effective

patch size decreases as we go up the pyramid (marked in yellow on the original image for illustration). The input to Gn is a

random noise image zn, and the generated image from the previous scale x̃n, upsampled to the current resolution (except for

the coarsest level which is purely generative). The generation process at level n involves all generators {GN . . . Gn} and all

noise maps {zN , . . . , zn} up to this level. See more details at Sec. 2.
…
 

++

…
 

Figure 5: Single scale generation. At each scale n, the im-

age from the previous scale, x̃n+1, is upsampled and added

to the input noise map, zn. The result is fed into 5 conv

layers, whose output is a residual image that is added back

to (x̃n+1) ↑r. This is the output x̃n of Gn.

sider a different source of training data – all the overlapping

patches at multiple scales of a single natural image. We

show that a powerful generative model can be learned from

this data, and can be used in a number of image manipula-

tion tasks.

2. Method

Our goal is to learn an unconditional generative model

that captures the internal statistics of a single training im-

age x. This task is conceptually similar to the conven-

tional GAN setting, except that here the training samples

are patches of a single image, rather than whole image sam-

ples from a database.

We opt to go beyond texture generation, and to deal

with more general natural images. This requires capturing

the statistics of complex image structures at many different

scales. For example, we want to capture global properties

such as the arrangement and shape of large objects in the

image (e.g. sky at the top, ground at the bottom), as well

as fine details and texture information. To achieve that, our

generative framework, illustrated in Fig. 4, consists of a hi-

erarchy of patch-GANs (Markovian discriminator) [31, 26],

where each is responsible for capturing the patch distribu-

tion at a different scale of x. The GANs have small recep-

tive fields and limited capacity, preventing them from mem-

orizing the single image. While similar multi-scale archi-

tectures have been explored in conventional GAN settings

(e.g. [28, 52, 29, 52, 13, 24]), we are the first explore it for

internal learning from a single image.

2.1. Multiscale architecture

Our model consists of a pyramid of generators,

{G0, . . . , GN}, trained against an image pyramid of x:

{x0, . . . , xN}, where xn is a downsampled version of x by

a factor rn, for some r > 1. Each generator Gn is responsi-

ble of producing realistic image samples w.r.t. the patch dis-

tribution in the corresponding image xn. This is achieved

through adversarial training, where Gn learns to fool an as-

sociated discriminator Dn, which attempts to distinguish

patches in the generated samples from patches in xn.

The generation of an image sample starts at the coarsest

scale and sequentially passes through all generators up to

the finest scale, with noise injected at every scale. All the

generators and discriminators have the same receptive field

and thus capture structures of decreasing size as we go up

the generation process. At the coarsest scale, the generation

is purely generative, i.e. GN maps spatial white Gaussian

noise zN to an image sample x̃N ,
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x̃N = GN (zN ). (1)

The effective receptive field at this level is typically ∼ 1/2
of the image’s height, hence GN generates the general lay-

out of the image and the objects’ global structure. Each of

the generators Gn at finer scales (n < N ) adds details that

were not generated by the previous scales. Thus, in addition

to spatial noise zn, each generatorGn accepts an upsampled

version of the image from the coarser scale, i.e.,

x̃n = Gn (zn, (x̃n+1) ↑r) , n < N. (2)

All the generators have a similar architecture, as depicted

in Fig. 5. Specifically, the noise zn is added to the image

(x̃n+1) ↑r, prior to being fed into a sequence of convolu-

tional layers. This ensures that the GAN does not disregard

the noise, as often happens in conditional schemes involv-

ing randomness [62, 36, 63]. The role of the convonlutional

layers is to generate the missing details in (x̃n+1) ↑r (resid-

ual learning [22, 57]). Namely, Gn performs the operation

x̃n = (x̃n+1) ↑r + ψn (zn + (x̃n+1) ↑r) , (3)

where ψn is a fully convolutional net with 5 conv-blocks

of the form Conv(3× 3)-BatchNorm-LeakyReLU [25]. We

start with 32 kernels per block at the coarsest scale and in-

crease this number by a factor of 2 every 4 scales. Because

the generators are fully convolutional, we can generate im-

ages of arbitrary size and aspect ratio at test time (by chang-

ing the dimensions of the noise maps).

2.2. Training

We train our multi-scale architecture sequentially, from

the coarsest scale to the finest one. Once each GAN is

trained, it is kept fixed. Our training loss for the nth GAN is

comprised of an adversarial term and a reconstruction term,

min
Gn

max
Dn

Ladv(Gn, Dn) + αLrec(Gn). (4)

The adversarial loss Ladv penalizes for the distance between

the distribution of patches in xn and the distribution of

patches in generated samples x̃n. The reconstruction loss

Lrec insures the existence of a specific set of noise maps

that can produce xn, an important feature for image manip-

ulation (Sec. 4). We next describe Ladv,Lrec in detail. See

Supplementary Materials (SM) for optimization details.

Adversarial loss Each of the generators Gn is coupled

with a Markovian discriminator Dn that classifies each of

the overlapping patches of its input as real or fake [31, 26].

We use the WGAN-GP loss [20], which we found to in-

crease training stability, where the final discrimination score

is the average over the patch discrimination map. As op-

posed to single-image GANs for textures (e.g., [31, 27, 3]),

here we define the loss over the whole image rather than

over random crops (a batch of size 1). This allows the net to

learn boundary conditions (see SM), which is an important

feature in our setting. The architecture of Dn is the same

as the net ψn within Gn, so that its patch size (the net’s

receptive field) is 11× 11.

Reconstruction loss We want to ensure that there ex-

ists a specific set of input noise maps, which gen-

erates the original image x. We specifically choose

{zrec
N
, zrec

N−1
. . . , zrec

0 } = {z∗, 0, . . . , 0}, where z∗ is some

fixed noise map (drawn once and kept fixed during train-

ing). Denote by x̃rec
n the generated image at the nth scale

when using these noise maps. Then for n < N ,

Lrec = ‖Gn(0, (x̃
rec
n+1) ↑r)− xn‖2, (5)

and for n = N , we use Lrec = ‖GN (z∗)− xN‖2.

The reconstructed image x̃rec
n has another role during

training, which is to determine the standard deviation σn
of the noise zn in each scale. Specifically, we take σn to

be proportional to the root mean squared error (RMSE) be-

tween (x̃rec
n+1) ↑r and xn, which gives an indication of the

amount of details that need to be added at that scale.

3. Results

We tested our method both qualitatively and quantita-

tively on a variety of images spanning a large range of

scenes including urban and nature scenery as well as artistic

and texture images. The images that we used are taken from

the Berkeley Segmentation Database (BSD) [35], Places

[59] and the Web. We always set the minimal dimension at

the coarsest scale to 25px, and choose the number of scales

N s.t. the scaling factor r is as close as possible to 4/3. For

all the results, (unless mentioned otherwise), we resized the

training image to maximal dimension 250px.

Qualitative examples of our generated random image

samples are shown in Fig. 1, Fig. 6, and many more ex-

amples are included in the SM. For each example, we show

a number of random samples with the same aspect ratio as

the original image, and with decreased and expanded di-

mensions in each axis. As can be seen, in all these cases,

the generated samples depict new realistic structures and

configuration of objects, while preserving the visual con-

tent of the training image. Our model successfully pre-

servers global structure of objects, e.g. mountains (Fig. 1),

air balloons or pyramids (Fig. 6), as well as fine texture

information. Because the network has a limited receptive

field (smaller than the entire image), it can generate new

combinations of patches that do not exist in the training im-

age Furthermore, we observe that in many cases reflections

and shadows are realistically synthesized, as can be seen in

Fig. 6 and Fig. 1 (and the first example of Fig. 8). Note that

SinGAN’s architecture is resolution agnostic and can thus

be used on high resolution images, as illustrated in Fig. 7

(see 4Mpix results in the SM). Here as well, structures at all

scales are nicely generated, from the global arrangement of

sky, clouds and mountains, to the fine textures of the snow.

Effect of scales at test time Our multi-scale architecture

allows control over the amount of variability between sam-

ples, by choosing the scale from which to start the genera-

tion at test time. To start at scale n, we fix the noise maps up
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Training image Random samples from a single image

Figure 6: Random image samples. After training SinGAN on a single image, our model can generate realistic random

image samples that depict new structures and object configurations, yet preserve the patch distribution of the training image.

Because our model is fully convolutional, the generated images may have arbitrary sizes and aspect ratios. Note that our goal

is not image retargeting – our image samples are random and optimized to maintain the patch statistics, rather than preserving

salient objects. See SM for more results and qualitative comparison to image retargeting methods.

Figure 7: High resolution image generation. A random sample produced by our model, trained on the 243 × 1024 image

(upper right corner); new global structures as well as fine details are realistically generated. See 4Mpix examples in SM.

to this scale to be {zrec
N
, . . . , zrec

n+1}, and use random draws

only for {zn, . . . , z0}. The effect is illustrated in Fig. 8.

As can be seen, starting the generation at the coarsest scale

(n = N ), results in large variability in the global struc-

ture. In certain cases with a large salient object, like the Ze-

bra image, this may lead to unrealistic samples. However,

starting the generation from finer scales, enables to keep the

global structure intact, while altering only finer image fea-

tures (e.g. the Zebra’s stripes). See SM for more examples.

Effect of scales during training Figure 9 shows the ef-

fect of training with fewer scales. With a small number of

scales, the effective receptive field at the coarsest level is

smaller, allowing to capture only fine textures. As the num-

ber of scales increases, structures of larger support emerge,

and the global object arrangement is better preserved.

3.1. Quantitative Evaluation

To quantify the realism of our generated images and how

well they capture the internal statistics of the training image,

we use two metrics: (i) Amazon Mechanical Turk (AMT)

“Real/Fake” user study, and (ii) a new single-image version

of the Fréchet Inception Distance [23].

AMT perceptual study We followed the protocol of

[26, 58] and performed perceptual experiments in 2 settings.
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Figure 8: Generation from different scales (at infer-
ence). We show the effect of starting our hierarchical gen-

eration from a given level n. For our full generation scheme

(n = N ), the input at the coarsest level is random noise. For

generation from a finer scale n, we plug in the downsampled

original image, xn, as input to that scale. This allows us to

control the scale of the generated structures, e.g., we can

preserve the shape and pose of the Zebra and only change

its stripe texture by starting the generation from n = N−1.

(i) Paired (real vs. fake): Workers were presented with a se-

quence of 50 trials, in each of which a fake image (generated

by SinGAN) was presented against its real training image

for 1 second. Workers were asked to pick the fake image.

(ii) Unpaired (either real or fake): Workers were presented

with a single image for 1 second, and were asked if it was

fake. In total, 50 real images and a disjoint set of 50 fake

images were presented in random order to each worker.

We repeated these two protocols for two types of gener-

ation processes: Starting the generation from the coarsest

(N th) scale, and from scale N − 1 (as in Fig. 8). This way,

we assess the realism of our results in two different variabil-

ity levels. To quantify the diversity of the generated images,

for each training example we calculated the standard devia-

tion (std) of the intensity values of each pixel over 100 gen-

erated images, averaged it over all pixels, and normalized

by the std of the intensity values of the training image.

The real images were randomly picked from the “places”

database [59] from the subcategories Mountains, Hills,

Desert, Sky. In each of the 4 tests, we had 50 different

participants. In all tests, the first 10 trials were a tutorial

including a feedback. The results are reported in Table 1.

As expected, the confusion rates are consistently larger

in the unpaired case, where there is no reference for compar-

ison. In addition, it is clear that the confusion rate decreases

Training Image 2 scales 4 scales

6 scales 8 scales5 scales

Figure 9: The effect of training with a different number
of scales. The number of scales in SinGAN’s architecture

strongly influences the results. A model with a small num-

ber of scales only captures textures. As the number of scales

increases, SinGAN manages to capture larger structures as

well as the global arrangement of objects in the scene.

1st Scale Diversity Survey Confusion

N 0.5 paired

unpaired

21.45%± 1.5%
42.9%± 0.9%

N − 1 0.35 paired

unpaired

30.45%± 1.5%
47.04%± 0.8%

Table 1: “Real/Fake” AMT test. We report confusion

rates for two generation processes: Starting from the coars-

est scale N (producing samples with large diversity), and

starting from the second coarsest scale N−1 (preserving

the global structure of the original image). In each case,

we performed both a paired study (real-vs.-fake image pairs

are shown), and an unpaired one (either fake or real image

is shown). The variance was estimated by bootstrap [14].

with the diversity of the generated images. However, even

when large structures are changed, our generated images

were hard to distinguish from the real images (a score of

50% would mean perfect confusion between real and fake).

The full set of test images are included in the SM.

Single Image Fréchet Inception Distance We next quan-

tify how well SinGAN captures the internal statistics of x.

A common metric for GAN evaluation is the Fréchet In-

ception Distance (FID) [23], which measures the deviation

between the distribution of deep features of generated im-

ages and that of real images. In our setting, however, we

only have a single real image, and are rather interested in its

internal patch statistics. We thus propose the Single Image

FID (SIFID) metric. Instead of using the activation vector

after the last pooling layer in the Inception Network [49] (a

single vector per image), we use the internal distribution of

deep features at the output of the convolutional layer just be-

fore the second pooling layer (one vector per location in the

map). Our SIFID is the FID between the statistics of those

features in the real image and in the generated sample.

As can be seen in Table 2, the average SIFID is lower for
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Input SRGAN (24.865/3.640) EDSR (28.367/8.083) DIP (27.485/7.188) ZSSR (27.933/8.455)

trained on a dataset trained on a single image

SinGAN (26.068/3.831)

Figure 10: Super-Resolution. When SinGAN is trained on a low resolution image, we are able to super resolve. This is

done by iteratively upsampling the image and feeding it to SinGAN’s finest scale generator. As can be seen, SinGAN’s visual

quality is better than the SOTA internal methods ZSSR [46] and DIP [51]. It is also better than EDSR [32] and comparable to

SRGAN [30], external methods trained on large collections. Corresponding PSNR and NIQE [40] are shown in parentheses.

Training Example Input Paint Neural Style Transfer Contextual Transfer SinGAN (Ours)

Figure 11: Paint-to-Image. We train SinGAN on a target image and inject a downsampled version of the paint into one of

the coarse levels at test time. Our generated images preserve the layout and general structure of the clipart while generating

realistic texture and fine details that match the training image. Well-known style transfer methods [17, 38] fail in this task.

1st Scale SIFID Survey SIFID/AMT Correlation

N 0.09 paired

unpaired

−0.55
−0.22

N − 1 0.05 paired

unpaired

−0.56
−0.34

Table 2: Single Image FID (SIFID). We adapt the FID met-

ric to a single image and report the average score for 50 im-

ages, for full generation (first row), and starting from the

second coarsest scale (second row). Correlation with AMT

results shows SIFID highly agrees with human ranking.

generation from scale N−1 than for generation from scale

N , which aligns with the user study results. We also report

the correlation between the SIFID scores and the confusion

rates for the fake images. Note that there is a significant

(anti) correlation between the two, implying that a small

SIFID is typically a good indicator for a large confusion

rate. The correlation is stronger for the paired tests, since

SIFID is a paired measure (it operates on the pair xn, x̃n).

4. Applications

We explore the use of SinGAN for a number of image

manipulation tasks. To do so, we use our model after train-

ing, with no architectural changes or further tuning and fol-

low the same approach for all applications. The idea is to

utilize the fact that at inference, SinGAN can only produce

images with the same patch distribution as the training im-

age. Thus, manipulation can be done by injecting (a pos-

sibly downsampled version of) an image into the genera-

tion pyramid at some scale n < N , and feed forwarding it

through the generators so as to match its patch distribution

to that of the training image. Different injection scales lead

to different effects. We consider the following applications

(see SM for more results and the injection scale effect).

Super-Resolution Increase the resolution of an input im-

age by a factor s. We train our model on the low-resolution

(LR) image, with a reconstruction loss weight of α = 100
and a pyramid scale factor of r = k

√
s for some k ∈ N.

Since small structures tend to recur across scales of natu-

ral scenes [18], at test time we upsample the LR image by

a factor of r and inject it (together with noise) to the last

generator, G0. We repeat this k times to obtain the final

high-res output. An example result is shown in Fig. 10. As

can be seen, the visual quality of our reconstruction exceeds

that of state-of-the-art internal methods [51, 46] as well as

of external methods that aim for PSNR maximization [32].
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External methods Internal methods

SRGAN EDSR DIP ZSSR SinGAN

RMSE 16.34 12.29 13.82 13.08 16.22

NIQE 3.41 6.50 6.35 7.13 3.71

Table 3: Super-Resolution evaluation. Following [5],

we report distortion (RMSE) and perceptual quality (NIQE

[40], lower is better) on BSD100 [35]. As can be seen, Sin-

GAN’s performance is similar to that of SRGAN [30].

Interestingly, it is comparable to the externally trained SR-

GAN method [30], despite having been exposed to only a

single image. Following [4], we compare these 5 methods

in Table 3 on the BSD100 dataset [35] in terms of distortion

(RMSE) and perceptual quality (NIQE [40]), which are two

fundamentally conflicting requirements [5]. As can be seen,

SinGAN excels in perceptual quality; its NIQE score is only

slightly inferior to SRGAN, and its RMSE is slightly better.

Paint-to-Image Transfer a clipart into a photo-realistic

image. This is done by downsampling the clipart image

and feeding it into one of the coarse scales (e.g. N−1 or

N−2). As can be seen in Figs. 2 and 11, the global struc-

ture of the painting is preserved, while texture and high fre-

quency information matching the original image are real-

istically generated. Our method outperforms style transfer

methods [38, 17] in terms of visual quality (Fig. 11).

Harmonization Realistically blend a pasted object with

a background image. We train SinGAN on the background

image, and inject a downsampled version of the naively

pasted composite at test time. Here we combine the gener-

ated image with the original background. As can be seen in

Fig. 2 and Fig. 13, our model tailors the pasted object’s tex-

ture to match the background, and often preserves its struc-

ture better than [34]. Scales 2,3,4 typically lead to good

balance between preserving the object’s structure and trans-

ferring the background’s texture.

Editing Produce a seamless composite in which image re-

gions have been copied and pasted in other locations. Here,

again, we inject a downsampled version of the composite

into one of the coarse scales. We then combine SinGAN’s

output at the edited regions, with the original image. As

shown in Fig. 2 and Fig. 12, SinGAN re-generates fine tex-

tures and seamlessly stitches the pasted parts, producing

nicer results than Photoshop’s Content-Aware-Move.

Single Image Animation Create a short video clip with

realistic object motion, from a single input image. Natu-

ral images often contain repetitions, which reveal different

“snapshots” in time of the same dynamic object [55] (e.g. an

image of a flock of birds reveals all wing postures of a sin-

gle bird). Using SinGAN, we can travel along the manifold

of all appearances of the object in the image, thus synthe-

sizing motion from a single image. We found that for many

types of images, a realistic effect is achieved by a random

walk in z-space, starting with zrec for the first frame at all

generation scales (see SM video).

(a) Training Example (b) Edited Input

(c) Content Aware Move (d) SinGAN (Ours)

Figure 12: Editing. We copy and paste a few patches from

the original image (a), and input a downsampled version of

the edited image (b) to an intermediate level of our model

(pretrained on (a)). In the generated image (d), these local

edits are translated into coherent and photo-realistic struc-

tures. (c) comparison to Photoshop content aware move.

SinGAN (Ours)Input Deep Paint. Harmonization

Figure 13: Harmonization. Our model is able to preserve

the structure of the pasted object, while adjusting its appear-

ance and texture. The dedicated harmonization method [34]

overly blends the object with the background.

5. Conclusion

We introduced SinGAN, a new unconditional generative

scheme that is learned from a single natural image. We

demonstrated its ability to go beyond textures and to gen-

erate diverse realistic samples for natural complex images.

Internal learning is inherently limited in terms of semantic

diversity compared to externally trained generation meth-

ods. For example, if the training image contains a single

dog, our model will not generate samples of different dog

breeds. Nevertheless, as demonstrated by our experiments,

SinGAN can provide a very powerful tool for a wide range

of image manipulation tasks.
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