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Figure 1: A schematic illustration of our modular framework. We tackle the ambiguity in the 2D-to-3D mapping by training

a CVAE to generate 3D-pose samples conditioned on the 2D-pose, that are scored and weighted-averaged using joint-ordinal

relations, which are regressed together with the 2D-pose. Our upper-bound performance is obtained by using an Oracle.

Abstract

Monocular 3D human-pose estimation from static im-

ages is a challenging problem, due to the curse of dimen-

sionality and the ill-posed nature of lifting 2D-to-3D. In

this paper, we propose a Deep Conditional Variational Au-

toencoder based model that synthesizes diverse anatomi-

cally plausible 3D-pose samples conditioned on the esti-

mated 2D-pose. We show that CVAE-based 3D-pose sam-

ple set is consistent with the 2D-pose and helps tackling

the inherent ambiguity in 2D-to-3D lifting. We propose

two strategies for obtaining the final 3D pose- (a) depth-

ordering/ordinal relations to score and weight-average the

candidate 3D-poses, referred to as OrdinalScore, and (b)

with supervision from an Oracle. We report close to state-

of-the-art results on two benchmark datasets using Ordi-

nalScore, and state-of-the-art results using the Oracle. We

also show that our pipeline yields competitive results with-

out paired image-to-3D annotations. The training and

evaluation code is available at https://github.com/

ssfootball04/generative_pose.

1. Introduction

Accurate 3D human-pose estimation from a monoc-

ular RGB image finds applications to robotics, vir-

tual/augmented reality, surveillance, and human computer

interaction. The diverse variations in background, cloth-

ing, pose, occlusions, illumination, and camera parame-

ters in real-world scenarios makes it a challenging prob-

lem. The popular 3D-pose annotated datasets do not cover

these variations appropriately. Recent advancements in

real-world 2D-pose estimation [22, 42] has led to several

multi-stage architectures, where the 3D-pose is regressed

either from both the image features and an intermediate 2D

representation [3, 8, 23, 45], or only the estimated 2D-pose

[1, 19, 20, 27, 46]. Unfortunately, regression based ap-

proaches using only the estimated 2D-pose, ignore the am-

biguity in lifting 2D human-pose to 3D: an inherently ill-

posed problem. Motivated by this shortcoming, we propose

to learn a generative 3D-pose model conditioned on the cor-

responding 2D-pose that affords sampling diverse samples

from the learnt 3D-pose distribution. To the best of our

knowledge, we are the first to employ a Deep Conditional

Variational Autoencoder [32] (CVAE for short) for 2D-to-

3D generative human-pose modeling and demonstrate its

advantages over direct regression based approaches. We

also show that our generative 2D-to-3D module can be

∗Majority of this work was done while author was at Indian Institute

of Technology, Bombay.
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trained on a separate MoCap dataset that doesn’t have any

intersection with the evaluation image-to-3D dataset, and

still performs reasonably well. Therefore, our modular ap-

proach tackles the infeasibility (or high cost) of obtaining

3D-pose annotation for images in real-world and works well

with separately collected 2D-pose annotations of real-world

images and indoor motion capture data [43].

Our pipeline is depicted in Figure 1. First, the

2DPoseNet head of a deep convolutional network backbone,

C, estimates 2D pose, P̂2D, from a monocular RGB im-

age, I . The estimated 2D pose, P̂2D, and a latent code z,

sampled from a prior distribution p(z) ∼ N (0, 1), are fed

to the decoder of the MultiPoseNet CVAE to sample a 3D

pose, P̂ k
3D. Multiple samples, zk ∈ {z1, z2 . . . zK}, from

p(z) yield a diverse set of 3D pose samples, S = {P̂ k
3D :

k ∈ {1, 2, . . .K}}, consistent with P̂2D. Then we employ

pairwise depth ordering of body-joints encoded in the esti-

mated joint-ordinal relation matrix, M̂ , obtained from the

OrdinalNet head of C, to obtain scores, {f(P̂ k
3D) : k ∈

{1, 2 . . .K}} for the elements of S. These scores are finally

fed to Softmax operator to obtain a probability distribution

over S, reflecting the consistency of the 3D-pose samples

to the predicted ordinal relations. The final 3D pose, P̂3D,

is computed as the expectation of this distribution. More-

over, in order to estimate the upper-bound performance of

our generative model, we also report the accuracy w.r.t. the

sample, P̂Oracle
3D , that is the closest match to the ground

truth 3D-pose, P3D. The Oracle upper-bound outperforms

all existing state-of-the-art methods, without leveraging re-

cently introduced ordinal dataset, temporal information, or

end-to-end training of the multi-stage architectures. This

observation supports the strength of our CVAE-based gen-

erative model for 2D-to-3D lifting.

A summary of our contributions is as follows -

• We tackle the inherent ill-posed problem of lifting

2D-to-3D human-pose by learning a deep generative

model that synthesizes diverse 3D-pose samples con-

ditioned on the estimated 2D-pose.
• We employ CVAE for 3D human-pose estimation for

the first time.
• We derive joint-ordinal depth relations from an RGB

image and employ them to rank 3D-pose samples.
• We show that the oracle-based pose sample obtained

from our proposed generative model achieves state-

of-the-art results on two benchmark datasets, Hu-

man3.6M [11] and Human-Eva [29].
• We show competitive performance over Baseline even

when our 2D-to-3D module is trained on a separate

MoCap dataset with no images.

2. Related Work

Lifting 2D to 3D Our approach belongs to the large body

of work that obtains 3D-pose from estimated 2D-pose. In

[27], a set of 3D-shape bases, pre-trained using 3D mocap

data[7], is used to learn a sparse representation of human

3D-pose by optimising for reprojection error. It was ex-

tended by [47] via convex relaxation to address bad initial-

isation in this scheme. Anatomical constraints to regularize

the predicted poses w.r.t. limb lengths were introduced in

[40]. Further use of anatomical constraints in the form of

joint-angle-limits and learned pose priors was proposed in

[1] to extend [27]. In [20], Euclidean inter-joint distance

matrix was used to represent 2D and 3D poses with multi-

dimensional scaling to obtain 3D-pose from the predicted

3D distance matrix. Some approaches, [3], estimate the

3D-pose and shape by fitting a 3D statistical model [18] to

2D-pose and leverage inter-penetration constraints. Differ-

ent from all the previous approaches we employ CVAE to

implicitly learn the anatomical constraints and sample 3D-

pose candidates.

The method in [13], builds upon the framework of [3] to

describe a model that estimates the shape, underlying 3D-

pose and camera parameters using a re-projection and ad-

versarial loss, which can be trained with 2D-pose datasets

and unpaired MoCap datasets. In [19], a baseline model

is proposed that uses a simple fully connected linear net-

work for this task which surprisingly outperforms past ap-

proaches. Unlike these discriminative approaches that pre-

dict only one 3D-pose from a given 2D-pose, we generate a

diverse sample set of 3D-poses.

Hypothesis Generation Some previous approaches sample

multiple 3D-poses via heuristics. The work in [17], finds the

nearest neighbors in a learned latent embedding of human

images to estimate the 3D-pose. The approaches in [16] and

[31], enumerate 3D-poses using ”kinematic-flipping” of the

3D joints, for estimation and tracking, respectively. The

Bayesian framework from [30] employs a latent-variable

generative model with a set of HOG-based 2D part detec-

tors and performs inference using evolutionary algorithms.

More recently, [5] retrieves 3D-pose using nearest neighbor

search. [12] uses the pose prior model of [1] to generate

multiple hypothesis from a seed 3D-pose, while [39] use

”skeleton maps” at different scales to regress 3D-pose hy-

pothesis. Unlike the previous methods, our CVAE based

generative model implicitly learns an anatomically consis-

tent pose prior conditioned on the input 2D-pose. It affords

efficient sampling of a set of candidate 3D-poses without re-

quiring expensive MCMC or graphical model inference or

an existing MoCap library. Also, it doesn’t need additional

image features or structural cues. Closest to our approach

are prior arts that employ generative models for hand-pose

estimation. In [33], one-to-one correspondence is as-

sumed between hand-pose samples in different modalities–

RGB, Depth, 2D-pose & 3D-pose–and a joint latent space is

learned via multi-modal VAE. Unfortunately, this assump-

tion between 2D-and-3D poses ignores the inherent ambi-
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guity in 2D-to-3D lifting, while, we explicitly tackle it via

CVAE-based probabilistic framework. The work in [4] gen-

erates multiple hand-poses from depth-map to address the

prediction uncertainty due to occlusions/missing-values in

the input depth-map and uses Maximum-Expected-Utility

(MEU) to obtain a pointwise prediction from the gener-

ated samples. We use CVAE for generation and employ

geometry-inspired ordinal scoring to score and merge mul-

tiple samples. [38] learns a probabilistic mapping from

depth-map to 3D-pose, to exploit unlabeled data, which is

not provably ill-posed. We, however, employ CVAE in-

spired probabilistic framework to tackle the provable ill-

posed nature of 2D-to-3D pose lifting.

Ordinal Relations Ordinal relations have previously been

explored to estimate depth [48, 6] and reflectance [44, 21].

Recently, [24] and [28] used 2D datasets with ordinal anno-

tations as weak supervision for monocular 3D-pose estima-

tion by imposing a penalty for violation of ordinal depth

constraints. Our ordinal prediction network is similar in

spirit to [26] that uses a Structural-SVM conditioned on

HOG features to predict pose-bits that capture qualitative at-

tributes to facilitate 3D-pose prediction and image retrieval.

Unlike [26], we leverage deep-networks to jointly predict

the 2D-pose and depth-ordinal, and generate a diverse sam-

ple set of 3D-poses. Concurrent with our work, [41] also

predict depth ranking and regress 3D-pose from 2D-pose

with depth rankings in a coarse-to-fine network. We differ

in the formulation of predicting ordinals as spatial maps,

which co-locate with the 2D-pose.

3. Proposed Approach

In this Section, we describe the proposed approach.

Sec. 3.1 discusses 2DPoseNet to obtain 2D-pose from an

input RGB image followed by Sec. 3.2 that describes our

novel MultiPoseNet, for generating multiple 3D-pose sam-

ples conditioned on the estimated 2D-pose. In Sec. 3.3, we

discuss OrdinalNet to obtain joint-ordinal relations from the

image and the estimated 2D-pose. Finally, Sec. 3.4 and 3.5

describe our strategies for predicting the final 3D-pose from

the generated samples : (a) by scoring the generated sample

set using ordinal relations, referred to as OrdinalScore, and

(b) by using supervision from an Oracle with access to the

ground truth 3D-pose, referred to as OracleScore.

3.1. 2DPoseNet: 2DPose from Image

We use the Stacked Hourglass Model [22] with two

stacks, as our backbone C. The 2DPoseNet head applies a

1x1 convolution to the intermediate feature representations

to regress per-joint heatmaps (Gaussian bumps at target lo-

cation), from which the predicted 2D pose in pixel coordi-

nates, P̂2D, is obtained using Argmax operator.

Figure 2: MultiPoseNet architecture in training. Note: in

GSNN, we sample z ∼ N (0, I) and only need the Decoder.

3.2. MultiPoseNet: Multiple 3DPoses from 2D

Recently, Variational Auto-encoders and Generative Ad-

versarial Networks have demonstrated tremendous suc-

cess in density estimation and synthetic sample generation.

Specifically, CVAEs can generate realistic samples condi-

tioned on input variables which is well suited for multi-

modal regression mappings [32]. Therefore, we extend the

Baseline regression model from [19] into a CVAE to tackle

the inherent multi-modality of the 2D-to-3D pose mapping

and sample an accurate and diverse 3D-pose candidate set

S = {P̂ k
3D : k ∈ {1, 2, . . .K}} conditioned on the esti-

mated 2D-pose P̂2D. We observe that S has diverse anatom-

ically plausible samples and contains a close match to the

actual ground-truth, P3D. The detailed architecture for Mul-

tiPoseNet is depicted in Figure 2.

Training The 3D-pose generating CVAE [32] consists of

• Recognition Network, or Encoder : Enc(P3D, P̂2D),
which operates on an input 3D-pose P3D and a condi-

tion P̂2D to output the mean and diagonal covariance

for the posterior q(ẑ|P3D, P̂2D).
• Decoder : Dec(ẑ, P̂2D), which reconstructs the

ground truth P3D by taking as input a latent ẑ sam-

pled from the posterior q(ẑ|P3D, P̂2D) and the condi-

tion 2D-pose P̂2D.

During training, we optimize the following:

LCV AE = λ1KL(q(ẑ|P3D, P̂2D)||p(z|P̂2D)) (1)

+ λ2Ez∼q(ẑ|P3D,P̂2D)||P3D −Dec(ẑ, P̂2D)||
2

2,

where the prior distribution p(z|P̂2D)) is assumed to be

N (0, I), and KL(x||y) is the Kullback-Leibler divergence

with λs used as hyper-parameters to weight the losses. The

expectation in the second term for the reconstruction loss is

taken over Ktrain number of samples.

At inference time, the Encoder network is discarded,

and z is drawn from the prior p(z) ∼ N (0, I), which in-

troduces inconsistency between the prediction and training
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pipelines. To remedy this, we set the Encoder equal to the

prior network p(z) ∼ N (0, I), that leads to the Gaussian

Stochastic Neural Network framework, or GSNN, proposed

in [32]. Combining the two we get a hybrid training objec-

tive, weighted with α:

LGSNN = Ez∼N(0,1)||P3D −Dec(z, P̂2D)||
2

2 (2)

Lhybrid = αLCV AE + (1− α)LGSNN , (3)

Inference We sample z ∼ N (0, 1), and feed (z, P̂2D) to the

Decoder, to obtain Stest = {P̂ k
3D: k ∈ {1, 2, . . . ,Ktest}}.

3.3. OrdinalNet: Image to JointOrdinal Relations

The backbone architecture for OrdinalNet is same as our

2DPoseNet i.e. C. In order to obtain joint-ordinal rela-

tions, we augment C with two additional hourglass stacks.

For each human-body joint location j ∈ {1, 2, . . . , N},

three ordinal maps ( ˆOM1j , ˆOM2j , and ˆOM3j ) are pre-

dicted to capture the lesser than, greater than and equal

depth relations between joint j and all other joints i ∈
{1, 2, . . . , N}. The ground-truth ordinal maps are gener-

ated so that for each joint j there is a Gaussian peak for

joint i ∈ {1, 2, . . . , N} in one of the three ordinal maps

( OM1j , OM2j , and OM3j ), depending on the depth re-

lation between joint i and joint j. We combine the in-

termediate feature representations and 2D-pose heatmaps

from backbone C and 2DPoseNet as the input, and use

L2 loss over predicted ordinal maps, for training our Or-

dinalNet. We post-process our estimated ordinal relations

via non-maximal suppression on the predicted ordinal maps

and associate each peak to its nearest joint-location, which

are finally converted into a 16 × 16 joint-ordinal relation

matrix M̂ . The relation between depths Di, Dj of joints

i, j ∈ {1, 2, . . . , N} and ground-truth matrix M is:

M̂ij =







1 : Di −Dj > 0
2 : Di −Dj < 0
3 : Di −Dj ≈ 0

3.4. OrdinalScore: Scoring and Aggregating Gen
erated 3D samples

So far we have generated a diverse set of estimated

3D-poses from P̂2D only. Next, we seek motivation from

the fact that under orthogonal camera projection with con-

stant bone length constraint 2D-pose and joint-ordinal re-

lations between keypoints can almost resolve the true 3D-

pose [36]. The estimated ordinal matrix M̂ is used to assign

scores to each of the samples ˆP k
3D ∈ S by the scoring func-

tion:

f(P̂ k
3D) =

∑

i,j

✶(M̂ij == g(P̂ k
3D)ij) (4)

where 1(condition) is an indicator function, where g(P̂ k
3D)

is the function that computes the 16×16 ordinal matrix for a

given 3D-pose and g(P̂ k
3D)ij represents the ordinal relation

of joint i and j.

The set of scores for the sampled 3D-poses obtained

from an image, F = {f(P̂ k
3D) : k ∈ {1, 2, . . . |S|}}, is

passed through a Softmax operator parameterized by tem-

perature T to obtain a probability distribution function,

p(P̂ k
3D) = eTf(P̂k

3D
)/

∑

k e
Tf(P̂k

3D
). The final output P̂3D

is computed as the expectation over the candidates-

P̂3D =

|S|
∑

k

p(P̂ k
3D).P̂ k

3D (5)

The temperature-based Softmax affords a fine control over

the contribution strength of high-score samples vs. the low-

scoring samples towards the final aggregation, which makes

it robust to noisy pose candidates with respect to the pre-

dicted ordinal matrix M̂ .

3.5. Supervision from an Oracle

The upper-bound accuracy for our approach is given by

choosing the closest sample, P̂ oracle
3D , to the ground-truth,

P3D, from S using an Oracle that has access to P3D.

P̂ oracle
3D = argmin

s∈S
‖P3D − s‖2 (6)

4. Experiments

This section discusses the empirical evaluation of the

proposed approach. First, we describe the benchmarks that

we employed for quantitative evaluation, and provide some

important implementation details of our approach. Then,

we present quantitative results and compare our method

with the state-of-the-art, and provide ablation studies to an-

alyze the performance of our generative model.

4.1. Datasets

We make use of the following datasets for training vari-

ous modules of our pipeline :

CMU Mocap motion capture dataset consists of diverse

3D-poses with 144 different subjects performing different

actions. We obtain 2D projections from the 3D skeletons us-

ing virtual cameras from multiple views, with assumed in-

trinsic parameters. We employ the obtained 2D-to-3D pose

data to train MultiPoseNet and the Baseline model from [19]

for experiments under unpaired setting, while 2DPoseNet

and OrdinalNet are trained on Human3.6M. Therefore, ef-

fectively we train our networks without using any image-to-

3D ground-truth data.

Human3.6M dataset consists of 3.6 million 3D-poses. It

consists of videos and MoCap data of 5 female and 6 male

subjects, captured from 4 different viewpoints while they

are performing common activities (talking on the phone,

walking, greeting, eating, etc.).
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HumanEva-I is a small dataset containing 3 subjects (S1,

S2, S3) with 3 camera views and fewer actions than Hu-

man3.6M. This is a standard dataset for 3D-pose estimation

used for benchmarking in previous works.

4.2. Implementation Details

Data Pre-processing: We take a tight 224 × 224 crop

around the person in the input RGB image, I , using ground-

truth bounding boxes. Following [19], we process the 3D-

poses in camera coordinates and apply standard normaliza-

tion to the 2D-pose inputs and 3D-pose outputs by subtract-

ing the mean and dividing by the standard deviation, and

zero-center the 3D-pose around the hip joint. The 2D-pose

contains N=16, and the 3D-pose contains N=17 and N=16

joints for Human3.6M and HumanEva-I respectively.

2DPoseNet: We use publicly available Stacked-Hourglass

pretrained on MPII [2] as backbone C and 2DPoseNet, and

finetune on Human3.6M and HumanEva-I, following [19].

MultiPoseNet: Its architecture is based on the Baseline

model in [19] (details in supplementary material). At

training time, the expectation in Eq.1 is estimated using

Ktrain = 10 samples. λ1, λ2 and α are set to 10, 100,

and 0.5 respectively. The network is trained for 200 epochs

using Adam [14], starting with a learning rate of 2.5e-4 with

exponential decay and mini-batches size of 256. At test

time, we generate Ktest = 200 3D-pose candidates to get a

diverse sample set S . MultiPoseNet takes 10 hours to train

on a Titan 1080ti GPU.

OrdinalNet: We freeze the weights of our backbone C
and 2DPoseNet after fine-tuning, and train the OrdinalNet

module using ground-truth ordinal maps for 60 epochs with

standard L2 Loss. OrdinalNet takes 12 hours to train, on a

Titan 1080ti GPU.

OrdinalScore The temperature, T , is obtained using cross-

validation and set to 0.9 for ground truth ordinals, and 0.3

for predicted ordinals. In practice, OrdinalNet can some-

times predict contradictory relations i.e M̂ij 6= M̂ji, M̂ii 6=

3; we resolve it by setting the diagonal entries of M̂ to 3

and mask out elements where M̂ij 6= M̂ji during scoring.

Note that for Human3.6M, the ordinal relations w.r.t the ex-

tra joint in the 3D-pose are not taken into account by the

scoring function in Eq.4.

Runtime Details The run-time for different modules of

our pipeline are - OrdinalNet: 20ms/image, MultiPoseNet:

0.5ms/sample, we take 200 samples/image for inference.

The entire pipeline runs at 10 fps on a commodity graphics

card, which is slightly worse than other real-time methods.

4.3. Quantitative Evaluation

In this sub-section, we report the results of our model and

compare it against the prior state-of-the-art on Human3.6M

and HumanEva-I dataset. We report three evaluation met-

rics to demonstrate the benefits of our approach:

PRED Ordinals: Uses the OrdinalScore strategy with the

ordinal relations predicted by OrdinalNet.

GT Ordinals: Uses the OrdinalScore strategy with the

ground truth ordinal relations.

Oracle: Uses the Oracle for final prediction, which gives

the best results.

4.3.1 Evaluation on Human3.6M

Following the literature, we use two standard protocols to

train and evaluate our results. Protocol-1: The training set

consists of 5 subjects (S1, S5, S6, S7, S8), while the test

set includes 2 subjects (S9, S11). The original 50FPS frame

rate is down-sampled to 10 FPS and the evaluation is carried

out on sequences coming from all 4 cameras and all trials.

The reported error metric is Mean Per Joint Position Er-

ror (MPJPE) i.e. the Euclidean distance from the estimated

3D-pose, P̂3D, to the ground-truth, P3D, averaged over 17

joints of the Human3.6M skeletal model. Protocol-2: Sub-

jects S1, S5, S6, S7, S8 and S9 are used for training and

S11 for testing. The error metric used is Procrustes Aligned

MPJPE (PA MPJPE) which is the MPJPE calculated after

rigidly aligning the predicted pose with the ground-truth.

Table 1 and Table 2 show our results for Protocol-1 and

Protocol-2, respectively. In the paired setting, we train

each module, that is, 2DPoseNet, OrdinalNet and Multi-

PoseNet, using paired image-to-3D pose annotations from

Human3.6M. Under this setting, we achieve competitive re-

sults using PRED Ordinals for scoring. The use of GT Ordi-

nals takes us close to the state-of-the-art. We are worse only

to the methods that either use additional ordinal training

data [24], temporal information [8, 10] and/or soft-argmax

[35] (denoted by *s), all of which is compatible with our ap-

proach and is expected to improve the performance further.

Finally, we outperform all existing methods using Oracle

supervision. Although it’s an unfair comparison, it demon-

strates that our CVAE-generated sample set contains candi-

date poses that are very close to the ground-truth pose, thus

validating our sample-generation based approach.

Without Paired 3D Supervision: The modular nature of

our pipeline allows us to train the 2D-to-3D lifting module

on a separate MoCap library that has no intersection with

the training images for 2DPoseNet, OrdinalNet. It affords

training our pipeline without the costly and laborious acqui-

sition of paired image-to-3D annotations. We demonstrate

it by training MultiPoseNet on the CMU MoCap dataset,

which consists of only 3D MoCap data, and report the re-

sults on the test-set of Human3.6M. Note that the MoCap

dataset is only needed for training, not for testing. The 3D-

poses from CMU MoCap are virtually projected to their

corresponding 2D-projections, with the camera at the ori-

gin and pelvis at a distance of 5500mm. We have used the

intrinsic camera parameters from Human3.6M to bring the
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Protocol 1 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SitingD Smoke Wait WalkD Walk WalkT Avg

PAIR

Pavlakos et al. [25] 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9

Zhou et al. [45] 54.82 60.70 58.22 71.4 62.0 65.5 53.8 55.6 75.2 111.6 64.1 66.0 51.4 63.2 55.3 64.9

Martinez et al. [19] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Sun et al. [34] 52.8 54.8 54.2 54.3 61.8 67.2 53.1 53.6 71.7 86.7 61.5 53.4 61.6 47.1 53.4 59.1

Fang et al. [9] 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4

*Pavlakos et al. [24] 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2

**Hossain et al.-[10] 44.2 46.7 52.3 49.3 59.9 59.4 47.5 46.2 59.9 65.6 55.8 50.4 52.3 43.5 45.1 51.9

**Dabral et al.-[8] 44.8 50.4 44.7 49.0 52.9 61.4 43.5 45.5 63.1 87.3 51.7 48.5 37.6 52.2 41.9 52.1

***Sun et al. [35] 47.5 47.7 49.5 50.2 51.4 43.8 46.4 58.9 65.7 49.4 55.8 47.8 38.9 49.0 43.8 49.6

Ours (PRED Ordinals) 48.6 54.5 54.2 55.7 62.6 72.0 50.5 54.3 70.0 78.3 58.1 55.4 61.4 45.2 49.7 58.0

Ours (GT Ordinals) 42.9 48.1 47.8 50.2 56.1 65.0 44.9 48.6 61.8 69.9 52.6 50.4 56.0 42.1 45.1 52.1

Ours (Oracle) 37.8 43.2 43.0 44.3 51.1 57.0 39.7 43.0 56.3 64.0 48.1 45.4 50.4 37.9 39.9 46.8

UNPAIR

Martinez et al. [19] 109.9 112 103.8 115.3 119.3 119.3 114 116.6 118.9 127.3 112.2 119.8 113.4 119.8 111.9 115.6

Ours (PRED Ordinals) 99.9 102.7 97.9 105.9 112.0 111.7 103.9 109.4 111.7 119.4 104.8 110.8 103.2 106.9 102.3 106.8

Ours (GT Ordinals) 97.9 100.5 95.4 103.7 109.4 108.5 102.0 108.0 107.9 115.4 102.2 108.9 100.8 105.8 100.8 104.4

Ours (Oracle) 92.6 94.6 90.6 98.4 103.8 103.3.6 96.6 101.8 101.7 108.8 96.6 102.7 95.3 100.6 96.1 98.9

Table 1: Detailed results on Human3.6M under Protocol 1(no rigid alignment in post-processing). Error is in millime-

ters(mm). Top: Paired methods (PAIR), Bottom: unpaired methods (UNPAIR). Results for [19] in the unpaired setting were

obtained using their publicly available code. * - use additional ordinal training data from MPII and LSP. ** - use temporal

information. *** - use soft-argmax for end-to-end training. These strategies are complementary with our approach.

Protocol 2 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SitingD Smoke Wait WalkD Walk WalkT Avg

PAIR

Zhou et al. [45] 47.9 48.8 52.7 55.0 56.8 49.0 45.5 60.8 81.1 53.7 65.5 51.6 50.4 54.8 55.9 55.3

Pavlakos et al. [25] 47.5 50.5 48.3 49.3 50.7 55.2 46.1 48.0 61.1 78.1 51.1 48.3 52.9 41.5 46.4 51.9

Martinez et al. [19] 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7

Fang et al. [9] 38.2 41.7 43.8 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7

Sun et al. [34] 42.1 44.3 45.0 45.4 51.5 53.0 43.2 41.3 59.3 73.3 51.0 44.0 48.0 38.3 44.8 48.3

*Pavlakos et al. [24] 34.7 39.8 41.8 38.6 42.5 47.5 38.0 36.6 50.7 56.8 42.6 39.6 43.9 32.1 36.5 41.8

**Hossain et al.-[10] 36.9 37.9 42.8 40.3 46.8 46.7 37.7 36.5 48.9 52.6 45.6 39.6 43.5 35.2 38.5 42.0

**Dabral et al.-[8] 28.0 30.7 39.1 34.4 37.1 44.8 28.9 31.2 39.3 60.6 39.3 31.1 25.3 37.8 28.4 36.3

***Sun et al. [35] - - - - - - - - - - - - - - - 40.6

Ours (PRED Ordinals) 35.3 35.9 45.8 42.0 40.9 52.6 36.9 35.8 43.5 51.9 44.3 38.8 45.5 29.4 34.3 40.9

Ours (GT Ordinals) 31.3 31.0 39.3 37.0 37.2 47.8 32.5 32.1 39.8 47.3 40.0 34.7 41.8 27.5 31.0 36.7

Ours (Oracle) 27.6 27.5 34.9 32.3 33.3 42.7 28.7 28.0 36.1 42.7 36.0 30.7 37.6 24.3 27.1 32.7

UNPAIR

Martinez et al. [19] 62.6 64.3 62.5 67.4 72.2 70.8 64.9 61.2 82.1 92.4 76.8 66.7 71.7 79.5 73.1 71.3

Ours(PRED Ordinals) 62.9 65.6 61.8 67.1 72.2 69.3 65.6 63.8 81.3 91.0 74.5 66.5 70.8 74.7 70.9 70.5

Ours(GT Ordinals) 62.9 65.3 60.7 66.9 71.3 68.4 65.2 63.2 80.1 89.3 73.5 66.1 70.5 74.7 70.9 70.0

Ours (Oracle) 56.8 59.2 55.0 59.6 65.6 62.0 58.4 56.5 74.2 82.8 67.6 60.0 63.6 68.2 64.3 63.6

Table 2: Detailed results on Human3.6M under Protocol 2(rigid alignment in post-processing). Top: Paired methods (PAIR),

Bottom: unpaired methods (UNPAIR). Results for [19] in the unpaired setting were obtained using their publicly available

code.

distribution of 2D-projections closer to the Human3.6M test

set. We also rotate the 3D-poses by 90, 180, and 270 de-

grees, for data augmentation. The obtained 2D-to-3D pose

dataset is used to train the Baseline model [19] and Mul-

tiPoseNet. The estimated 2D-poses and ordinals are ob-

tained from 2DPoseNet and OrdinalNet, both of which are

trained on Human3.6M. We emphasize that Human3.6M

is only used for learning 2D-pose and ordinal estimation,

therefore, we don’t use any image-to-3D annotation dur-

ing training. Since, two different sources are used for the

image-to-2D/ordinal and 2D-to-3D modules, we call it un-

paired setting. The results of these experiments are reported

in Table 1 and 2 in the bottom rows.

Our PRED Ordinals based method outperforms the

Baseline regression model [19] and with the use of GT Or-

dinals and Oracle the performance only increases. It shows

that our framework can learn without image-to-3D annota-

tion and is also robust to domain shift.

4.3.2 Evaluation on HumanEva-I

Under the protocol from [15], we evaluate our model on

HumanEva-I. Training uses subjects S1, S2, S3 under dif-

ferent view-points and action-sequences Jogging and Walk-

ing, while testing is carried out on the validation sequences

for all three subjects as testing data. All the modules are

trained using HumanEva-I. The model error is reported as

the reconstruction error after rigid transformation. We ob-

tain state-of-the-art results using the Oracle estimate and

close to state-of-the-art with PRED Ordinals and GT Ordi-

nals on HumanEva-I, reported in Table 3.
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(a) Oracle vs OrdinalScore vs MEAN (b) MultiPoseNet vs Baseline sampling

Figure 3: Ablation studies. (a) Effect of increasing number of samples on Oracle, OrdinalScore and MEAN estimate (b)

Comparison of MultiPoseNet versus Baseline sampling using Oracle supervision.

Figure 4: Sample diversity on Human3.6M test-set. From L-R: Input Image, MEAN Pose with per-joint standard deviation

around each joint, and 3 different SAMPLES overlaid on top of MEAN pose. MEAN is solid and SAMPLE is dashed, with

displacement field in between. Note that wrist and elbow show maximum variance. Best viewed in color with zoom.

4.4. OrdinalNet Accuracy

The OrdinalNet accuracy is obtained by comparing the

ground-truth ordinals, M , with the predicted ordinals, M̂ .

The results on the validation set for Human3.6M and

HumanEva-I are 86.8% and 81% respectively.

4.5. Ablation Studies

Effect of Increasing Sample Set Size: In Figure 3a, we

plot the value of different error estimates on Protocol-1 of

Human3.6 with increasing number of samples. MEAN de-

notes the uniform average of all samples. We observe that

the MEAN improves with the number of samples, but satu-

rates quickly. The Oracle performance keeps on improv-

ing with the number of samples, which validates the in-

tuition that the chance of obtaining close to ground-truth

pose increases with more samples. Consequently, the es-

timated 3D-pose, either using PRED Ordinals or GT Or-

dinals, keeps improving with more samples, as is evident

from their respective curves. This demonstrates that the pro-

posed ordinal scoring is an effective strategy for weighted

averaging of the generated samples.

Sampling Baseline: Here, we compare a Baseline sam-

pling strategy against our CVAE-based generative sam-

pling. Baseline sampling treats each joint-location as in-

dependent Gaussian distribution with the mean as the out-
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Figure 5: Samples from MultiPoseNet and Baseline ( using a variance of 100 ) mapped to Euclidean space using ISOMAP

[37]. Note that MultiPoseNet produces much more diverse samples that are likely to be near the GT pose.

Jogging Walking

S1 S2 S3 S1 S2 S3 Avg

Kostrikov et al. [15] 44.0 30.9 41.7 57.2 35.0 33.3 40.3

Yasin et al. [43] 35.8 32.4 41.6 46.6 41.4 35.4 38.9

Moreno-Noguer et al. [20] 19.7 13.0 24.9 39.7 20.0 21.0 26.9

Pavlakos et al. [25] 22.1 21.9 29.0 29.8 23.6 26.0 25.5

Martinez et al. [19] 19.7 17.4 46.8 26.9 18.2 18.6 24.6

Ours (PRED Ordinals) 19.3 12.5 41.8 40.9 22.1 18.6 25.9

Ours (GT Ordinals) 19.1 12.4 41.5 40.6 21.9 18.5 25.7

Ours (Oracle) 17.4 11.0 39.5 38.5 20.1 16.7 23.9

Table 3: Results of our model on HumanEva-I dataset and

a comparison with previous work. Numbers reported are

mean reconstruction error in mm computed after rigid trans-

formation.

put of the Baseline regression model[19] and variance from

{1,5,10,20,100,400}. Each joint-location is sampled inde-

pendently to obtain a 3D-pose. Oracle supervision is used

for both Baseline sampling and our MultiPoseNet sampling

to obtain the final 3D-pose. Figure 3b shows the comparison

of MultiPoseNet with Baseline sampling on Protocol-1 of

Human3.6 with increasing number of samples. It’s evident

that Baseline performs poorly and does not improve steeply

with more number of samples. It also begins to worsen with

higher variance of 400mm as the samples become more ab-

surd. On the other hand, MultiPoseNet improves its esti-

mate by close to 20mm and the slope of the curve indicates

further potential gains by sampling more.

4.6. Sample Diversity

Qualitative Analysis: To assess the feasibility of the pro-

posed approach to generate a diverse set of plausible 3D-

pose candidates from a given 2D-pose, we show the MEAN

pose, per-joint standard deviation, and a few candidate 3D

poses for two different images from the Human3.6M test set

in Figure 4. We observe meaningful variations across dif-

ferent body parts and poses with relatively higher variance

around, the hardest to predict, wrist and elbow joints.

Visualisation Using Dimensionality Reduction: To vi-

sualize the distribution of generated candidate 3D-poses,

we map the samples from MultiPoseNet and Baseline sam-

pling (with a variance of 100) into Euclidean space using

Isomap [37]. Fig. 5 shows 1000 samples using both Multi-

PoseNet and Baseline sampling for two different input 2D-

poses, along with the ground truth 3D-pose and the MEAN

estimate of MultiPoseNet. Interestingly, the samples from

Baseline are clustered narrowly around the MEAN, whereas

MultiPoseNet samples are diverse and are more likely to be

near the GT 3D-pose.

5. Conclusion and Future Work

This article presented a novel framework for monocu-

lar 3D-pose estimation that uses a conditional variational

autoencoder for sampling 3D-pose candidates which are

scored and weighted-averaged together using ordinal rela-

tions, predicted from a deep CNN. The proposed method

achieves close to state-of-the-art results on two benchmark

datasets using OrdinalScore, and state-of-the-art results us-

ing an Oracle with access to the ground truth 3D-pose. The

CVAE has been shown to learn a generative model that syn-

thesizes diverse 3D-pose samples consistent with the input

2D-pose, thereby dealing with the ambiguity in lifting from

2D-to-3D. It can also be trained without paired image-to-3D

annotations, and still yields competitive results.
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