
Unsupervised Collaborative Learning of Keyframe Detection and Visual

Odometry Towards Monocular Deep SLAM

Lu Sheng1∗ Dan Xu2∗ Wanli Ouyang3 Xiaogang Wang4

1College of Software, Beihang University, China 2University of Oxford, UK
3The University of Sydney, SenseTime Computer Vision Research Group, Australia
4CUHK-SenseTime Joint Lab, The Chinese University of Hong Kong, Hong Kong

lsheng@buaa.edu.cn, danxu@robots.ox.ac.uk, wanli.ouyang@sydney.edu.au, xgwang@ee.cuhk.edu.hk

Abstract

In this paper we tackle the joint learning problem of

keyframe detection and visual odometry towards monoc-

ular visual SLAM systems. As an important task in vi-

sual SLAM, keyframe selection helps efficient camera re-

localization and effective augmentation of visual odometry.

To benefit from it, we first present a deep network design

for the keyframe selection, which is able to reliably detect

keyframes and localize new frames, then an end-to-end un-

supervised deep framework further proposed for simultane-

ously learning the keyframe selection and the visual odom-

etry tasks. As far as we know, it is the first work to jointly

optimize these two complementary tasks in a single deep

framework. To make the two tasks facilitate each other

in the learning, a collaborative optimization loss based on

both geometric and visual metrics is proposed. Extensive

experiments on publicly available datasets (i.e. KITTI raw

dataset and its odometry split [12]) clearly demonstrate the

effectiveness of the proposed approach, and new state-of-

the-art results are established on the unsupervised depth

and pose estimation from monocular video.

1. Introduction

While perception of 3D geometric scenes is particularly

important for interaction with real-world environments, as

one important topic, visual simultaneous localization and

mapping (SLAM) [10] has received emerging attention in

recent years. However, due to the task complexity and lim-

ited annotated data, the power of deep learning is only par-

tially explored on existing visual SLAM systems [5, 28].

In this work, we focus on techniques for monocular vi-

sual SLAM systems, which generally contains several sub-

tasks, such as depth prediction and camera motion estima-

tion for local 3D scene structure recovery, and keyframe se-
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Figure 1. Illustration of our motivation: The keyframe selection

and the visual odometry are intercorrelated in monocular visual

SLAM. The keyframes can improve the depth prediction and cam-

era motion estimation for the visual odometry, while inversely,

the visual odometry facilitates more effective identification of

keyframes. We expect that a joint learning of both tasks in a single

deep model would make them benefit each other.

lection and management for global map construction and

localization. As an important part in monocular SLAM, the

keyframe selection has been widely investigated in tradi-

tional approaches for aiding the visual odometry and scene

matching [30, 9]. Although various evidences have shown

that using deep models with geometric constraints clearly

boosts the performance of depth, camera motion and opti-

cal flow estimation [51, 49], to our best knowledge, no ex-

isting work has considered deep learning based frameworks

for the keyframe selection task.

In this paper, we argue that a joint optimization of the

keyframe selection and visual odometry should greatly ben-

efit each other. Robust keyframe selection not only pro-

vides an efficient manner for fast localization and mapping,

but also is particularly useful for effective refinement of the

camera motion and depth predictions in the visual odom-

etry task. Inversely, better visual odometry is able to fa-

cilitate more accurate keyframe identification. In addition,
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simultaneous learning of multiple tasks in deep learning has

demonstrated its effectiveness in computer vision tasks such

as detection and segmentation [4, 13]. It is thus a natural ex-

pectation that solving the keyframe selection and the visual

odometry in a single deep network could also benefit from

the advantage of the joint optimization.

Based on aforementioned observations, we propose an

unsupervised deep model towards monocular SLAM, pow-

ered by three sub-networks to deal with three distinct but

complementary tasks, i.e. keyframe selection, camera mo-

tion estimation and depth prediction. The keyframe selec-

tion sub-network learns a joint visual and geometric simi-

larity between a pair of observed image and keyframe. If

this similarity is below a threshold, the observation image

is treated as a new keyframe, and is stored in a managed

keyframe pool. The camera motion and depth prediction

sub-networks learn to predict the depth of the observed im-

age and relative motions from its nearby frames. To jointly

learn these three tasks, we propose a collaborative learning

strategy to predict a final similarity for the keyframe selec-

tion using a geometric metric estimated from the depth and

the camera motion estimation networks, and a visual met-

ric directly estimated from the keyframe selection network.

A final ranking loss is added for different observation and

keyframe pairs. By doing so, the whole network is trained

in an unsupervised end-to-end fashion, and the three tasks

constrain on each other based on their visual-geometric re-

lationship for a better optimization of the whole model.

In summary, the contribution of this work is three-fold:

• We design a keyframe selection network, which is used

to estimate a combinational similarity metric between vi-

sual and geometric cues. The learning of keyframes fur-

ther provides extra supervision for the learning of the vi-

sual odometry networks.

• We propose a unified unsupervised deep learning frame-

work to simultaneously learn the keyframe selection and

visual odometry tasks in an end-to-end fashion. As far

as we know, it is the first work to jointly optimize these

two complementary components in a single deep model.

A collaborative optimization loss is designed to enforce

mutual constraints in between, enabling them to benefit

each other in a joint optimization.

• We extensively demonstrate the effectiveness of the pro-

posed approach on the KITTI raw dataset and its odome-

try split [12], showing the benefits of jointly learning and

achieving new state-of-the art results on unsupervised

monocular depth and camera motion estimation tasks.

2. Related Works

SLAM has been widely studied in recent years as a core

3D scene understanding technology. It can be roughly clas-

sified into stereo [35, 27, 15, 42], RGB-D [44, 17, 21] and

monocular-based SLAM [8, 7]. We will review the most

related monocular visual SLAM approaches.

Traditional Keyframe based Approaches Keyframe se-

lection contains a detection step to identify a keyframe

and a matching step for localization. The keyframe se-

lection has been adopted in several state-of-the-art tradi-

tional SLAM approaches, such as RDSLAM [39] and ORB-

SLAM [30, 31]. LSD-SLAM [8] presents a real-time visual

SLAM system, which updates the keyframes by tracking the

change of rigid pose, and correspondingly refines the depth

map estimation. Forster et al. [9] applies a similar strat-

egy to LSD-SLAM using direct tracking, while operates on

semi-dense depth maps to obtain a high frame rate. More

recently, Hsiao et al. [19] propose a keyframe-based SLAM

approach based on dense plane extraction and matching,

yielding superior performance on real-time SLAMs.

Traditional Visual Odometry based Approaches The

monocular visual odometry estimates the 3D scene struc-

ture and ego-motion from 2D data with a monocular cam-

era [37]. It mainly contains feature-based methods with

salient feature tracking [33, 32], appearance-based methods

with pixel-level image/patch matching [50, 38] and hybrid

methods with a combination of the feature and appearance

based strategies [34]. There are also other works explor-

ing camera geometric modeling and regression model learn-

ing [16]. However, the traditional approaches mostly rely

on hand-crafted representations or shallow models, which

leads to inferior SLAM performance.

Supervised Deep Learning based Approaches To over-

come the limitations of traditional approaches, more re-

cent works focus on designing deep learning models to

tackle the problem. Several supervised models have been

proposed and significantly boost the performance of scene

depth [45, 23, 46], camera pose [2] and scene flow estima-

tion [26]. Eigen et al. [6] introduce a coarse to fine net-

work structure with multi-scale fusion for depth prediction

from single images. Kendall et al. [20] propose a PoseNet

structure to address the 6-DoF camera relocalization prob-

lem. CNN-SLAM [40] detects keyframes and uses them

to rectify the scale of the depth prediction, however, the

keyframe detection is only based on an off-the-shelf method

using hand-crafted features, and is not jointly learned with

the other sub-tasks within a single deep model.

Unsupervised Deep Learning based Approaches Apart

from the supervised models, there exists some unsupervised

deep learning based approaches in the literature [24, 22, 48,

36]. Garg et al. [11] present an encoder-decoder dispar-

ity learning network utilizing view synthesis error for op-

timization. To consider mutual constraints from different

views, Godard et al. [14] further introduce a two-branches

reconstruction network and apply a left-right consistence

loss to supervise each other. However, these approaches
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only learn a single task in their models. SfMLearner [51]

proposes to jointly unsupervised learning depth and cam-

era pose from monocular videos using photometric synthe-

sis loss from different nearby views. Upon SfM-Learner,

GeoNet [49] further learns an optical flow task to tackle

the non-rigid motion issue in the view reconstruction.

Our model explores unsupervised learning from monocular

videos and is more related to these two approaches, how-

ever, ours focuses on designing a keyframe selection net-

work, and a probabilistic collaborative learning framework

to make the keyframe selection and the visual-odometry

benefit each other in a single deep model.

3. The Proposed Approach

We propose an end-to-end system aiming at jointly learn-

ing the keyframe selection and the visual odometry in a sin-

gle deep network towards monocular SLAM. It primarily

consists of a visual odometry and a keyframe selection mod-

ules implemented with neural networks. In the remainder of

this section, we first introduce the designed deep keyframe

selection and visual odometry modules, and then present

how they are jointly learned in the proposed unsupervised

collaborative learning framework.

3.1. Keyframebased Visual Odometry

Our visual odometry model includes a monocular depth

predictor Dφ
D

and a camera motion estimator Cφ
C

between

a pair of frames. φD and φC are network parameters.

Network Specification For an image pair Ir and It, Dφ
D

and Cφ
C

are defined as

Dt = Dφ
D
(It), θt→r = Cφ

C
(It, Ir), (1)

where Dt is the predicted depth of It and θt→r is the cam-

era ego-motion from the target image It to the reference im-

age Ir. The camera motion consists of a rotation vector ω =
[ωx, ωy, ωz]

⊤ and a translation vector t = [tx, ty, tz]
⊤. Our

model follows a similar network structure as that in SfM-

Learner [51], but our camera motion estimator just uses any

two images It and Ir as its input, rather than consecutive

frames. Thus our camera motion estimator is flexible and is

not fixed to local adjacent frames.

Necessity of Keyframes State-of-the-art learning based vi-

sual odometry methods [51, 49] only explain small geomet-

ric changes, since they are learned by short-length consec-

utive frames (around 2 ∼ 5 frames). Thus they are usually

failed to capture large geometric changes such as the case

about the target image versus keyframes.

Thanks to the associated keyframe selection task, we

find that keyframes are useful as additional training data to

augment the geometry description of the visual odometry

model. In this case, the camera motion estimator Cφ
C

has to

{ω, t}Cφ
C
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Figure 2. Network structure of the depth predictor DφD
, the cam-

era motion estimator CφC
and the keyframe selector SφS

.

capture more challenging motion patterns between the tar-

get image and the keyframes, and the depth predictor Dφ
D

must find accurate scene geometry to meet the geometric

consistency between in between as well.

3.2. Geometryequipped Keyframe Selection

Keyframes record the most representative geometry

maps or landmarks (dense depth, pose and etc.) among its

neighboring frames. Its core function is a keyframe selec-

tor Sφ
S

that builds up keyframe sets by identifying a new

keyframe when it includes considerably geometric changes

or visual changes against the previous keyframes. It also

concurrently localize any frame to its nearest keyframe (if

exists) so as to fulfill the camera localization. φS indicates

the network parameters of the keyframe selector.

Network Specification Assume the target image as It and

the reference image as Ir (possibly the existing keyframes).

The keyframe selector is to measure whether It and Ir are

similar both in visual and geometric viewpoints. Sφ
S

has

a two-stream structure and adaptively combines the visual

and geometric similarities for the final decision, as depicted

in Fig. 2, in which (1) the visual stream applies the con-

catenated It and Ir as its input. (2) the geometric stream

receives the channel-wise concatenation of a series of geo-

metric data obtained from the visual odometry module. It

includes the predicted depth maps Dt and Dr, and warping

residual maps ∆It←r from Ir to It and ∆Ir←t vice versa.
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The warping residual maps (take ∆It←r as an example) are

∆It←r(x) = |Ir(W(x;Dt,θt→r))− It(x)| (2)

where W(x;Dt,θt→r) is the rigid warping field explained

by the predicted depth Dt and the camera motion θt→r. In

summary, the keyframe selector is

qt↔r = Sφ
S
(It, Ir;Dt,Dr,∆It←r,∆Ir←t), (3)

where the similarity qt↔r is robust to the order of It and Ir.

Both streams share a same network architecture but not

their network parameters. The base layers in each stream

are copied from ResNet-18 [18], while each of them is

followed by a global average pooling and several fully-

connected layers. The extracted visual feature fc and ge-

ometric feature fg from each stream are fused together with

the help of cross-modal attention. The attentions αc and

αg are learned via an additional fully-connected layer us-

ing concatenated fc and fg as the input. The attended visual

features fc ◦ αc and fg ◦ αg are further combined using

fully-connected layers to generate the final similarity score.

3.3. Keyframe Online Updating and Management

We design an online keyframe updating and management

strategy to maintain a key frame pool PK during the train-

ing stage. At the beginning of the training, PK uses several

randomly selected frames as initialization. Each keyframe

FKk is represented with a three-tuple containing the frame

index tk corresponding to input video sequence, the RGB

image IKk and the depth estimation map D
K
k produced from

the visual odometry network, i.e. FKk = {tk, I
K
k ,D

K
k } and

PK = {Fk
K}Kk=1

where K is the total number of key

frames. The keyframe updating consists inserting and merg-

ing operations. After several training iterations, a determi-

nation on an input target frame is conducted. We used 200

iterations in our implementation. If its similarity scores be-

tween the nearest keyframes are above a threshold, it would

be insert into PK. And after each epoch, we start merging

the selected keyframes given by a trained better keyframe

matching network. Adjacent keyframes in PK are orga-

nized into pairs and are passed into the network for simi-

larity measurement. If the two are similar enough, only one

of them is kept. The keyframe depth estimation is also used

to help the optimization of visual odometry sub-network.

The depth map of the closest keyframe to the target frame, is

used to refine the depth prediction from the depth estimation

net via a weighted averaging operation. In the testing phase,

the latest keyframe always compares the target frame, if

their dissimilarity is above a threshold, new keyframe is in-

serted into PK. Please check Fig. 3(a) for illustration.

3.4. Unsupervised Collaborative Learning

As aforementioned, the keyframe selection and visual

odometry are complementary to each other. It is thus bene-

ficial to collaboratively learn these tasks together. But how

to merge them into a unified learning framework is not triv-

ial and requires a special design of the training procedure.

As shown in Fig. 3(b), the proposed collaborative learning

scheme will be depicted in details in the following text.

Training Data Preparation. Keyframe selection and vi-

sual odometry require different training data constructions

as they follow different learning logics. In each training ex-

ample, we have a short training sequence Is (|Is| = 3), in

which the center frame is the target image It. And we gather

one intra-class sample Ip that is picked as the temporally

nearest keyframe in the keyframe set PK, and select a sec-

ond temporally nearest sample In as the hard negative sam-

ple. Therefore, the training example is IK = {Is, Ip, In}.

Optimization Loss of Visual Odometry. The visual odom-

etry module is learned among a combined training image

set Ivo = {Is, Ip}. For each image pairs {It, Ir} in Ivo,

we optimize the photometric consistency to both images,

within the regions that rigid correspondences exist:

Lpc =
∑

{It,Ir}∈Ivo

∑

x

(1−Mt(x)) · ρ(It←r(x), It)+

(1−Mr(x)) · ρ(Ir←t(x), Ir) + (Mr(x) +Mt(x)) · τ
(4)

where ρ(x, y) = α
2
(1 − SSIM(x, y)) + (1 − α)σ(x − y)

is a robust perceptual image similarity measurement. SSIM

is the structural similarity index [43] and σ(x) = (x2 +
ε2)0.45 is the robust Charbonnier loss [3]. It←r(x) =
Ir(W(x;Dt,θt→r)) is the backward warped reference im-

age, and Ir←t is defined as the backward warped tar-

get image Ir←t(x) = It(W(x;Dr,θr→t)). Note that

θr→t is the inverse motion of θt→r, which is calculated

analytically but not through the camera motion estimator

C(Ir, It) again. The non-rigid mask Mt in It is gener-

ated by detecting the regions where the cycle consistency

between the bi-directional warping fields, i.e., ∆Wt(x) =
|W(x;Dt,θt→r) +W(W(x;Dt,θt→r);Dr,θr→t)| is vi-

olated. The non-rigid mask Mr in Ir is calculated in a

similar way to threshold ∆Wr(x) = |W(x;Dr,θr→t) +
W(W(x;Dr,θr→t);Dt,θt→r)|. The threshold is scaled

according to the per-pixel magnitude of the warping fields,

similarly as [29]. The additional constant τ is added to re-

move trivial solutions that any pixel is non-rigid.

To enhance the geometric consistency, we enforce the

cycle consistency in the rigid regions as well

Lcc =
∑

{It,Ir}∈Ivo

∑

x

(1−Mt(x)) ·∆Wt(x)

+ (1−Mr(x)) ·∆Wr(x). (5)

The depth maps are further smoothed by Lds =∑
It∈Ivo

∑
x
|∇dt(x)|

⊤ exp(−|∇It(x)|), which is an
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(i) Keyframe Merging

(ii) Keyframe Inserting
It
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Figure 3. (a) The keyframe management, including keyframe merging and keyframe inserting in the training phase, and keyframe set

construction in the testing phase. (b) The collaborative learning scheme. The training image tuples consists of consecutive frames around

the target image, and two randomly sampled intra-class image Ip and inter-class image In. The keyframe selection task uses the complete

training tuple, but the visual odometry does not use the inter-class sample.

edge-aware disparity smoothness loss, where the disparity

is simply defined as dt(x) = 1/Dt(x).

Optimization Loss for Keyframe Selection The learning

of keyframe selection intensively applies the triplet losses

to measure the similarity between frames. Specifically, two

kinds of triplets are constructed: (1) 〈It, Is, Ip〉, in which

Is is one image in the training sequence Is, (2) 〈It, Is, In〉,
in which Is is one image in the visual odometry training

image set Ivo. The first triplet is used to rank the similarities

w.r.t. It among samples inside the interval around the target

image It, where It should be more similar to Is than Ip with

a small margin γp. The second one ranks the similarities

with a large margin γn, it suggests a much larger similarity

between It and any sample in Ivo than the negative sample

In. To this end, the keyframe loss is written as

Lkf =
∑

Is∈Is/{It}

max{0, γp − qt↔s + qt↔p}

+
∑

Is∈Ivo/{It}

max{0, γn − qt↔s + qt↔n}. (6)

The similarity score is generated according to our keyframe

selector in Eq. (3). The intra-sample margin is γp = 0.1 and

the inter-sample margin is γn = 0.8.

Overall Optimization Objectives The final loss for our

collaborative learning is a weighted combination of the

aforementioned losses, written as

Ltotal = λpcLpc + λccLcc + λdsLds + λkfLkf . (7)

The weights are to balance the contribution of each term. In

our experiments, we set λpc = 1.0, λcc = 0.05, λds = 0.5
and λkf = 1.0. Note that our depth predictor Dφ

D
uses

multi-scale depth predictions to release the local gradient

issue [51], thus the losses Lpc, Lcc and Lds are also applied

in coarser scales, but the weights are decayed accordingly.

4. Experiments

4.1. Experimental Setup

Network Architecture. Our model mainly contains three

components, the depth predictor Dφ
D

, the camera mo-

tion estimator Cφ
C

and the keyframe selector Sφ
S

. The

depth predictor follows the skip-connected encoder-decoder

structure as SfMLearner [51], and outputs 4-scale depth

predictions. The camera motion estimator regresses the 6-

DoF camera motions by 8 convolution layers followed by a

global average pooling, as the structure in [51]. The struc-

ture of the keyframe selector has two parallel branches, its

network specification is depicted in Sec. 3.2. We adopt

batch normalization and ReLU activation function after all

the convolution layers except the output layers.

Datasets. We train our system on the train split by Eigen et

al. [6] on the KITTI raw dataset with all static frames ex-

cluded. This dataset contains stereo views, and we use them

independently. The train/val ratio is 9 : 1, following Zhou et

al. [51]. To test the performance of our visual odometry

and keyframe selection, we also transfer our system onto

the KITTI odometry dataset. We employ the 00 ∼ 08 se-

quences for training, and the 09 ∼ 10 for testing.

Training Details. Our experiments are conducted using

the TensorFlow framework [1]. We train our model in an

end-to-end fashion with our special designed training data

preparation. During training, we resize the image sequences

to a resolution of 128×416, and perform several preprocess-

ing tricks such as random cropping and resizing, and ran-

dom brightness [49, 51]. The network is trained by Adam

solver with β1 = 0.9 and β2 = 0.999. The learning rate is

simply fixed at 0.0002 and the batch size is 8. The network

is trained on a single NVIDIA Titan X GPU. The training

process typically takes around 30 epochs.

Evaluation Protocol. The depth prediction performance on
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Figure 4. Monocular depth prediction comparison with Zhou et al. [51], GeoNet [49] and DDVO [41].The ground-truth is interpolated for

visualization. Our method captures more geometric details, preserves the structure consistency and avoids artifacts in texture-less area.

Method Setting Cap Data abs rel sq rel RMSE RMSE(log) δ < 1.25 δ < 1.25
2

δ < 1.25
3

Eigen et al. [6] depth-gt 80m - 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu et al. [25] depth-gt 80m - 0.202 1.614 6.523 0.275 0.678 0.895 0.965

Godard et al. [14] stereo 80m - 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Xu et al. [47] depth-gt 80m - 0.133 0.896 4.718 0.195 0.828 0.952 0.984

Zhou et al. [51] mono 80m Is 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Zhou et al. [51]* mono 80m Is 0.183 1.595 6.709 0.270 0.734 0.902 0.959

GeoNet [49] mono 80m Is 0.164 1.303 6.090 0.247 0.765 0.919 0.968

DDVO [41] mono 80m Is 0.151 1.257 5.583 0.228 0.810 0.936 0.974

Klodt et al. [22] mono/SfM 80m Is 0.166 1.490 5.998 – 0.778 0.919 0.966

Ours w/o CC mono 80m IK 0.168 1.259 5.937 0.247 0.755 0.920 0.969

Ours mono 80m IK 0.139 1.021 5.418 0.209 0.803 0.937 0.976

Godard et al. [14] stereo 50m - 0.140 0.976 4.471 0.232 0.818 0.931 0.969

Garg et al. [11] pose-gt 50m - 0.169 1.080 5.104 0.273 0.740 0.904 0.962

Zhou et al. [51] mono 50m Is 0.201 1.391 5.181 0.264 0.696 0.900 0.966

GeoNet [49] mono 50m Is 0.157 0.990 4.600 0.231 0.781 0.931 0.974

Ours mono 50m IK 0.131 0.805 4.021 0.202 0.820 0.947 0.982

Table 1. Monocular depth prediction results on the KITTI dataset [12] using the split of Eigen et al. [6]. We reports 7 metrics as suggested

by Eigen et al. [6]. We also indicate the training setting, and the training data structure. Is means consecutive frames, IK is our keyframe

augmented sequences. Bold means the overall best results. “w/o CC” means the our visual odometry module trained without cycle

consistency. *Updated results provided on the website of Zhou et al. [51]. In setting, depth-gt and post-gt mean that the methods require

depth and pose groundtruth in a supervised setting.

is evaluated on the 697 images from the test split of Eigen et

al. [6], which covers 29 scenes in the KITTI raw dataset.

Following [51], the predicted depth maps are scaled with

a factor by matching its median to its ground-truth data,

i.e., Dpred = median(Dgt)/median(Dpred). We use the

same depth evaluation metrics as in Eigen et al. [6]. Note

that most reference monocular depth prediction methods

use consecutive |Is| = 3 frames, but our method requires

two additional intra-/inter-class samples, such as the set IK .

The camera motion evaluation is on the 09 ∼ 10 se-

quences in the KITTI odometry split. Following [51], all of

the reported results are evaluated in terms of 5-frame snip-

pets. To resolve scale ambiguities that frequently occur in

monocular visual odometry or SLAM systems, we adjust

the scaling factors of the results to optimally align with the

ground-truth trajectories. We use Absolute Trajectory Error

(ATE) to evaluate trajectory drift for 5-frame snippet.

For keyframe selection evaluation, we gather snippets

whose starting frame is a reference keyframe and a pseudo-

GT keyframe is located in the middle of the snippet. The

pseudo-GT keyframe is detected if the ratio of the overlap-

ping area with the reference keyframe is just below 50%, in

which the overlapping area is defined by the ground-truth

camera motion and interpolated depth maps. We apply this

strategy to the KITTI odometry test split.

4.2. Overall Performance Analysis

Performance of Monocular Depth Estimation. As shown

in Tab. 1, if truncating the depth predictions by 80m, our

proposed unsupervised approach outperforms all the com-
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Method
Absolute Trajectory Error

sequence 09 sequence 10

ORB-SLAM (full) 0.014 ± 0.008 0.012 ± 0.011

ORB-SLAM (short) 0.064 ± 0.141 0.064 ± 0.130

Mean Odom. 0.032 ± 0.026 0.028 ± 0.023

Zhou et al. [51] 0.021 ± 0.017 0.020 ± 0.015

Zhou et al. [51]* 0.016 ± 0.009 0.013 ± 0.009

GeoNet [49] 0.012 ± 0.007 0.012 ± 0.009

Klodt et al. [22] 0.014 ± 0.007 0.013 ± 0.009

Ours× 0.012 ± 0.006 0.010 ± 0.008

Table 2. Absolute Trajectory Error (ATE) on the KITTI odometry

test split averaged over all 5-frame snippets (lower is better). ×Our

method does not trained by 5-frame snippets but 3-frame snippets

with two additional intra-/inter-samples. *Updated results.
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Figure 5. Average rotation errors on the KITTI odometry test split

(lower is better). ORB-SLAM-S and ORB-SLAM-F is the short

and the full of ORB-SLAM respectively.

pared unsupervised monocular depth prediction methods on

most of the evaluation metrics, including [51, 49, 22], and

even some recent methods with calibrated stereo data [11,

14] or directly supervised by ground-truth depth [25, 6].

DDVO [41] has marginal improvements on the scores δ <
1.25 and RMSE, but our method has a significant gain over

the squared relative difference (sq rel) from 1.257 to 1.021.

If truncating the predictions by 50m, our model achieves the

best performance on all the metrics.

Performance of Camera Pose Estimation. We compare

our method with a traditional monocular SLAM system

named ORB-SLAM (full) [30] and its local version ORB-

SLAM (short) for 5-frame snippets, their results are bor-

rowed from the website of Zhou et al. [51]. We also com-

pare with SfMLearner [51] and GeoNet [49]. As in Tab. 2,

our method outperforms a naı̈ve baseline (mean odome-

try) and the conventional method ORB-SLAM (short) and

ORB-SLAM (full). With respect to deep learning based ap-

proaches, our camera motion estimator is better than SfM-

Learner proposed by Zhou [51], but its performance is

slightly inferior to GeoNet [49]. We believe this gap could

be eliminated if our model is trained by longer snippets.

We also show the average rotation errors over all 5-

frame snippets, in which the error is calculated as ℓ2 norm

between the rotation angles from the predictions and the

ground-truths, as shown in Fig. 5. Although our method

was only trained on shorter sequences, its predicted ro-

tations are more accurate to the other learning based ap-

Estimated 

Camera 

Trajectory

Keyframes

Keyframes

Keyframes

: Keyframe Location

Figure 6. Keyframe selection accompanied with the visual odom-

etry. The test sequence is 09 in KITTI odometry test split.
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Figure 7. Detection ratio evaluation of Keyframe detection com-

bined with the visual odometry. The test sequence is 09 in KITTI

odometry test split.

Method
Error (lower is better)

rel sq rel RMSE RMSE (log)

SFM-Learner [51] w/o KFS 0.208 1.768 6.856 0.283

Ours w/o KFS 0.181 1.587 6.689 0.264

Ours w/ KFS (off-line) 0.171 1.389 6.237 0.251

Ours w/ KFS (fixed-length) 0.151 1.127 5.941 0.223

Ours w/ KFS (online updating) 0.139 1.021 5.418 0.209

Table 3. Quantitative comparison of different variants of the pro-

posed approach w.r.t. the error evaluation metrics on the task of

monocular depth estimation. KFS means key-frame selection.

Method
Absolute Trajectory Error

sequence 09 sequence 10

SFM-Learner [51] w/o KFS 0.021 ± 0.017 0.020 ± 0.015

Ours w/o KFS 0.018 ± 0.012 0.017 ± 0.012

Ours w/ KFS (off-line) 0.015 ± 0.008 0.014 ± 0.011

Ours w/ KFS (fixed-length) 0.014 ± 0.007 0.012 ± 0.009

Ours w/ KFS (online updating) 0.012 ± 0.006 0.010 ± 0.008

Table 4. Quantitative comparison of different variants of the pro-

posed approach w.r.t Absolute Trajectory Error (ATE) on the

KITTI odometry test split.

proaches [51, 49], which reveals the significance of the

keyframes in helping regularize the odometry learning, es-

pecially the case with geometric changes from rotations.

Note that two variants of ORB-SLAM offer better rota-

tion predictions than learning based models. That is prob-

ably because that the results of ORB-SLAM gathered from

Zhou et al. [51] are shorter than 5 frames and thus only con-

tain smaller camera motions.

Performance of Keyframe Selection. We also give a few
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Figure 8. (a) Cycle consistency improves the geometry reliability

of the predicted depth maps. Some examples of DDVO [41] (b)

show texture-copying artifacts and unwanted texture blurs.

exemplar experiments on the quality of our keyframe se-

lection module. First, we show the selected keyframe set

when we execute the complete visual odometry to the test

sequence 09 in the KITTI odometry test split. The selected

keyframes are usually uniformly distributed when the car

drives straight along the street, such as the keyframes shown

in the left of Fig. 6. However, when the car turns left/right,

the sudden geometric changes induce large visual dissimi-

larity in the captured frames, and thus our keyframe selec-

tion encourages more frequent keyframes in a short interval

at the turning corner. It also reveals that our keyframe se-

lection is more sensitive to geometry-based visual changes.

We also qualitatively test our keyframe selector by report-

ing the ratio that the detected keyframes are within a fixed

range [−∆,∆] around the pseudo-GT keyframes, as shown

in Fig. 7. The proposed keyframe selector combines the

merits from both the visual and the geometric cues, and im-

proves their sole models with a large margin.

Qualitative Evaluation. We compare our predicted depth

maps with those by Zhou et al. [51], GeoNet [49] and

DDVO [41], as in Fig. 4. The ground-truth depth maps are

re-projected sparse point clouds from velodyne laser scan-

ner. The proposed method has the best visual quality among

the prior arts. It can successfully recover reliable depths in-

side challenging regions (e.g., texture-less area in the first

column of Fig. 4), preserve piece-wise smooth structural

details but not introduce texture-mapping from the input

image. DDVO has the most comparable performance and

more often resolves small objects, but it usually suffers se-

vere texture-mapping artifacts, as show in Fig 8(b).

4.3. Model Component Analysis

Baseline Models. To evaluation the performance effect

of different modules, we have several baselines: (i) SFM-

Learner [51], which does not use any keyframe selection

in the visual odometry; (ii) Ours w/o KFS, which improves

the performance over [51], and still not using keyframe se-

lection; (iii) Ours w/ KFS (off-line), which pretrains the

keyframe selection sub-network using only the visual clue,

and produce a set of keyframes for training with the visual

odometry sub-network; (iv) Ours w/ KFS (fixed-length),

which use a fixed frame length to determine the keyframe,

and the keyframe selection sub-network is jointly optimized

with the visual odometry sub-network; (iv) Ours w/ KFS

(online updating) which uses the proposed keyframe man-

agement strategy to online update the keyframe pool and the

multiple sub-tasks are jointly learned.

Effect of Keyframe Selection on Visual Odometry. Tab. 3

and 4 show the results of different baseline models on

monocular depth and pose estimation tasks. It can be ob-

serve that, even if we use off-line keyframe information, we

can still improve the performance on both depth and pose

estimations. By jointly learning two tasks, especially em-

ploying the online keyframe updating, a clear performance

gain is obtained, demonstrating the effectiveness of the pro-

posed keyframe detection onto the task of visual odometry.

Effect of Visual Odometry on Keyframe Selection. Fig. 5

shows the average rotation errors of different methods on

the KITTI odometry. To compare with our direct competi-

tor [51], our model with keyframe selection significantly

outperforms their method by reducing the errors with a

large margin, which means that the visual odometry net-

work provides better geometric output helping learning bet-

ter keyframe detector, confirming our initial intuition.

Effectiveness of Cycle Consistency. We also conduct

a piece of ablation study about the cycle consistency, as

shown in Tab. 1. Without cycle consistency, the learning

of our depth predictor is similar to Zhou et al. [51] but

with additional long-term connections from “keyframes”.

Its performance is superior to Zhou et al. [51] and compa-

rable to recent advanced methods, showing the advances of

keyframes in helping visual odometry module. Cycle con-

sistency clearly increases the prediction reliability, as shown

in Fig. 8(a), and it boosts the quantitative results of our

model to a large margin. But we need to mention that the

cycle consistency may not optimal in detecting non-rigid

motion regions, thus we may inevitably find depth distor-

tions around moving objects, such as cars in Fig. 4.

5. Conclusion

In this paper we have proposed a learning approach to-

wards monocular visual SLAM. In detail, we designed a

deep network for the keyframe selection, which is able to to

detect keyframes, manage the keyframes and localize new

frames. And we further proposed an end-to-end unsuper-

vised learning framework to simultaneously optimize the

keyframe selection and the visual odometry tasks in a sin-

gle deep model. To constrain and benefit each task during

the network learning, a unsupervised collaborative learning

strategy was designed. We clearly demonstrated the effec-

tiveness of the proposed approach on KITTI raw and KITTI

Odometry datasets with a significant gain over the baseline

models, and created new state-of-the-art results on depth

and pose estimation from monocular videos.
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