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Figure 1: Image generation learned from a single training image. We propose SinGAN–a new unconditional generative

model trained on a single natural image. Our model learns the image’s patch statistics across multiple scales, using a

dedicated multi-scale adversarial training scheme; it can then be used to generate new realistic image samples that preserve

the original patch distribution while creating new object configurations and structures.

Abstract

We introduce SinGAN, an unconditional generative

model that can be learned from a single natural image.

Our model is trained to capture the internal distribution of

patches within the image, and is then able to generate high

quality, diverse samples that carry the same visual content

as the image. SinGAN contains a pyramid of fully convolu-

tional GANs, each responsible for learning the patch distri-

bution at a different scale of the image. This allows generat-

ing new samples of arbitrary size and aspect ratio, that have

significant variability, yet maintain both the global struc-

ture and the fine textures of the training image. In contrast

to previous single image GAN schemes, our approach is not

limited to texture images, and is not conditional (i.e. it gen-

erates samples from noise). User studies confirm that the

generated samples are commonly confused to be real im-

ages. We illustrate the utility of SinGAN in a wide range of

image manipulation tasks.

1. Introduction

Generative Adversarial Nets (GANs) [19] have made a

dramatic leap in modeling high dimensional distributions

of visual data. In particular, unconditional GANs have

shown remarkable success in generating realistic, high qual-

ity samples when trained on class specific datasets (e.g.,

faces [33], bedrooms[47]). However, capturing the distribu-

tion of highly diverse datasets with multiple object classes

(e.g. ImageNet [12]), is still considered a major challenge

and often requires conditioning the generation on another

input signal [6] or training the model for a specific task (e.g.

super-resolution [30], inpainting [41], retargeting [45]).

Here, we take the use of GANs into a new realm – un-

conditional generation learned from a single natural image.

Specifically, we show that the internal statistics of patches

within a single natural image typically carry enough infor-

mation for learning a powerful generative model. SinGAN,

our new single image generative model, allows us to deal

with general natural images that contain complex structures

and textures, without the need to rely on the existence of a

database of images from the same class. This is achieved by

a pyramid of fully convolutional light-weight GANs, each

is responsible for capturing the distribution of patches at

a different scale. Once trained, SinGAN can produce di-

verse high quality image samples (of arbitrary dimensions),

which semantically resemble the training image, yet contain

new object configurations and structures (Fig. 1).

Modeling the internal distribution of patches within a

single natural image has been long recognized as a pow-

erful prior in many computer vision tasks [64]. Classi-

cal examples include denoising [65], deblurring [39], su-

per resolution [18], dehazing [2, 15], and image editing

[37, 21, 9, 11, 50]. The most closley related work in

this context is [48], where a bidirectional patch similar-

ity measure is defined and optimized to guarantee that the

patches of an image after manipulation are the same as the

original ones. Motivated by these works, here we show

4570



Tr
ai

ni
ng

 Im
ag

e
In

pu
t

O
ut

pu
t

Paint to image Harmonization AnimationSuper-resolutionEditing

Figure 2: Image manipulation. SinGAN can be used in various image manipulation tasks, including: transforming a paint

(clipart) into a realistic photo, rearranging and editing objects in the image, harmonizing a new object into an image, image

super-resolution and creating an animation from a single input. In all these cases, our model observes only the training image

(first row) and is trained in the same manner for all applications, with no architectural changes or further tuning (see Sec. 4).

how SinGAN can be used within a simple unified learning

framework to solve a variety of image manipulation tasks,

including paint-to-image, editing, harmonization, super-

resolution, and animation from a single image. In all these

cases, our model produces high quality results that preserve

the internal patch statistics of the training image (see Fig. 2

and our project webpage). All tasks are achieved with the

same generative network, without any additional informa-

tion or further training beyond the original training image.

1.1. Related Work

Single image deep models Several recent works pro-

posed to “overfit” a deep model to a single training example

[51, 60, 46, 7, 1]. However, these methods are designed

for specific tasks (e.g., super resolution [46], texture ex-

pansion [60]). Shocher et al. [44, 45] were the first to in-

troduce an internal GAN based model for a single natural

image, and illustrated it in the context of retargeting. How-

ever, their generation is conditioned on an input image (i.e.,

mapping images to images) and is not used to draw random

samples. In contrast, our framework is purely generative

(i.e. maps noise to image samples), and thus suits many dif-

ferent image manipulation tasks. Unconditional single im-

age GANs have been explored only in the context of texture

generation [3, 27, 31]. These models do not generate mean-

ingful samples when trained on non-texture images (Fig. 3).

Our method, on the other hand, is not restricted to texture

and can handle general natural images (e.g., Fig. 1).

Training Image

SinGAN (Ours)

PSGAN

Deep Texture Synthesis

Figure 3: SinGAN vs. Single Image Texture Generation.
Single image models for texture generation [3, 16] are not

designed to deal with natural images. Our model can pro-

duce realistic image samples that consist of complex tex-

tures and non-reptititve global structures.

Generative models for image manipulation The power

of adversarial learning has been demonstrated by recent

GAN-based methods, in many different image manipulation

tasks [61, 10, 62, 8, 53, 56, 42, 53]. Examples include in-

teractive image editing [61, 10], sketch2image [8, 43], and

other image-to-image translation tasks [62, 52, 54]. How-

ever, all these methods are trained on class specific datasets,

and here too, often condition the generation on another in-

put signal. We are not interested in capturing common

features among images of the same class, but rather con-
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Figure 4: SinGAN’s multi-scale pipeline. Our model consists of a pyramid of GANs, where both training and inference are

done in a coarse-to-fine fashion. At each scale, Gn learns to generate image samples in which all the overlapping patches

cannot be distinguished from the patches in the down-sampled training image, xn , by the discriminator Dn ; the effective

patch size decreases as we go up the pyramid (marked in yellow on the original image for illustration). The input to Gn is a

random noise image zn , and the generated image from the previous scale ~xn , upsampled to the current resolution (except for

the coarsest level which is purely generative). The generation process at level n involves all generators f GN : : : Gn g and all

noise maps f zN ; : : : ; zn g up to this level. See more details at Sec. 2.
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Figure 5: Single scale generation. At each scale n, the im-

age from the previous scale, ~xn +1 , is upsampled and added

to the input noise map, zn . The result is fed into 5 conv

layers, whose output is a residual image that is added back

to (~xn +1 ) " r . This is the output ~xn of Gn .

sider a different source of training data – all the overlapping

patches at multiple scales of a single natural image. We

show that a powerful generative model can be learned from

this data, and can be used in a number of image manipula-

tion tasks.

2. Method

Our goal is to learn an unconditional generative model

that captures the internal statistics of a single training im-

age x. This task is conceptually similar to the conven-

tional GAN setting, except that here the training samples

are patches of a single image, rather than whole image sam-

ples from a database.

We opt to go beyond texture generation, and to deal

with more general natural images. This requires capturing

the statistics of complex image structures at many different

scales. For example, we want to capture global properties

such as the arrangement and shape of large objects in the

image (e.g. sky at the top, ground at the bottom), as well

as fine details and texture information. To achieve that, our

generative framework, illustrated in Fig. 4, consists of a hi-

erarchy of patch-GANs (Markovian discriminator) [31, 26],

where each is responsible for capturing the patch distribu-

tion at a different scale of x. The GANs have small recep-

tive fields and limited capacity, preventing them from mem-

orizing the single image. While similar multi-scale archi-

tectures have been explored in conventional GAN settings

(e.g. [28, 52, 29, 52, 13, 24]), we are the first explore it for

internal learning from a single image.

2.1. Multi­scale architecture

Our model consists of a pyramid of generators,

f G0; : : : ; GN g, trained against an image pyramid of x:

f x0; : : : ; xN g, where xn is a downsampled version of x by

a factor r n , for some r > 1. Each generator Gn is responsi-

ble of producing realistic image samples w.r.t. the patch dis-

tribution in the corresponding image xn . This is achieved

through adversarial training, where Gn learns to fool an as-

sociated discriminator Dn , which attempts to distinguish

patches in the generated samples from patches in xn .

The generation of an image sample starts at the coarsest

scale and sequentially passes through all generators up to

the finest scale, with noise injected at every scale. All the

generators and discriminators have the same receptive field

and thus capture structures of decreasing size as we go up

the generation process. At the coarsest scale, the generation

is purely generative, i.e. GN maps spatial white Gaussian

noise zN to an image sample ~xN ,
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