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Abstract

In order to bring artificial agents into our lives, we will

need to go beyond supervised learning on closed datasets

to having the ability to continuously expand knowledge. In-

spired by a student learning in a classroom, we present an

agent that can continuously learn by posing natural lan-

guage questions to humans. Our agent is composed of three

interacting modules, one that performs captioning, another

that generates questions and a decision maker that learns

when to ask questions by implicitly reasoning about the un-

certainty of the agent and expertise of the teacher. As com-

pared to current active learning methods which query im-

ages for full captions, our agent is able to ask pointed ques-

tions to improve the generated captions. The agent trains on

the improved captions, expanding its knowledge. We show

that our approach achieves better performance using less

human supervision than the baselines on the challenging

MSCOCO [14] dataset.

1. Introduction

Imagine a child that sees a crocodile for the first time.

She may likely ask what the animal is called, or where it can

be encountered outside the zoo, but probably does not need

to be told that it is green or has four legs, and that its sharp

teeth can pose danger. Children (and even adults) learn from

teachers in an active way: asking questions about concepts

that they are unfamiliar or uncertain about. In doing so, they

make learning more efficient – the child who acquires ex-

actly the information they are missing – and the teacher who

answers the question instead of needing to explain many as-

pects of a concept in full detail. As A.I. becomes more and

more integrated in our everyday lives, be it in the form of

personal assistants or household robots [28, 17, 23], they

too should actively seek out missing information from hu-

mans – by asking questions in the form of natural language

which non-experts can understand and answer.

Most existing work on scene understanding tasks such as

VQA [5, 25, 29, 6] and captioning [14, 21, 3] have focused

on a closed world setting, i.e. consuming the knowledge

provided by a labeled dataset. On the other hand, the goal

of active learning is to be able to continuously update the

model by seeking for the relevant data to be additionally la-
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Figure 1. Learning to describe images by asking questions. Our model

learns in a lifetime learning setting, by actively seeking for missing infor-

mation. We jointly learn when and what to ask, and learn from the teacher’s

answers. Our model poses questions in natural language.

beled by a human [22]. Most active learning approaches,

however, ask the human to provide a full labeling of an ex-

ample, and the main challenge is in identifying the exam-

ples to be labeled, to ensure annotation efficiency. In our

work, we go beyond this, by endowing the model with the

ability to ask for a particular aspect of a label, and do so

in natural language in order to unambiguously identify the

missing information.

We focus on the task of image captioning as a proxy task

for scene understanding. In order to describe an image, a

model needs to generate words describing the objects, their

attributes, actions, and possibly relationships and interac-

tions between objects. This is inherently a multi-task prob-

lem. In this paper, our goal is to allow a captioning agent

to actively ask questions about the aspects of the image it

is uncertain about, in a lifetime learning setting in which

examples arrive sequentially and continually. Thus, instead

of having humans provide captions for each new image, our

agent aims to ask a minimal set of questions for the human

to answer, and learn to caption from these answers.

Our model consists of three modules: a captioning mod-

ule, a decision making module that learns whether to ask

and what to ask about, and a question generation module.

At training time when the captioner produces each word,

the decision module decides for which concept, if any, to

ask about. If the agent decides to ask, the question module

produces a question, which the teacher answers. All three

modules are implemented as neural networks. They are up-

dated continuously with the data arriving in batches: the

captioning module is updated using the captions improved
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by the answers from the teacher, while the decision module

is updated based on the current uncertainty of the caption-

ing module. For efficiency reasons, our teacher to answer

questions is a QA bot. At test time the captioning model

describes new images without asking questions.

In summary, our contributions are:

• A new Learning by Asking Questions paradigm in which

captioning, question generating, and decision modules

interact in order to learn in over a lifetime. The advantage

of LBAQ is it improves the efficiency of data collection.

• A novel decision maker module, trained with reinforce-

ment learning (RL) that decides whether and what to ask

a question about by implicitly reasoning about the uncer-

tainty of the agent and knowledge of the teacher.

We showcase our method on MSCOCO [14]. We provide

insights into the behavior of our approach, and discuss open

challenges ahead. To the best of our knowledge, this is the

first time that natural language question asking has been ex-

plored in a lifetime learning setting with real-world images.

Please visit our project page http://aidemos.cs.toronto.

edu/lbaq/ for demo and code release.

2. Related Work
We provide a short overview of (inter)active learning ap-

proaches, and outline our main contributions.

Active learning. The goal of active learning is to intel-

ligently seek labels for unlabelled data from an oracle in

order to maximize learning while reducing the annotation

cost. An agent predicts which sample, if labelled, will

give the most useful learning signal as measured by per-

formance on the test set. Strategies for active learning in-

clude uncertainty sampling, query by committee and ex-

pected model change [22]. Unlike the typical active learn-

ing setting where an agent asks the oracle for a full data

label (which would be a full caption in our scenario), our

method learns to ask pointed questions to retrieve partial la-

bels, i.e. missing key words that compose a caption. Our

model thus needs to not only learn when to ask, but also

what to ask, and how to distill the received answer into a

complex multi-task module (captioner).

Learning by Asking Questions is an exciting direction

with notable contemporary work. Prior approaches typi-

cally differ in task, methodology (are questions natural or

templated? how does the agent utilize the feedback?) and

environment (synthetic vs real). [18] learns to answer ques-

tions by asking questions. Image and the generated question

are treated as an unlabelled sample and an oracle provides

an answer to form a novel training pair. This simplifies the

learning by asking framework by bypassing the challenges

of free-form conversation and interpreting the teacher’s an-

swer, because QA can be directly used as training data. Our

work generalizes over this framework by using question-

asking as a support task to the main task, in our case image

captioning, which leads to a more general, and significantly

more challenging scenario. Furthermore, [18] operates in

CLEVR [8], a synthetic environment and questions are lim-

ited to programs rather than natural language.

[31] explores question asking for visual recognition.

Given an image, a graph of objects, attributes and relation-

ships is continually updated as the agent asks questions.

However, questions are limited to templates, and training

is done in synthetic environments with a limited set of ob-

jects and relationships. [26] uses questions to explore new

object classes for image classification. However, [26] does

not retrain their classifier. Our work differs from [31, 26] by

proposing a way for the agent to learn in a lifetime setting.

In [11], the agent learns whether to ask questions to the

teacher to efficiently solve dialogue tasks. The student’s

goal is to maximize the accuracy of answering the teacher’s

questions while reducing the cost (to the teacher) of asking

for hints. We extend this line of thinking by letting the agent

learn what to ask about in addition to whether to ask.

Vision and Language. Our work tackles captioning [30,

21, 3], visual question answering (VQA) [25, 6, 10], and vi-

sual question generation (VQG) [12, 19]. However, most of

these works have focused on a closed dataset setting. Our

main goal here is not in designing a novel architecture for

each module (captioning, VQG, VQA), but rather focusing

on the interaction of the modules and the teacher in order

to learn in a continual, active setting. Related to us is [15],

where a teacher observes the captioning agent in a contin-

ual setting, and gives natural language feedback when errors

occur. The agent then learns to improve based on this sig-

nal. In our work, the agent is the one seeking advice, thus

making the teaching process more efficient.

3. Our Approach
Our goal is to train an image captioning model in the ac-

tive learning setting with minimal human supervision. We

approach the problem by endowing the agent with the abil-

ity to ask questions, and learn from the teacher’s answers.

However, question asking is only a tool for retrieving in-

formation during training; at test time, the captioner oper-

ates without needing to ask questions. We first provide an

intuitive overview of our interactive training procedure, de-

scribing the lifetime learning setting, namely how the agent

learns from data arriving in a sequence of batches. Next,

we provide details of how the agent queries for, and learns

from, answers and feedback from the teacher. Finally, we

describe the implementation of our agent’s modules.

3.1. Lifetime Learning
We imagine a lifetime learning setting where data arrives

in chunks. This is analogous to a student who learns over

multiple classes in a semester. The first chunk Dw has com-

plete ground truth (GT), i.e. human written captions. We re-

fer to it as the warmup chunk. The agent learns from the re-
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Figure 2. Modules being updated (green), modules held fixed (grey), teacher (yellow). Writer is a teacher that produces full GT captions. Captioner begins

by warming up on the first chunk containing all GT captions (left panel). Learning by asking questions (right panel) occurs in two phases: collection and

update. In collection phase, the captioner generates a caption, the decision maker chooses when to ask a question, the question generator generates a question

and the teacher provides an answer. Answer is used to create two new captions. Captions are collected and used to train the captioner in the update phase.

maining K unlabelled chunks Du = [Du1, Du2, . . . , DuK ]
with partial supervision from the teacher. We first train the

question generator and pretrain the captioner on the warmup

chunk. For each unlabelled chunk, the agent iterates be-

tween two phases: querying the teacher, and learning from

the collected information.

In the (caption) collection phase, the agent interacts

with the teacher using two modules: a decision maker, and

a question generator. The agent attempts to caption a new

image in an unlabelled chunk, and decides whether to re-

place words with answers obtained by asking questions.

The agent collects the improved captions and uses them to

train the captioner in the update phase. In collection phase,

feedback from the teacher is also used to train the decision

maker to make better decisions about whether/when to ask.

The process is illustrated in Fig 2, and summarized in Alg 1.

3.2. Notation
Let w = (w1, w2, . . . , wL) denote a caption of length L,

and I an image. The captioning module C(w|I) computes

a probability distribution over the words in a sentence, i.e.

pθC (w|I). We further compute c = (c1, c2, . . . , cL), denot-

ing an array of contexts computed by the captioner (details

in Sec 3.5). The context helps the decision maker decide

what concepts to ask about, and the question generator to

ask relevant questions. Let the context used by the decision

maker and question generator be called cDM and cq , respec-

tively. The decision module DM(t|c) computes a multino-

mial distribution pθDM
(t|cDM ) indicating the probability of

a word position t in the caption at which the question should

be asked. We allow t to index a special <eos> position

representing the case where no question should be asked.

The question generation module Q(q|I, cqt ) computes the

probability distribution pθq (q|I, c
q
t ) over a question q. The

details about the modules are presented in Sec 3.5.

3.3. Caption Collection Phase
In the collection phase, the agent attempts to improve

captions generated from its own policy by querying the

teacher. For each round, the agent makes multiple passes

over a chunk. Given an image, the agent generates a cap-

tion, and the decision maker decides whether and when (at

which word) to ask a question to the teacher. The teacher

answers the question, which the agent uses to create a new

caption (details in Section 3.3.1). The teacher scores both

new and old captions and the agent stores the captions in a

buffer Dc. At the same time, the agent uses the scores from

the teacher to make online updates to the decision maker to

pick better time steps for asking questions (Section 3.3.2).

The collected captions will be used in the update phase

by the agent to distill the teacher’s knowledge back into

the captioner. However, the agent could encounter diffi-

cult images that cannot be improved by asking questions.

Empirically we find the agent cannot improve on images

containing objects in unusual settings, or if the caption gen-

erated from the captioner’s policy is missing multiple key

concepts. Therefore, we allow the agent to “give up” if the

improved caption is bad, and the teacher writes a new cap-

tion. This is analogous to a student asking for a full expla-

nation from the teacher after class if he did not understand

a concept. For every image, the agent considers the top m

captions from the buffer Dc for training. It keeps the top

H% of images-caption tuples based on the average caption

reward over m captions. For the other 100-H% images, the

agent “gives up” and is given m GT captions. In practice,

we choose m = 2 out of the 5 MSCOCO captions. The

KeepBestAndGiveUp subroutine in Algorithm 1 sum-

marizes how the agent selects training data for the captioner.

3.3.1 Interacting with the Teacher Details

Given an image, the captioner produces the complete ini-

tial caption w
0 and context c0 by a greedy rollout from

pθC (.|I). The decision module then makes a decision by

sampling from pθDM
(.|cDM ). Words other than nouns,

verbs, and adjectives are masked out. Let wt be the word

for which the decision module decides to ask a ques-

tion. The question generator produces a question and

the agent receives an answer a. The agent then replaces

word wt in w
0 with a and predicts a new caption w

1
ro =

(w1 . . . wt−1, a, w
′
t+1, . . . w

′
L), by rolling out the rest of the

caption from position t using the previous hidden state ht−1
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Algorithm 1 Lifetime learning

1: procedure LIFETIME(Dw , Du)

2: train: C, Q, V ⊲ train captioner, question generator, QA-bot

3: initialize: DM ⊲ initialize decision maker

4: D ← Dw

5: Du = [Du1, Du2, . . . DuK ]
6: for Duk in Du do ⊲ begin lifetime learning

7: Dc ← [ ] ⊲ collection phase

8: for epoch = 1 to Number of Passes over Chunk do

9: for I in Duk do

10: w, r1:N , t1:N ← SeekTeacher(I)
11: w

∗, (r∗)1:N ← SeekTeacher(I, greedy=True)
12: Dc += (w, r,w∗, r∗) ⊲ collect caps. and rewards

13: θDM +=
∑N

n=1
[rn− (r∗)n]∇ log pθDM

(tn|cn−1)

14: D ← KeepBestAndGiveUp(Dc, H)
15: train: C on D using L(θC) ⊲ update phase

of the captioner and a. If the teacher’s answer is a rare

word for the agent, the agent may diverge from any sen-

sible trajectory. For this reason, we give the agent the op-

tion of doing a one-word-replace of the expert’s answer, i.e.

w
1
re = (w1 . . . wt−1, a, wt+1, . . . wL).
Finally the teacher scores both the original and the two

improved captions, by giving each a numeric reward r. The

process can be repeated by asking a second question and

replacing another word at step t′ > t. In general, the agent

can ask up to N questions for a single caption. In practice,

we observe N = 1 to work best in our experiments. We

keep N in the following for the generality of exposition.

The interaction process is summarized in Algorithm 2.

3.3.2 Learning When to Ask Questions

As the agent queries the teacher, it trains the decision maker
online to make better decisions. The teacher provides a
scalar, non-differentiable reward. Hence we update de-
cision maker using REINFORCE [24]. We baseline the
reward with the greedy decision reward (r∗)0 (i.e., what
the improved-caption would have been had DM sampled
greedily), following the self-critical policy gradient [21].
See line 11 in Alg 1. In the general case with N questions
asked, the gradient for the parameters of the decision maker
θDM is:

N∑

n=1

[rn − (r∗)n]∇ log pθDM
(tn|cn−1) (1)

In this work we did not update the question generator in

lifetime learning because jointly training the decision maker

and question generator is a hierarchical RL problem. Re-

ward accreditation is challenging because the agent needs

to learn to differentiate DM choosing a bad time step from

DM choosing a good time step but question generator gen-

erating a bad question.

3.4. Captioner Update Phase
After the collection phase, the agent trains the caption-

ing module on the collected captions. We assume the agent
has full access to past data D and is retrained from scratch.
We retrain from scratch to avoid the added complexity of

Algorithm 2 Interacting with the teacher

1: procedure SEEKTEACHER(I, GREEDY=FALSE)

2: w
0, c0 ← C(·|I) ⊲ compute caption and context

3: r0 ← TeacherScore(w0)
4: for n = 1 to N do

5: tn ← DM(·|cDM,n−1, greedy) ⊲ DM samples step

6: q← Q(·|I, cq,n−1

tn ) ⊲ generate question

7: a← V (·|I,q) ⊲ teacher provides answer

8: w
n
ro, c

n ← [wn−1

0:tn−1
, a, C(·|I, htn−1, a)] ⊲ roll new cap.

9: w
n
re ← [wn−1

0:tn−1
, a,wn−1

tn+1:
]

10: rnro ← TeacherScore(wn
ro) ⊲ teacher scores caption

11: rnre ← TeacherScore(wn
re)

12: w
n, rn ← max{rn−1, rnro, r

n
re}

13: return w
N , rn=1:N , tn=1:N

applying learning-without-forgetting techniques since our
model has many moving parts already. Future works can
look at how to efficiently learn on the new data. D contains
warmup GT captions, collected captions, and GT captions
from “giving up”. The captioner is retrained using a joint
loss over the captions stored in D,

L(θC) = −
∑

w∈D

rw log pθC (w|I)− λ
∑

w
∗∈D

log pθC (w∗|I)

(2)

where w are collected captions, w∗ are GT captions, rw
is the score given by the teacher for w, and λ is a tuned

hyperparameter. In practice, we set λ to the 90th percentile

reward of the collected captions, assuming that ground truth

captions are generally better than collected captions.

3.5. Implementation Details

Captioning module. C(w|I) is implemented as an atten-

tion CNN-RNN model [30]. We additionally predict a part-

of-speech (POS) tag at each time step to inform the question

generator what type of question should be asked and the

decision maker whether to ask. Captioner is trained using

MLE with teacher forcing and scheduled sampling.

Question generation module. Q(q|I, cqt ) is also imple-

mented as a CNN-RNN and conditions on the context at

time t. Specifically, c
q
t consists of: POS distribution which

determines the “question type”, the attention weights pre-

dicted by the captioner which guide the question generator

to look, an encoding of the caption which provides global

context and prevents asking for redundant concepts, and the

position encoding for t. We found it helpful to allow the

question generator to re-attend rather than fully rely on the

captioner’s attention. We train the question generator on a

novel dataset, using MLE with teacher forcing and sched-

uled sampling similar to the captioner (details in Appendix).

Decision module. The decision maker DM(t|c) is im-

plemented as a multilayer perceptron (MLP) with Softmax

output. Context cDM consists of the POS distribution, an

encoding of the caption, and uncertainty metrics computed

from top-k words predicted by the captioner:

• Cosine similarity between the embedding of the top-1

word and all other k − 1 words.
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• Cosine similarity between each top-k word and the

embedding of the entire sentence (implemented as the

sum of word embeddings).

• Minimum distance of each top-k word to another word.

Entropy is a natural way to measure the uncertainty of the

captioner. However, the model can predict synonyms which

increase entropy but do not suggest that the model is un-

certain. Therefore, for each time step we take the word

embeddings of the top-k words and compute their relative

distances as a secondary measure of uncertainty. We use

k = 6. In ablation studies, we show that these statistics

alone can capture the uncertainty of the cap. Training a neu-

ral network on these stats further improves performance.

Teacher module. We imagine our agent in a human-in-

the-loop setting where a teacher answers natural language

questions, chooses the best caption out of a few alternatives,

scores it, and writes GT captions if necessary. The teacher

consists of two parts: a VQA bot V (a|I,q) implemented

following [25] and a caption scorer composed of a linear

combination of BLEU [20], ROUGE [13], METEOR [2],

and CIDEr [27]. We call the reward from the caption scorer

the Mix score, and denote it by r. We discuss challenges to

using a synthetic teacher in Sections 4.3 and 4.6.

4. Experiments
We evaluate our approach on the challenging MSCOCO

dataset [14], and compare it to intelligent baselines. We

perform detailed ablation studies that verify our choices and

give insight into how our model behaves.

We follow the standard Karpathy split [9] that contains

117,843 training, 5K validation and 5K test images. We ran-

domly split the training set into warmup and lifetime learn-

ing chunks. In our experiments, we vary the size of the

warmup, and the number of lifetime chunks, to analyze the

model behavior under different regimes. There are 5 GT

captions for each image in the warmup set. At the end of

lifetime learning, there are m = 2 collected or GT captions

for each image in the lifetime set.

Image features are extracted with ResNet-101 trained on

ImageNet [4] [7]. Vocabulary sizes for the captioner, ques-

tion generator and VQA are 11253, 9755 and 3003, respec-

tively. We use the Stanford NLP parser to get GT POS la-

bels [16]. The decision maker only considers a subset of

tags (listed in Appendix) for asking questions.

4.1. Training Details
The synthetic teacher (VQA bot) was trained on the

VQA2.0 dataset [1], following a simplified implementation

of [25] using a multi-answer binary cross entropy loss func-

tion. The VQA model achieves 64.2% on the VQA2.0 val

split without ensembling. We train the question generator

by combining data from MSCOCO and VQA2.0. (Imple-

mentation details in App.) A natural concern is that train-

ing the question generator on images the captioner sees dur-

ing lifetime learning will cause the que. gen. to “lookup”

GT questions. We find this to not be the case (see Fig-

ure 8). In general, the questions generated for an image

are diverse, generic and rarely match GT questions (see

Appendix for more examples). The entire training process

takes 2.5 longer than supervised learning baselines, mostly

because we retrain the captioner from scratch. This slow-

down can be overcome in future works by using learning-

without-forgetting techniques.

4.2. Cost of Human Supervision
We first perform a human study to understand human

cost associated with every interaction type with the agent.

We choose to measure “human effort” as the time taken for a

task. In our experiment, a human teacher has three possible

tasks: produce a full caption, answer a question, and score

a caption. Table 4 shows that on average it takes 5.2 and

4.6 times longer to caption than score a caption or answer

a question. To compute the cost of human supervision, we

normalize the cost of each task to caption scoring. Hence

the agent incurs one point of supervision for each caption

scored, 1.13 for each question answered, and 5.2 for each

caption written. In practice, we assume no cost when the

VQA module answers a question. A human teacher would

charge the agent for answers but would also give better an-

swers. In the experiments to follow, we use Human Super-

vision as a metric for cost incurred by querying a human.

4.3. Learning by Asking Questions
In Table 1 we evaluate our lifetime learner, aka “inquis-

itive student” (IS), against training only on GT data on the

test split. All results are reported using greedy decoding.

Our model was trained with a 10% warmup chunk, 3 unla-

belled chunks and H = 70% collect percentage. For each

setting we report the best model out of three with different

random seeds on the test set. We report two GT baselines:

Equal GT – the same number of GT captions as our model

but no additional collected captions from the teacher, and

All GT – GT captions are used for all images (same number

of captions as our model).

In order to evaluate the benefits of asking questions, we

introduce Mute Student (MS), a lifetime learner that inter-

acts with the teacher by only receiving feedback on whether

captions are good (does not ask questions). MS is trained in

exactly the same lifetime setting as IS, but samples multi-

ple captions from the captioner’s current distribution rather

than ask questions to construct new captions to be rated by

the teacher. The best captions are still collected and used to

train for the next round. All models have the same hyper-

parameters and captioning architecture and are trained on

all images to ensure fairness. GT % (captions) and (human)

Supervision % are reported relative to All GT.

Compared to Equal GT, our lifetime model achieves 5
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Method H% GT % Supervision % Mix CIDEr METEOR ROUGE BLEU4 BLEU2

Equal GT - 45.2 % 45.2 % 98.9 91.5 24.7 52.3 28.0 53.4

All GT - 100 % 100 % 101.7 96.4 25.1 52.9 28.8 54.9

Inquisitive Student 70% 45.2 % 73.5 % 103.9 98.0 25.4 53.8 30.5 57.1

Mute Student 70% 45.2 % 72.6 % 102.2 95.9 25.2 53.4 29.3 55.9

Table 1. Evaluation on test. Our model was trained with 10% warmup and 3 unlabelled chunks. Methods see all images at least once for fairness. Note: (Best of 3 runs) 100%

GT corresponds to 46% of the MSCOCO training captions because only 2 (out of 5) captions are used for each image in the lifetime chunks.
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Figure 3. Caption quality on test. Both models are decoded greedily.For each plot, GT % is varied by changing the percentage of captions H% collected

by the agent. % GT captions is reported relative to All GT.

Mix and 6.5 CIDEr higher which shows that for an agent

with a fixed budget of GT captions, additionally learning

from collected captions can significantly improve perfor-

mance. Compared to All GT, our model achieves 2.2 Mix

or 1.6 CIDEr higher score while using only 45.2% of GT

captions and 73.5% of human supervision. This means that

training on teacher-improved captions not only achieves

greater efficiency but also leads to higher performance than

training on GT captions. We find this to be a particularly

strong and interesting result.

IS also beats MS, which demonstrates that question-

asking is beneficial. This is investigated further in Fig. 3.

We vary the amount of GT captions by adjusting the per-

centage H of collected captions. We call an agent that trusts

its teacher-improved captions often (and rarely gives up)

a “confident” learner. Confident learners use less human

supervision. An agent that begins lifetime learning earlier

with only a small warmup set is an “eager” learner.

IS outperforms MS in almost all settings but the differ-

ence is greater if the agents are eager. Fig. 3 shows that

at 10% warmup the gap is 1.4 CIDEr (97 vs 95.6) but as

we reduce to 1% warmup, the gap becomes 12.7 CIDEr (77

vs 64.3). This supports the intuition that asking questions

benefits learners with less experience. In addition, a more

eager learner ultimately reaches lower performance for the

same amount of supervision. For about 30% GT captions IS

achieves 93.9 CIDEr in the 10% warmup setting and 83.5

CIDEr in the 1% warmup setting. We hypothesize this is

because the quality of sentence continuations, or rollouts af-

ter receiving the teacher’s answer, worsens if the agent pre-

trains on less data. Furthermore, a very eager learner may

make too many mistakes to fix by asking only one question.

Selected examples are shown in Fig 4. The first four

examples are positive and show asking questions helps fix

incorrect words and retrieve novel concepts. In the fifth ex-

ample, the reward is lower for the new caption even though

it is good according to human judgment. Auto-eval met-

rics do not reward the agent for relevant, novel captions

that don’t match words in the reference captions. A hu-

man teacher with more flexible scoring could encourage the

agent to learn more diverse captions and a larger vocabulary.

4.4. Learning New Concepts
1%, 3% and 10% warmup datasets contain only 30%,

47%, and 70% of the captioning vocabulary respectively.

The remaining words/concepts are explored in lifetime

learning. Fig. 5 shows the number of unique words used

by a captioner evaluated on the val split at the end of life-

time learning. We found a dependency between training

epochs and vocabulary size and therefore took all models at

the same epoch. We baseline against mute student. IS has a

larger knowledge base than MS at all % GT as it uses more

unique noun, verb and total words than MS, showing IS is

able to learn new vocabulary.

In Table 3 we compare the vocabulary of lifetime learn-

ers to All GT. All GT has a larger vocabulary than lifetime

learners. This is intuitive because All GT has more GT cap-

tions and therefore sees more varied data. IS only receives

a single word answer given an image, whereas All GT re-

ceives a complete caption label containing on average 10.5

words. For the same reason, in Fig. 5 the agents’ vocabu-

lary decreases as % GT decreases.

Another way to measure the usefulness of teacher’s an-

swers is to compute how often it repeats a concept the cap-

tioner already knows. Table 2 shows how frequently the an-

swer from the teacher appears in the top-k words predicted

by the captioner at the time step where the question is asked

(ATopk). Note that this is approximate because the cap-

tioner may predict the answer at a different step. In the first

round of lifetime training, 26.3% of teacher answers ap-

peared in the top-5 words predicted by the captioner. Hence,

73.7% of the time, the agent is sees an unfamiliar or novel

concepts. Over the lifetime, ATopk increases as the stu-
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GT:  A man in an orange jacket 

talks on his cell phone.

OC: A man in a blue shirt

holding a cell phone.  [1.68]

Q: What color is the man's shirt?

A:    orange, red, yellow

T5C: blue, suit, vest, tie, shirt

NC:  A man in a orange shirt 

talking on a cell phone. [2.29]

GT: A tree with a bunch of red 

bananas next to lots of leaves.

OC: A bunch of red and yellow

flowers on a branch.  [1.13]

Q: What type of plant is this?

A:  banana, cactus, bamboo

T5C:  and, flowers, hanging, 

red, flower

NC:  A bunch of red banana

hanging on a tree. [1.32]

GT: A man windsurfing on an 

ocean with medium sized waves.

OC: A man riding a wave on a 

wave.  [0.67]

Q: What is the person doing?

A:  windsurfing, surfing, 

parasailing

T5C:  riding, surfing, is, flying, on

NC:   A man windsurfing on a 

surfboard in the ocean.  [1.55]

GT: An adorable child wading in water 

while holding onto a boogie board.

OC:  A little boy on the beach with a 

surfboard.  [1.02]

Q: What is the boy holding?

A: boogie board, surfboard, 

wakeboard

T5C: surfboard, boat, red, man, person

NC: A little boy on the beach with a 

boogie board. [1.28]

GT: A group of teddy bears 

standing next to each other on a 

shelf.

OC: A group of stuffed animals

standing next to each other.  [1.55]

Q: What are the bears doing?

A:  sitting, standing, hugging

T5C: standing, are, sitting, that, 

holding

NC:  A group of stuffed animals 

sitting on a shelf. [1.37]

1.0

0.0

0.5

0.75

0.25

Figure 4. T5C: top-5 words predicted by captioner at the word when question is asked. Rewards are in square brackets. Colors in OC indicate probability

the decision maker will ask about a word (scale is on right). Left 4 are positive examples, right is failed (pointing to weaknesses of auto-eval metric). NC

is the “rollout” caption. Even when one word (answer) is replaced, multiple words can be updated because the captioner samples the rest of the sentence

conditioned on the answer.
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Figure 5. Num. of unique words used by captioner

evaluated on val at the end of lifetime learning.

Models trained with 10% warmup and 3 chunks.
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Figure 6. Distribution of teacher answer

types over rounds. The model was trained us-

ing 10% warmup, H = 70% and 3 chunks.
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Figure 7. Performance on val vs the number of

total chunks (plus the warmup). Models were

trained using 10% warmup and H = 70%.

dent’s knowledge catches up to that of the teacher.

4.5. Analyzing the Modules
Question Generator. We conducted a human study

(Fig. 11) using Amazon Mechanical Turk (AMT) to eval-

uate the quality of generated questions. Annotators rated

500 images-question pairs by answering questions if they

were good or flagging questions as “not understandable”

or “irrelevant to the image”. The questions were randomly

selected questions that the question generator asked while

trying to caption. The images were not seen by the question

generator during its training. 82.4% of questions were rated

“good” and answered. This is a promising result and sug-

gests that learning by asking can be adapted to use human

teachers instead of a QA bot.

Fig. 8 shows generated questions at different time steps

in a caption. In general, generated questions tend to be di-

verse, and generic. It’s important for questions to be generic

so that the teacher can answer with a wide range of possible

concepts and possibly new concepts. We also rarely observe

the generated questions to be the same as the GT questions.

More examples in Appendix.

Decision Maker. To test the decision maker, we look di-

rectly at the scores of the refined captions it produces, rather

than those of the final captions after retraining the captioner.

This lets us to precisely observe the ablated performance of

the DM. Table 9 evaluates different decision maker strate-

gies. We first train captioning and question generation mod-

ules. The baseline is the performance of the captioner with-

out asking questions. The other settings use various deci-

sion maker models to ask a question to improve captions.

Learned models are trained using RL on a single chunk of

unlabelled data. Scores are shown for the val split.

The full model gives 6.5 CIDEr improvement over no

question asking. Picking the time step with maximum en-

tropy is not a very good strategy. It is only 0.3 CIDEr bet-

ter than picking a random step. This is because the model

can predict synonyms which increase the entropy but do

not indicate the model is uncertain. Adding closeness met-

rics yields 1.0 CIDEr improvement over maximum entropy,

showing that taking into account the closeness of words

in embedding space gives a better measure of uncertainty.

In all cases, learning improves performance, with the best

learned model achieving 3.1 CIDEr higher than the best

non-learned model. We use the full model as our decision

maker for all experiments.

4.6. Understanding the Model

Number of chunks. Fig. 7 shows that as the number of

chunks increases, performance increases (for similar human

supervision). This is intuitive because more chunks means

the agent sees fewer images before adapting the captioner.
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C: Three people are playing with a large frisbee.

Q1: Who is holding the frisbee? A: boy

Q2: What kind of game are they playing? 

A: frisbee

Q3: What is the man in the blue shirt holding? 

A: frisbee

Q4: What color is the frisbee? A: blue

C: A train sitting on the tracks.

Q1: What is the yellow object? A: train

Q2: Is this train moving or coming? A: going

Q3: Is the train in or outside? A: outside

Q4: Where is the train? A: station

GTQ: What color are the train doors on the 

right?

GTQ: What shape are the windows?

C: Two cats sit in a room with a cat.

Q1: What animal is in the photo? A: cat

Q2: What are the cats doing? A: looking out 

window

Q3: Are these cats sitting or outside? A: inside

Q4: What are the cats looking at? A: window

GTQ: What animals are shown?

GTQ: How many cats are there?

C: A cat laying on a bed with a pillow and 

a pillow.

Q1: What is on top of the suitcase? A: cat

Q2: Is the cat inside or inside? A: inside

Q3: What kind of cat is on the left? A: gray

Q4: Where is the cat? A: suitcase

Q5: What is on the left of the suitcase? 

A: cat

Figure 8. Questions generated from different words in the generated caption (colors match words to questions). Highlighted questions retrieve answers

that are novel to the caption. Left 2 images are seen by question gen. during training (GTQ are GT questions used for training), right 2 are not. Generated

questions tend to be diverse and different from GT ones.

Round ATop3 ATop5 ATop10

1 17.7 26.3 37.4

2 24.1 34.2 46.9

3 27.4 38.3 50.7

Table 2. Frequency (in %) of teacher an-

swers that occur in captioning module’s pre-

dictions during lifetime training. Calculated

from agent’s collected captions in each round.

Model Nouns Verbs Adj.

IS 527 97 53

MS 491 86 48

All GT 680 127 47

Table 3. Number of unique words

used by each model on val. Life-

time learners are trained with 10%

warmup, H = 60%, 3 chunks.

Task Avg. time (s) Std. (s) Time ratio

Captioning 34.4 21.8 1.0

Scoring 6.6 2.2 5.2

Answering 7.6 3.7 4.6

Table 4. Time taken by humans to perform tasks: captioning, scor-

ing a caption, answering a question. Time ratio is relative to cap-

tioning. N = 27 humans surveyed, nc = 270 captions written,

nq = 675 questions answered, ns = 675 captions scored.

Method Mix C B4

No questions 86.4 74.1 22.1

Random 88.3 76.2 22.2

Entropy 88.9 76.5 22.4

Unc. metrics 89.6 77.5 22.5

Unc. metrics learned 90.8 79.3 23.2

Full learned 91.9 80.6 23.7

Figure 9. Ablating the decision maker. Entropy is

picking the time step with highest top-k word entropy.

Unc. metrics includes entropy and words closeness

(Sec. 3.5). Unc. metrics learned adds a MLP to predict

the best time step for asking. Full learned additionally

includes POS and an encoding of the caption as input.
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Figure 10. Changes to collected cap-

tions over rounds. Model trained with

10% warmup, H = 70%, 3 chunks.
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Figure 11. AMT study to judge the quality of the

generated questions. Given an image and a ques-

tion, annotators were asked to answer the question

if it is good, or flag it as “not understandable” or

“not relevant”. Generally the questions were good.

The number of chunks cannot be too large because we re-

train the captioner from scratch after every chunk.

Catching up to the teacher. Fig. 10 shows the percent of

collected captions that improved by asking questions (left

axis) and average reward of collected captions (right axis)

versus num. consumed chunks. Over time, the agent is

able to improve fewer and fewer captions by querying the

teacher. Furthermore, the largest increase in collected re-

ward occurs in the first round. These observations suggest

that the teacher’s knowledge is exhausted over time.

Types of answers. In Fig. 6 we see the distribution of an-

swer types from the teacher. Over time, the student asks for

more nouns, and less verbs and adjectives. We hypothesize

this is because the agent is learning verbs and adjectives

early on before moving onto nouns.

5. Conclusion
In this paper, we addressed the problem of active learn-

ing for the task of image captioning. In particular, we allow

the agent to ask for a particular concept related to the image

that it is uncertain about, and not require the full caption

from the teacher. Our model is composed of three mod-

ules, i.e. captioning, decision making and question posing,

which interact with each other in a lifetime learning setting.

Learning and teaching efficiency is shown to be improved

on the MS-COCO dataset. Our work is the first step towards

a more natural learning setting in which data arrives contin-

uously, and robots learn from humans through natural lan-

guage questions and feedback. There are many challenges

ahead in making the lifetime model learning more efficient,

and incorporating real humans in the loop.
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