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Abstract

Deep learning has thrived by training on large-scale

datasets. However, in robotics applications sample effi-

ciency is critical. We propose a novel adaptive masked

proxies method that constructs the final segmentation layer

weights from few labelled samples. It utilizes multi-

resolution average pooling on base embeddings masked

with the label to act as a positive proxy for the new class,

while fusing it with the previously learned class signatures.

Our method is evaluated on PASCAL-5i dataset and outper-

forms the state-of-the-art in the few-shot semantic segmen-

tation. Unlike previous methods, our approach does not re-

quire a second branch to estimate parameters or prototypes,

which enables it to be used with 2-stream motion and ap-

pearance based segmentation networks. We further propose

a novel setup for evaluating continual learning of object

segmentation which we name incremental PASCAL (iPAS-

CAL) where our method outperforms the baseline method.

Our code is publicly available at https://github.

com/MSiam/AdaptiveMaskedProxies.

1. Introduction

Children are able to adapt their knowledge and learn

about their surrounding environment with limited samples

[18]. One of the main bottlenecks in the current deep learn-

ing methods is their dependency on the large-scale training

data. However, it is intractable to collect one large-scale

dataset that contains all the required object classes for dif-

ferent environments. This motivated the emergence of few-

shot learning methods [12, 38, 32, 26, 27]. These early

works were primarily focused on solving few-shot image

classification tasks, where a support set consists of a few im-

ages and their class labels. The earliest attempt to solve the

few-shot segmentation task seems to be the approach pro-

posed by Shaban et al. [28] that predicts the parameters of

the final segmentation layer. This and other previous meth-

ods require the training of an additional branch to guide the

backbone segmentation network. The additional network

introduces extra computational burden. On top of that, ex-
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Figure 1: Multi-resolution adaptive imprinting in AMP.

isting approaches cannot be trivially extended to handle the

continuous stream of data containing annotations for both

novel and previously learned classes.

To address these shortcomings, we propose a novel sam-

ple efficient adaptive masked proxies method, which we

call AMP. It constructs weights of the final segmentation

layer via multi-resolution imprinting. AMP does not rely

on a second guidance branch, as shown in Figure 1. Fol-

lowing the terminology of [19], a proxy is a representative

signature of a given class. In the few-shot segmentation

setup, the support set contains pixel-wise class labels for

each support image. Therefore, the response of the back-

bone fully convolutional network (FCN) to a set of images

from a given class in the support set can be masked by seg-

mentation labels and then average pooled to create a proxy

for this class. This forms what we call a normalized masked

average pooling layer (NMAP in Fig. 1). The computed

proxies are used to set the 1x1 convolutional filters for the

new classes, forming the process known as weight imprint-

ing [23]. Multi-resolution weight imprinting is proposed to

improve the segmentation accuracy of our method.

We further consider the continual learning setup in which

a few-shot algorithm may be presented with a sequence of

support sets (continuous semantic segmentation scenario).

In connection with this scenario, we propose to adapt the

previously learned class weights with the new proxies from
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each incoming support set. Imprinting only the weights

for the positive class, i.e. the newly added class, is in-

sufficient as new samples will incorporate new informa-

tion about other classes as well. For example, learning a

new class for boat will also entail learning new informa-

tion about the background class, which should include sea.

To address this, a novel method for updating the weights of

the previously learned classes without back-propagation is

proposed. The adaptation part of our method is inspired by

the classical approaches in learning adaptive correlation fil-

ters [1, 7]. Correlation filters date back to 1980s [8]. More

recently, the fast object tracking method [1] relied on hand

crafted features to form the correlation filters and adapted

them using a running average. In our method the adaptation

of the previously learned weights is based on a similar ap-

proach, yielding the ability to process the continuous stream

of data containing novel and existing classes. This opens

the door toward leveraging segmentation networks to con-

tinually learn semantic segmentation in a sample efficient

manner.

To sum up, AMP is shown to provide sample efficiency

in three scenarios: (1) few-shot semantic segmentation,

(2) video object segmentation and (3) continuous semantic

segmentation. Unlike previous methods, AMP can easily

operate with any pre-trained network without the need to

train a second branch, which entails fewer parameters. In

the video object segmentation scenario we show that our

method can be used with a 2-stream motion and appearance

network without any additional guidance branch. AMP is

flexible and still allows coupling with back-propagation us-

ing the support image-label pair. The proxy weight im-

printing steps can be interleaved with the back-propagation

steps to boost the adaptation process. AMP is evaluated on

PASCAL-5i [28], DAVIS benchmark [22], FBMS [20] and

our proposed iPASCAL setup. The novel contributions of

this paper can be summarized as follows.

• Normalized masked average pooling layer that effi-

ciently computes a class signature from the backbone

FCN response without relying on an additional branch.

• Multi-resolution imprinting scheme that imprints the

proxies from several resolutions of the backbone FCN

to increase accuracy.

• Novel adaptation mechanism that updates the

weights of known classes based on the new proxies.

• Empirical results that demonstrate that our method is

state-of-the-art on PASCAL-5i, and on DAVIS’16.

• iPASCAL, a new version of PASCAL-VOC to eval-

uate the continuous semantic segmentation.

2. Related Work

2.1. Few­shot Classification

In few-shot classification, the model is provided with a

support set and a query image. The support set contains a

few labelled samples that can be used to train the model,

while the query image is used to test the final model. The

setup is formulated as k-shot n-way, where k denotes the

number of samples per class, while n denotes the number

of classes in the support set. An early approach to solve

the few-shot learning problem relied on Bayesian method-

ology [6]. More recently, Vinyals et al. proposed match-

ing networks approach that learns an end-to-end differen-

tiable nearest neighbour [38]. Following that, Snell et al.

proposed prototypical networks based on the assumption

that there exists an embedding space in which points be-

longing to one class cluster around their corresponding cen-

troid [32]. Qiao et al. proposed a parameter predictor

method [24]. Finally, a method for computing imprinted

weights was proposed by Qi et al. [23].

2.2. Few­shot Semantic Segmentation

Unlike the classification scenario that assumes the avail-

ability of image level class labels, the few-shot segmenta-

tion relies on pixel-wise class labels for support images. A

popular dataset used to evaluate few-shot segmentation is

PASCAL-5i [28]. The dataset is sub-divided into 4 folds

each containing 5 classes. A fold contains labelled sam-

ples from 5 classes that are used for evaluating the few-shot

learning method. The rest 15 classes are used for training.

Shaban et al. proposed a 2-branch method [28], where the

second branch predicts the parameters for the final segmen-

tation layer. The baselines proposed by Shaban et al. [28]

included nearest neighbour, siamese network, and naive

fine-tuning. Rakelly et al. proposed a 2-branch method

where the second branch acts as a conditioning branch in-

stead [25]. Finally, Dong et al. inspired from prototypical

networks, designed another 2-branch method to learn pro-

totypes for the few-shot segmentation problem [4]. Clearly,

most of the previously proposed methods require an extra

branch trained in a simulated few-shot setting. They cannot

be trivially extended to continue adaptation whilst process-

ing a continuous stream of data with multiple classes.

In a concurrent work, Zhang et al. [41] proposed a sin-

gle branch network deriving guidance features from masked

average pooling layer. This is similar to our NMAP layer.

Zhang et al. [41] use the output of their pooling layer to

compute a guidance to the base network. AMP uses NMAP

output to imprint the 1x1 convolutional layer weights. AMP

has the following advantages: (i) it allows the adaptation of

imprinted weights in continuous data stream, (ii) it can be

seamlessly coupled with any pre-trained networks, includ-

ing 2-stream networks for video object segmentation.

5250



Support Set Image 
+ Label

Base Network

Phase I: 
Imprinting

Phase II: 
Segmentation

Extracted 
Embeddings

AMP: Adaptive 
Masked Proxy

Normalized Masked Avg Pooling

1x1 Convolution
For Final Classification

Phase I 

Phase II 

Figure 2: AMP using the NMAP Layer. For simplicity it shows the imprinting on the final layer solely. Nonetheless, our

scheme is applied on multiple resolution levels.

3. AMP: Adaptive Masked Proxies

Our approach, which we call AMP, is rooted deeply

in the concept of weight imprinting [23]. The imprinting

process was initially proposed in the context of classifica-

tion [23]. The method used the normalized responses of

the base feature extractor as weights of the final fully con-

nected layer. In this context, the normalized response of the

feature extractor for a given class is called a proxy. The jus-

tification behind such learning scheme is based on the rela-

tion between metric learning, proxy-NCA loss and softmax

cross-entropy loss [19]. 1x1 convolutional layers are equiv-

alent to fully connected layers. Hence we propose to utilize

base segmentation network activations as proxies to imprint

the 1x1 convolutional filters of the final segmentation layer.

When convolved with the query image, the imprinted proxy

activates pixels maximally similar to its class signature.

However, it is not trivial to perform weight imprinting

in semantic segmentation, unlike in classification. First, in

the classification setup the output embedding vector corre-

sponds to a single class and hence can be used directly for

imprinting. By contrast, a segmentation network outputs

3D embeddings, which incorporate features for a multitude

of different classes, both novel and previously learned. Sec-

ond, unlike classification, multi-resolution support is essen-

tial in segmentation.

We propose the following novel architectural compo-

nents to address the challenges outlined above. First, in

Section 3.1 and in Section 3.2 we propose the proxy mask-

ing and adaptation methods to handle multi-class segmenta-

tion. Second, in Section 3.3 we propose a multi-resolution

weight imprinting scheme to maintain the segmentation ac-

curacy during imprinting. The contribution of each method

to the overall accuracy is further motivated experimentally

in Section 4.2.

3.1. Normalized Masked Average Pooling

We propose to address the problem of imprinting the

3D segmentation base network embeddings that contain re-

sponses from multiple classes in a single image by masking

the embeddings prior to averaging and normalization. We

encapsulate this function in a NMAP layer (refer to Fig-

ures 1 and 2). To construct a proxy for one target class, the

NMAP layer bilinearly upsamples segmentation base net-

work outputs and masks them via the pixel-wise labels for

the target class available in the support set. This is followed

by average pooling and normalization as follows:

P r

l
=

1

k

k∑

i=1

1

N

∑

x∈X

F ri(x)Y i

l
(x), (1a)

P̂ r

l
=

P r

l

‖P r

l
‖2

. (1b)

Here Y i

l
is a binary mask for ith image with the novel class

l, F ri is the corresponding output feature maps for ith im-

age and rth resolution. X is the set of all possible spatial

locations and N is the number of pixels that are labelled

as foreground for class l. The normalized output from the

masked average pooling layer P̂ r

l
can be further used as

proxies representing class l and resolution r. In the case

of a novel class the proxy can be utilized directly as filter

weights. In the case of few-shot learning, the average of all

the NMAP processed features for the samples provided in

the support set for a given class is used as its proxy.

5251



3.2. Adaptive Proxies

The NMAP layer solves the problem of processing a sin-

gle support set. However, in practice many of the applica-

tions require the ability to process a continuous stream of

support sets. This is the case in continuous semantic seg-

mentation and video object segmentation scenarios. In this

context the learning algorithm is presented with a sequence

of support sets. Each incoming support set may provide in-

formation on both the new class and the previously learned

classes. It is valuable to utilize both instead of solely im-

printing the new class weights. At the same time, in the

case of the previously learned classes, e.g. background, it is

not wise to simply override what the network learned from

the large-scale training either. A good example illustrating

the need for updating the negative classes is the addition of

class boat. It is obvious that the background class needs to

be updated to match the sea background, especially if the

images with sea background are not part of the large scale

training dataset.

To take advantage of the information available in the

continuous stream of data, we propose to adapt class proxies

with the information obtained from each new support set.

We propose the following exponentially smoothed adaptive

scheme with update rate α:

Ŵ r

l
= αP̂ r

l
+ (1− α)W r

l
. (2)

Here P̂ r

l
is the normalized masked proxy for class l, W r

l
is

the previously learned 1x1 convolutional filter at resolution

r, Ŵ r

l
is the updated W r

l
. The update rate can be either

treated as as a hyper-parameter or learned.

The adaptation mechanism is applied differently in the

few-shot setup and in the continual learning setup. In the

few-shot setup, the support set contains segmentation masks

for each new class foreground and background. The adapta-

tion process is performed on the background class weights

from the large scale training. The proxies for the novel

classes are derived directly from the NMAP layer via im-

printing with no adaptation. In the continual learning setup,

the proxies for all the classes learned up to the current task

are available when a new support set is processed. Thus,

we adapt all the proxies learned in all the previous tasks for

which samples are available in the support set of the current

task.

3.3. Multi­resolution Imprinting Scheme

In the classification scenario, in which imprinting was

originally proposed, the resolution aspect is not naturally

prominent. In contrast, in the segmentation scenario, reso-

lution is naturally important to obtain very accurate segmen-

tation mask predictions. On top of that, we argue that im-

printing the outputs of several resolution levels and fusing

the probability maps from those in the final probability map

Dilated
FCN-8s

Final Probability Map

Different Dilation Factors

Figure 3: Multi-resolution imprinting using proxies from

different resolution levels.

can be used to improve overall segmentation accuracy. This

is illustrated in Fig. 3, showing the output heatmaps from

1x1 convolution using our proposed proxies as imprinted

weights at three different resolutions, P̂ 1

l
, P̂ 2

l
, P̂ 3

l
. Clearly,

the coarse resolution captures blobs necessary for global

alignment, while the fine resolution provides the granular

details required for an accurate segmentation.

This idea is further supported by the T-SNE [17] plot of

the proxies learned in the proposed NMAP layer at differ-

ent resolutions depicted in Fig. 4. It shows the 5 classes be-

longing to fold 0 in PASCAL-5i at 3 resolutions imprinted

by our AMP model. A few things catch attention in Fig. 4.

First, clustering is different at different resolutions. Fusing

probability maps at different resolutions may therefore be

advantageous from statistical standpoint, as slight segmen-

tation errors at different resolutions may cancel each other.

Second, the class-level clustering is not necessarily tight-

est at the highest resolution level: mid-resolution layer L2

seems to provide the tightest clustering. This may seem

counter-intuitive. Yet, this is perfectly in line with the lat-

est empirical results in weakly-supervised learning (see [2]

and related work). For example, [2] clearly demonstrates

that convolutional networks store most of the class level in-

formation in the middle layers, and mid-resolution features

result in the best transfer learning classification results.

3.4. Base Network Architectures

The backbone architecture used in our segmentation net-

work is a VGG-16 [31] that is pre-trained on ImageNet [3].

Similar to the FCN8s architecture [16] skip connections are

used to benefit from higher resolution feature maps, and a

1x1 convolution layers are used to map from the feature

space to the label space. Unlike FCN8s we utilize bilin-

ear interpolation layers with fixed weights for upsampling.

This is to simplify the imprinting of weights based on the

support set (transposed convolutions are hard to imprint).

We also rely on an extension to the above base network us-
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Figure 4: Visualization for the T-SNE [17] embeddings for the generated masked proxies. Layers L1, L2, L3 denote the

smaller to higher resolution feature maps.

ing dilated convolution [40], which we call DFCN8s. The

last two pooling layers are replaced by dilated convolution

with dilation factors 2 and 4 respectively. This increases the

receptive field without affecting the resolution. Finally, a

more compact version of the network with two final con-

volutional layers removed is denoted as Reduced-DFCN8s.

The final classification layer, and the two 1x1 convolutional

layers following dilated convolutions in the case of DFCN8s

and the Reduced-DFCN8s are the ones imprinted.

In the video object segmentation scenario we use a 2-

stream wide-resnet [39] architecture. Each stream has 11

residual blocks followed by multiplying the output activa-

tion from both motion and appearance. The motion is pre-

sented to the model as optical flow based on Liu et al. [15]

and converted to RGB using a color wheel. The flexibility

of our method enables it to work with different architec-

tures without the overhead of designing another branch to

provide guidance, predicted parameters or prototypes.

3.5. Training and Evaluation Methodology

Few-shot segmentation. We use the same setup as

Shaban et al. [28]. The initial training phase relies on a

large scale dataset Dtrain including semantic label maps

for classes in Ltrain. During the test phase, a support set

and a query image are sampled from Dtest containing novel

classes with labels in Ltest, where Ltrain ∩ Ltest = ∅. The

support set contains pairs S = (Ii, Yi(l))
k

i=1
, where Ii is

the ith image in the set and Yi(l) is the corresponding bi-

nary mask. The binary mask Yi(l) is constructed with novel

class l labelled as foreground while the rest of the pixels are

considered background. As before, k denotes the number of

images provided in the support set. It is worth noting that

during training only images that include at least one pixel

belonging to Ltrain are included in Dtrain for large-scale

training. If some images have pixels labelled as classes be-

longing to Ltest they are ignored and not used in the back-

propagation. Our model does not need to be trained in the

few-shot regime by sampling a support set and a query im-

age. It is trained in a normal fashion with image-label pairs.

Continuous Semantic Segmentation. In continuous se-

mantic segmentation scenario, we propose the setup based

on PASCAL VOC [5], following the class incremental

learning scenario described in [37]. We call the proposed

setup incremental PASCAL (iPASCAL). It is designed to

assess sample efficiency of a method in the continual learn-

ing setting. The classes in the dataset are split into Ltrain

and Lincremental with 10 classes each, where Ltrain ∩
Lincremental = ∅ . The classes belonging to the Ltrain

are used to construct the training dataset Dtrain and pre-

train the segmentation network. Unlike the static setting

in the few-shot case, the continuous segmentation mode

provides the image-label pairs incrementally with differ-

ent encountered tasks. The tasks are in the form of triplets

(ti, (Xi, Yi)), where (Xi, Yi) represent the overall batch of

images and labels from task ti. Each task ti introduces two

novel classes to learn in its batch. That batch contains sam-

ples with at least one pixel belonging to these two novel

classes. The labels per task ti include the two novel classes

belonging to that task, and the previously learned classes in

the encountered tasks t0, ..., ti−1.

4. Experimental Results

We evaluate the sample efficiency of the proposed AMP

method in three different scenarios: (1) few-shot segmen-

tation, (2) video object segmentation, and (3) continuous

semantic segmentation. In the few-shot segmentation sce-

nario we evaluate on pascal-5i [28] (see Section 4.1). An

ablation study is performed to demonstrate the improve-

ment resulting from multi-resolution imprinting and proxy

adaptation in Section 4.2. The study also compares weight

imprinting coupled with back-propagation against back-

propagation on randomly generated weights. Section 4.4

demonstrates the benefit of AMP in the context of con-
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Table 1: mIoU for 1-way 1-shot segmentation on PASCAL-5i. FT: Fine-tuning. AMP-1 and AMP-2: our method using

DFCN8s and Reduced-DFCN8s, respectively. Red, Blue: best and second best methods. co-FCN evaluation is from [41].

1-NN [28] Siamese [28] FT [28] OSLSM [28] co-FCN [25] AMP-1 (ours) AMP-2 (ours)

Fold 0 25.3 28.1 24.9 33.6 36.7 37.4 41.9

Fold 1 44.9 39.9 38.8 55.3 50.6 50.9 50.2

Fold 2 41.7 31.8 36.5 40.9 44.9 46.5 46.7

Fold 3 18.4 25.8 30.1 33.5 32.4 34.8 34.7

Mean 32.6 31.4 32.6 40.8 41.1 42.4 43.4

Table 2: mIoU for 1-way 5-shot segmentation on PASCAL-5i. FT: Fine-tuning. AMP-2 + FT(2): our method with 2

fine-tuning iterations, respectively. Red, Blue: best and second best methods. co-FCN evaluation is from [41].

1-NN [28] LogReg [28] OSLSM [28] co-FCN [25] AMP-2 (ours) AMP-2 + FT(2) (ours)

Fold 0 34.5 35.9 35.9 37.5 40.3 41.8

Fold 1 53.0 51.6 58.1 50.0 55.3 55.5

Fold 2 46.9 44.5 42.7 44.1 49.9 50.3

Fold 3 25.6 25.6 39.1 33.9 40.1 39.9

Mean 40.0 39.3 43.9 41.4 46.4 46.9

tinuous semantic segmentation on the proposed incremen-

tal PASCAL VOC evaluation framework, iPASCAL. We

further evaluate AMP in the online adaptation scenario on

DAVIS [22] and FBMS [20] benchmarks for video object

segmentation (see Section 4.3). We use mean intersection

over union (mIoU) [28] as evaluation metric unless explic-

itly stated otherwise. mIoU denotes the average of the per-

class IoUs per fold. Our training and evaluation code is

based on the semantic segmentation work [29] and is made

publicly available 1.

4.1. Few­Shot Semantic Segmentation

The setup for training and evaluation on PASCAL-5i is

as follows. The base network is trained using RMSProp

[9] with learning rate 10−6 and L2 regularization weight

5x10−4. For each fold, models are pretrained on 15 train

classes and evaluated on remaining 5 classes, unseen during

pretraining. The few-shot evaluation is performed on 1000

randomly sampled tasks, each including a support and a

query set, similar to OSLSM setup [28]. A hyper-parameter

random search is conducted over the α parameter, the num-

ber of iterations, and the learning rate. The search is con-

ducted by training on 10 classes from the training set and

evaluating on the other 5 classes of the training set. Thus

ensuring all the classes used are outside the fold used in the

evaluation phase. The α parameter selected is 0.26. In the

case of performing fine-tuning, the selected learning rate is

7.6x10−5 with 2 iterations for the 5-shot case.

Tables 1 and 2 show the mIoU for the 1-shot and 5-shot

segmentation, respectively, on PASCAL-5i (mIoU is com-

puted on the foreground class as in [28]). Our method is

1https://github.com/MSiam/AdaptiveMaskedProxies

compared to OSLSM [28] as well as other baseline meth-

ods for few-shot segmentation. AMP outperforms the base-

line fine-tuning [28] method by 10.8% in terms of mIoU,

without the need for extra back-propagation iterations by

directly using the adaptive masked proxies. AMP outper-

forms OSLSM [28] in both the 1-shot and the 5-shot cases.

Unlike OSLSM, our method does not need to train an ex-

tra guidance branch. This advantage provides the means

to use AMP with a 2-stream motion and appearance based

network as shown in Section 4.3. On top of that, AMP out-

performs co-FCN method [25].

Table 3 reports our results in comparison to the state-of-

the-art using the evaluation framework of [25] and [4]. In

this framework the mIoU is computed as the mean of the

foreground and background IoU averaged over folds. AMP

outperforms the baseline FG-BG [4] in the 1-shot and 5-

shot cases. When our method is coupled with two iterations

of back-propagation through the last layers solely it outper-

forms co-FCN [25] in the 5-shot case by 3%.

Qualitative results on PASCAL-5i are demonstrated in

Figure 5 that shows both the support set image-label pair,

and segmentation for the query image predicted by AMP.

Importantly, segmentation produced by AMP does not seem

to depend on the saliency of objects. In some of the query

images, multiple potential objects can be categorized as

salient, but AMP learns to segment what best matches the

target class.

4.2. Ablation Study

We perform an ablation study to demonstrate the effec-

tiveness of different components in AMP. Results are re-

ported in Table 4. For our final method, it corresponds

to the evaluation provided in Tables 1 and 2 on fold 0,
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Figure 5: Qualitative evaluation on PASCAL-5i 1-way 1-shot. The support set and prediction on the query image are shown.

Table 3: Quantitative results for 1-way, 1-shot and 5-shot

segmentation on PASCAL-5i dataset, following evaluation

in [4]. FT: Fine-tuning for 2 iterations in 1-shot and 5-shot

setting. Red, Blue: best and second best methods.

Method 1-Shot 5-Shot

FG-BG [4] 55.1 55.6

OSLSM [28] 55.2 -

co-FCN [25] 60.1 60.8

PL+SEG [4] 61.2 62.3

AMP-2 (ours) 61.9 62.1

AMP-2 + FT (ours) 62.2 63.8

Table 4: Ablation study of the different design choices for

the imprinting scheme. Adaptation: α parameter is non-

zero. Multi-res: performing multi-resolution imprinting.

Imp: imprinting weights using our proxies. FT: fine-tuning.

Method Adaptation Multi-res. N-Shot mIoU

FT only ✗ ✓ 5 28.7

Imp. ✓ ✓ 5 40.3

Imp. + FT ✓ ✓ 5 41.8

Imp. ✗ ✓ 1 13.6

Imp. ✓ ✗ 1 34.8

Imp. ✓ ✓ 1 41.9

following Shaban et al. [28]. First, AMP clearly outper-

forms naı̈ve fine-tuning using randomly generated weights

by 11.6%. Second, AMP can be effectively combined with

the fine-tuning of imprinted weights to further improve per-

formance. This is ideal for a continuous data stream pro-

cessing. Third, AMP’s proxy adaptation component is ef-

fective: no adaptation with α set to 0, degrades accuracy

by 28.3% in the 1-shot scenario. Finally, multi-resolution

imprinting is effective: not performing multi-resolution im-

printing degrades mIoU in the 1-shot scenario. We conclude

that simply imprinting the weights only for the new class is

not optimal. Imprinting has to be coupled with the proposed

adaptation and multi-resolution schemes to be effective in

the segmentation scenario.

4.3. Video Object Segmentation

To assess AMP in the video object segmentation sce-

nario, we use it to adapt 2-stream segmentation networks

based on pseudo-labels and evaluate on the DAVIS-2016

benchmark [22]. Here our base network is a 2-stream

Wide ResNet model similar to [30]. We make the model

adapt to the appearance changes that the object undergoes

in the video sequence using the proposed proxy adapta-

tion scheme with α parameter set to 0.001. The adapta-

tion mechanism operates on top of the masked proxies de-

rived from the segmentation probability maps output from

the model itself, since the model has learned background-

foreground segmentation already. Therefore, we call this

”self adaptation” as it is unsupervised video object seg-

mentation. Since we do not employ manual segmentation

masks, we compare our results against the state-of-the-art

unsupervised methods that utilize motion and appearance

based models. Table 5 shows the mIoU over the validation

set for AMP and the baselines. Our method when followed

with fully connected conditional random fields [14] post

processing outperforms the state of the art (the CRF post-

processing is commonly applied by most methods evaluated

on DAVIS’16).

Table 6 shows our self adaptation results on FBMS

dataset where it outperforms all methods except for Mo-

tAdapt [30], which it is on-par with. These results uncover

one of the weaknesses of our method: it is unable to operate

with high dilation rates since it relies on masked proxies.

High dilation rates can lead to interference between back-
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Table 5: Quantitative comparison between unsupervised methods and the adaptive masked imprinting scheme on DAVIS’16.

Measure FSeg [10] LVO [36] MOTAdapt [30] ARP [13] PDB [33] AMP + CRF (Ours)

J
Mean 70.7 75.9 77.2 76.2 77.2 78.9

Recall 83.5 89.1 87.8 91.1 90.1 91.6

Decay 1.5 7.0 5.0 7.0 0.9 4.7

F
Mean 65.3 72.1 77.4 70.6 74.5 78.4

Recall 73.8 83.4 84.4 83.5 84.4 87.3

Decay 1.8 1.3 3.3 7.9 0.2 2.7

Table 6: Quantitative results on FBMS dataset (test set).

Measure FST [21] CVOS [34] CUT [11] MPNet-V[35] LVO[36] MotAdapt [30] AMP (ours)

P 76.3 83.4 83.1 81.4 92.1 80.7 82.7

R 63.3 67.9 71.5 73.9 67.4 77.4 75.7

F 69.2 74.9 76.8 77.5 77.8 79.0 79.0

Figure 6: N-way evaluation on iPASCAL. Naive #M: fine-

tuning with M iteration per sample. Imprint A: our method

is used with α for the task classes set to A.

ground and foreground features in AMP. Another AMP’s

weakness is that it may face difficulties segmenting a spe-

cific instance, since it uses a proxy per class that aims to

generalize across different instances.

4.4. Continuous Semantic Segmentation

To demonstrate the benefit of AMP in the continuous se-

mantic segmentation scenario, we conducted experiments

on iPASCAL. iPASCAL provides triplets for the task, the

corresponding images and semantic labels. For each task,

semantic labels include labels of new classes encountered in

the current task as well as the labels of classes encountered

in the previous tasks (please see Section 3.5 for more de-

tails on the setup definition). Figure 6 compares naı̈ve fine-

tuning from random weights against AMP without any fine-

tuning, in terms of mIoU (average over 5 runs). Multiple

runs are evaluated with different seeds that control random

assignment of unseen classes in new tasks. The mIoU is re-

ported per task on all the classes learned up to the current

task. Fine-tuning was conducted using RMSProp with the

best learning rate from the 1-shot setup 9.06x10−5. Fine-

tuning is applied to the last layers responsible for pixel-

wise classification, while the feature extraction weights are

kept fixed. We are focusing on improving sample effi-

ciency by imprinting the weights of the final layer, there-

fore we perform the fine-tuning on the final weights only.

Figure 6 demonstrates that in the continual learning sce-

nario, weight imprinting via AMP is more effective than

fine-tuning, which suffers from over-fitting that is very hard

to overcome.

It is worth noting that the current evaluation setting is

a n-way where n increases with 2 additional classes with

each encountered task resulting in 10-way evaluation in the

last task. This explains the difference between the mIoU

in Table 1 and Figure 6, which we attribute to the fact that

n-way classification is more challenging than 1-way.

5. Conclusion

In this paper we proposed a sample efficient method to

segment unseen classes via multi-resolution imprinting of

adaptive masked proxies (AMP). AMP constructs the fi-

nal segmentation layer weights from few labelled support

set samples by imprinting the masked multi-resolution re-

sponse of the base feature extractor and by fusing it with

the previously learned class signatures. AMP is empirically

validated to be superior in the few-shot segmentation on

PASCAL-5i with 5.5% in 5-shot case. It is also validated

on video object segmentation on DAVIS16 as well as on the

proposed iPASCAL.
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