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Abstract

In this work, we propose a novel crowd counting network

that progressively generates crowd density maps via resid-

ual error estimation. The proposed method uses VGG16 as

the backbone network and employs density map generated

by the final layer as a coarse prediction to refine and gener-

ate finer density maps in a progressive fashion using resid-

ual learning. Additionally, the residual learning is guided

by an uncertainty-based confidence weighting mechanism

that permits the flow of only high-confidence residuals in

the refinement path. The proposed Confidence Guided Deep

Residual Counting Network (CG-DRCN) is evaluated on re-

cent complex datasets, and it achieves significant improve-

ments in errors.

Furthermore, we introduce a new large scale uncon-

strained crowd counting dataset (JHU-CROWD) that is

∼2.8 × larger than the most recent crowd counting datasets

in terms of the number of images. It contains 4,250 images

with 1.11 million annotations. In comparison to existing

datasets, the proposed dataset is collected under a variety

of diverse scenarios and environmental conditions. Specif-

ically, the dataset includes several images with weather-

based degradations and illumination variations in addition

to many distractor images, making it a very challenging

dataset. Additionally, the dataset consists of rich annota-

tions at both image-level and head-level. Several recent

methods are evaluated and compared on this dataset.

1. Introduction

With burgeoning population and rapid urbanization,

crowd gatherings have become more prominent in the re-

cent years. Consequently, computer vision-based crowd an-

alytics and surveillance [5, 10, 18, 19, 27, 28, 34, 37, 38, 44,

46, 57, 59, 61, 63] have received increased interest. Further-

more, algorithms developed for the purpose of crowd ana-

lytics have found applications in other fields such as agri-

culture monitoring [26], microscopic biology [16], urban

planning and environmental survey [8, 57]. Current state-

of-the-art counting networks achieve impressive error rates

on a variety of datasets that contain numerous challenges.

Their success can be broadly attributed to two major factors:

(i) design of novel convolutional neural network (CNN) ar-

chitectures specifically for improving count performance

[4, 29, 33, 36, 38, 43, 50, 59], and (ii) development and

publication of challenging datasets [10, 11, 59, 61]. In this

paper, we consider both of the above factors in an attempt

to further improve the crowd counting performance.

Design of novel networks specifically for the task of

counting has improved the counting error by leaps and

bounds. Architectures have evolved from the simple ones

like [59] which consisted of a set of convolutional and fully

connected layers, to the most recent complex architectures

like SA-Net [4] which consists of a set of scale aggregation

modules. Typically, most existing works ([2, 4, 4, 29, 33,

38, 43, 44, 47, 50, 59, 61]) have designed their networks by

laying a strong emphasis on addressing large variations of

scale in crowd images. While this strategy of developing

robustness towards scale changes has resulted in significant

performance gains, it is nevertheless important to exploit

other properties like in [33, 39, 41] to further the improve-

ments.

In a similar attempt, we exploit residual learning mecha-

nism for the purpose of improving crowd counting. Specif-

ically, we present a novel design based on the VGG16 net-

work [42], which employs residual learning to progressively

generate better quality crowd density maps. This use of

residual learning is inspired by its success in several other

tasks like super-resolution [13, 15, 15, 21, 49]. Although

this technique results in improvements in performance, it

is important to ensure that only highly confident residu-

als are used in order to ensure the effectiveness of resid-

ual learning. To address this issue, we draw inspiration

from the success of uncertainty-based learning mechanism

[7, 14, 65]. We propose an uncertainty-based confidence

weighting module that captures high-confidence regions in
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the feature maps to focus on during the residual learning.

The confidence weights ensure that only highly confident

residuals get propagated to the output, thereby increasing

the effectiveness of the residual learning mechanism.

In addition to the new network design, we identify

the next set of challenges that require attention from the

crowd counting research community and collect a large-

scale dataset collected under a variety of conditions. Ex-

isting efforts like UCF CROWD 50 [10], World Expo ’10

[59] and ShanghaiTech [58] have progressively increased

the complexity of the datasets in terms of average count

per image, image diversity etc. While these datasets have

enabled rapid progress in the counting task, they suffer

from shortcomings such as limited number of training sam-

ples, limited diversity in terms of environmental conditions,

dataset bias in terms of positive samples, and limited set

of annotations. More recently, Idrees et al. [11] proposed a

new dataset called UCF-QNRF that alleviates some of these

challenges. Nevertheless, they do not specifically consider

some of the challenges such as adverse environmental con-

ditions, dataset bias and limited annotation data.

To address these issues, we propose a new large-scale

unconstrained dataset with a total of 4,250 images (con-

taining 1,114,785 head annotations) that are collected un-

der a variety of conditions. Specific care is taken to include

images captured under various weather-based degradations.

Additionally, we include a set of distractor images that are

similar to the crowd images but do not contain any crowd.

Furthermore, the dataset also provides a much richer set of

annotations at both image-level and head-level. We also

benchmark several representative counting networks, pro-

viding an overview of the state-of-the-art performance.

Following are our key contributions in this paper:

• We propose a crowd counting network that progressively

incorporates residual mechanism to estimate high qual-

ity density maps. Furthermore, a set of uncertainty-based

confidence weighting modules are introduced in the net-

work to improve the efficacy of residual learning.

• We propose a new large-scale unconstrained crowd

counting dataset with the largest number of images till

date. The dataset specifically includes a number of im-

ages collected under adverse weather conditions. Fur-

thermore, this is the first counting dataset that provides

a rich set of annotations such as occlusion, blur, image-

level labels, etc.

2. Related work

Crowd Counting. Traditional approaches for crowd count-

ing from single images are based on hand-crafted represen-

tations and different regression techniques. Loy et al. [25]

categorized these methods into (1) detection-based methods

[17] (2) regression-based methods [6, 10, 35] and (3) den-

sity estimation-based methods [16, 31, 55]. Interested read-

ers are referred to [6, 18] for more comprehensive study of

different crowd counting methods.

Recent advances in CNNs have been exploited for the

task of crowd counting and these methods [1, 3, 29, 30, 38,

38, 44, 50, 52, 54, 59, 61] have demonstrated significant

improvements over the traditional methods. A recent sur-

vey [45] categorizes these approaches based on the network

property and the inference process. Walach et al. [50] used

CNNs with layered boosting approach to learn a non-linear

function between an image patch and count. Recent work

[29, 61] addressed the scale issue using different architec-

tures. Sam et al. [38] proposed a VGG16-based switching

classifier that first identifies appropriate regressor based on

the content of the input image patch. More recently, Sindagi

et al. [44] proposed to incorporate global and local context

from the input image into the density estimation network.

In another approach, Cao et al. [4] proposed a encoder-

decoder network with scale aggregation modules.

In contrast to these methods that emphasize on specif-

ically addressing large-scale variations in head sizes, the

most recent methods ([2] ,[39], [41], [24], [33]) have fo-

cused on other properties of the problem. For instance,

Babu et al. [2] proposed a mechanism to incrementally

increase the network capacity conditioned on the dataset.

Shen et al. [39] overcame the issue of blurred density maps

by utilizing adversarial loss. In a more recent approach,

Ranjan et al. [33] proposed a two-branch network to esti-

mate density map in a cascaded manner. Shi et al. [41] em-

ployed deep negative correlation based learning for more

generalizable features. Liu et al. [24] used unlabeled data

for counting by proposing a new framework that involves

learning to rank.

Recent approaches like [22, 47, 48, 51, 62] have aimed

at incorporating various forms of related information like

attention [22], semantic priors [51], segmentation [62],

inverse attention [48], and hierarchical attention [47] re-

spectively into the network. Other techniques such as

[12, 23, 40, 60] leverage features from different layers of

the network using different techniques like trellis style en-

coder decoder [12], explicitly considering perspective [40],

context information [23], and multiple views [60].

Crowd Datasets. Crowd counting datasets have evolved

over time with respect to a number of factors such as size,

crowd densities, image resolution, and diversity. UCSD [5]

is among one of the early datasets proposed for counting

and it contains 2000 video frames of low resolution with

49,885 annotations. The video frames are collected from

a single frame and typically contain low density crowds.

Zhang et al. [59] addressed the limitations of UCSD dataset

by introducing the WorldExpo dataset that contains 108

videos with a total of 3,980 frames belonging to 5 different

scenes. While the UCSD and WorldExpo datasets contain

only low/low-medium densities, Idrees et al. [10] proposed
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Figure 1. Overview of the proposed method. Coarse density map from the deepest layer of the base network is refined using the residual

map estimated by the shallower layer. The residual estimation is performed by convolutional block, CBi and is further refined in UCEBi.

Note that, the conv features from the main branch are first reduced to 32 dimensions using 1×1 conv before forwarding them to UCEBi

along with Ri. In the residual maps, red indicates negative values and cyan indicates positive value.

the UCF CROWD 50 dataset specifically for very high

density crowd scenarios. However, the dataset consists of

only 50 images rendering it impractical for training deep

networks. Zhang et al. [61] introduced the ShanghaiTech

dataset which has better diversity in terms of scenes and

density levels as compared to earlier datasets. The dataset is

split into two parts: Part A (containing high density crowd

images) and Part B (containing low density crowd images).

The entire dataset contains 1,198 images with 330,165

annotations. Recently, Idrees et al. [11] proposed a new

large-scale crowd dataset containing 1,535 high density

images images with a total of 1.25 million annotations.

Wang et al. [53] introduced a synthetic crowd dataset that

contains diverse scenes. In addition, they proposed a SSIM

based CycleGAN [64] for adapting the network trained on

synthetic images to real world images.

3. Proposed method

In this section, we present the details of the proposed

Confidence Guided Deep Residual Crowd Counting (CG-

DRCN) along with the training and inference specifics. Fig.

1 shows the architecture of the proposed network.

3.1. Base network

Following recent approaches [4, 38, 44], we perform

counting based on the density estimation framework. In this

framework, the network is trained to estimate the density

map (Ŷ ) from an input crowd image (X). The target den-

sity map (Y ) for training the network is generated by im-

posing normalized 2D Gaussian at head locations provided

by the dataset annotations: Y (x) =
∑

xg∈S N (x − xg, σ),
where, S is the set of all head locations (xg) in the input im-

age and σ is scale parameter of 2D Gaussian kernel. Due to

this formulation, the density map contains per-pixel density

information of the scene, which when integrated results in

the count of people in the image.

The proposed network consists of conv1∼conv5 layers

(C1 − C5) of the VGG16 architecture as a part of the back-

bone, followed by a conv block (CB6) and a max-pooling

layer with stride 2. First, the input image (of size W ×H)

is passed through C1 − C5, CB6 and the max pooling

layer to produce the corresponding density map (Ŷ6) of size
W
32

× H
32

. CB6 is defined by {conv512,32,1-relu-conv32,32,3-

relu-conv32,1,3}
1). Due to its low resolution, (Ŷ6) can be

considered as a coarse estimation, and learning this will im-

plicitly incorporate global context in the image due the large

receptive field at the deepest layer in the network.

3.2. Residual learning

Although Ŷ6 provides a good estimate of the number of

people in the image, the density map lacks several local de-

1 convNi ,No ,k denotes conv layer (with Ni input channels, No output

channels, k×k filter size), relu denotes ReLU activation
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(a) (b) (c) (d) (e)

Figure 2. Density maps estimated by different layers of the proposed network. (a) Ŷ6 (b) Ŷ5 (c) Ŷ4 (d) Ŷ3 (e) Y (ground-truth). It can be

observed that the output of the deepest layer (Ŷ6) looks very coarse, and it is refined in a progressive manner using the residual learned

by the conv blocks CB5, CB4, CB3 to obtain the Ŷ5, Ŷ4, Ŷ3 respectively. Note that fine details and the total count in the density maps

improve as we move from Ŷ6 to Ŷ3.

tails as shown in Fig. 2 (a). This is because deeper layers

learn to capture abstract concepts and tend to lose low level

details in the image. On the other hand, the shallower layers

have relatively more detailed local information as compared

to their deeper counterparts [32]. Based on this observation,

we propose to refine the coarser density maps by employ-

ing shallower layers in a residual learning framework. This

refinement mechanism is inspired in part by several leading

work on super-resolution [15, 21, 49] that incorporate resid-

ual learning to learn finer details required to generate a high

quality super-resolved image. Specifically, features from

C5 are forwarded through a conv-block (CB5) to generate

a residual map R5, which is then added to an appropriately

up-sampled version of Ŷ6 to produce the density map Ŷ5 of

size W
16

× H
16

, i.e.,

Ŷ5 = R5 + up(Ŷ6). (1)

Here, up() denotes up-sampling by a factor of 2× via bi-

linear interpolation. By enforcing CB5 to learn a resid-

ual map, the network focuses on the local errors emanat-

ing from the deeper layer, resulting in better learning of the

offsets required to refined the coarser density map. CB5 is

defined by {conv512,32,1-relu-conv32,32,3-relu-conv32,1,3}
1.

The above refinement is further repeated to recursively

generate finer density maps Ŷ4 and Ŷ3 using the feature

maps from the shallower layers C4 and C3, respectively.

Specifically, the output of C4 and C3 are forwarded through

CB4, CB3 to learn residual maps R4 and R3, which are

then added to the appropriately up-sampled versions of the

coarser maps Ŷ5 and Ŷ4 to produce Ŷ4 and Ŷ3 respectively in

that order. CB4 is defined by {conv512,32,1-relu-conv32,32,3-

relu-conv32,1,3}
1. CB3 is defined by {conv256,32,1-relu-

conv32,32,3-relu-conv32,1,3}
1. Specifically, Ŷ4 and Ŷ3 are ob-

tained as follows: Ŷ4 = R4 + up(Ŷ5), Ŷ3 = R3 + up(Ŷ4).

3.3. Confidence guided residual learning

In order to improve the efficacy of the residual learn-

ing mechanism discussed above, we propose an uncertainty

guided confidence estimation block (UCEB) to guide the re-

finement process. The task of conv blocks CB5, CB4, CB3

is to capture residual errors that can be incorporated into

the coarser density maps to produce high quality density

maps in the end. For this purpose, these conv blocks em-

ploy feature maps from shallower conv layers C5, C4, C3.

Since these conv layers primarily trained for estimating the

coarsest density map, their features have high responses in

regions where crowd is present, and hence, they may not

necessarily produce effective residuals. In order to over-

come this issue, we propose to gate the residuals that are not

effective using uncertainty estimation. Inspired by uncer-

tainty estimation in CNNs [7, 14, 56, 65], we aim to model

pixel-wise aleatoric uncertainty of the residuals estimated

by CB5, CB4, CB3. That is we, predict the pixel-wise con-

fidence (inverse of the uncertainties) of the residuals which

are then used to gate the residuals before being passed on to

the subsequent outputs. This ensures that only highly con-

fident residuals get propagated to the output.

In terms of the overall architecture, we introduce a set

of UCEBs as shown in Fig. 1. Each residual branch con-

sists of one such block. The UCEBi takes the residual Ri

and dimensionality reduced features from the main branch

as input, concatenates them, and forwards it through a set

of conv layers ({conv33,32,1-relu-conv32,16,3-relu-conv16,16,3-

relu-conv16,1,1}) and produces a confidence map CMi

which is then multiplied element-wise with the input to

form the refined residual map: R̂i = Ri ⊙ CMi. Here

⊙ denotes element-wise multiplication.

In order to learn these confidence maps, the loss function

Lf used to train the network is defined as follows,

Lf = Ld − λcLc, (2)

where, λc is a regularization constant, Ld is the pixel-wise

regression loss to minimize the density map prediction error

and is defined as:

Ld =
∑

i∈{3,4,5,6}

‖(CMi ⊙ Yi)− (CMi ⊙ Ŷi)‖2, (3)

where, Ŷi is the predicted density map, i indicates the index

of the conv layer from which the predicted density map is

taken, Yi is the corresponding target.

Lc is the confidence guiding loss, defined as,

Lc =
∑

i∈{3,4,5,6}

H
∑

j=1

W
∑

k=1

log(CM
j,k
i ), (4)
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where, W×H is the dimension of the confidence map CMi.

As it can be seen from Eq. (2), the loss Lf has two parts Ld

and Lc. The first term minimizes the Euclidean distance be-

tween the prediction and target features, whereas Lc maxi-

mizes the confidence scores CMi by making them closer to

1.

Fig. 2 illustrates the output density maps (Ŷ6, Ŷ5, Ŷ4, Ŷ3)

generated by the proposed network for a sample crowd im-

age. It can be observed that the density maps progressively

improve in terms of fine details and the count value.

3.4. Training and inference details

The training dataset is obtained by cropping patches from

multiple random locations in each training image. The

cropped patch-size is 224×224. We randomly sub-sample

10% of the training set (before cropping) and keep it aside

for validating the training models. We use the Adam op-

timizer to train the network. We use a learning rate of

0.00001 and a momentum of 0.9.

For inference, the density map Ŷ3 is considered as the

final output. The count performance is measured using the

standard error metrics: mean absolute error (MAE) and

mean squared error (MSE). These metrics are defined

as follows: MAE = 1

N

∑N

i=1
|Yi − Y ′

i | and MSE =
√

1

N

∑N

i=1
|Yi − Y ′

i |
2 respectively, where N is the number

of test samples, Yi is the ground-truth count and Y ′
i is the

estimated count corresponding to the ith sample.

4. JHU-CROWD: Unconstrained Crowd

Counting Dataset

In this section, we first motivate the need for a new crowd

counting dataset, followed by a detailed description of the

various factors and conditions while collecting the dataset.

4.1. Motivation and dataset details

As discussed earlier, existing datasets (such as

UCF CROWD 50 [10], World Expo ’10 [59] and Shang-

haiTech [58]) have enabled researchers to develop novel

counting networks that are robust to several factors such

as variations in scale, pose, view etc. Several recent

methods have specifically addressed the large variations

in scale by proposing different approaches such as multi-

column networks [61], incorporating global and local con-

text [44], scale aggregation network [4], etc. These methods

are largely successful in addressing issues in the existing

datasets, and there is pressing need to identify newer set of

Table 1. Summary of images collected under adverse conditions.

Degradation type Rain Snow Fog/Haze Total

Num. of images 151 190 175 516

Num. of annotations 32,832 32,659 37,070 102,561

challenges that require attention from the crowd counting

community.

In what follows, we describe the shortcomings of exist-

ing datasets and discuss the ways in which we overcome

them:

(i) Limited number of training samples: Typically, crowd

counting datasets have limited number of images available

for training and testing. For example, ShanghaiTech dataset

[61] has only 1,198 images and this low number of images

results in lower diversity of the training samples. Due to

this issue, networks trained on this dataset will have reduced

generalization capabilities. Although datasets like Mall [6],

WorldExpo ’10 [59] have higher number of images, it is

important to note that these images are from a set of video

sequences from surveillance cameras and hence, they have

limited diversity in terms of background scenes and number

of people. Most recently, Idrees et al. [11] addressed this is-

sue by introducing a high-quality dataset (UCF-QNRF) that

has images collected from various geographical locations

under a variety of conditions and scenarios. Although it

has a large set of diverse scenarios, the number of samples

is still limited from the perspective of training deep neural

networks.

To address this issue, we collect a new large scale un-

constrained dataset with a total of 4,250 images that are col-

lected under a variety of conditions. Such a large number

of images results in increased diversity in terms of count,

background regions, scenarios etc. as compared to existing

datasets. The images are collected from several sources

on the Internet using different keywords such as crowd,

crowd+marathon, crowd+walking, crowd+India, etc.

(ii) Absence of adverse conditions: Typical application of

crowd counting is video surveillance in outdoor scenarios

which involve regular weather-based degradations such as

haze, snow, rain etc. It is crucial that networks, deployed

under such conditions, achieve more than satisfactory per-

formance.

To overcome this issue, specific care is taken during our

dataset collection efforts to include images captured un-

der various weather-based degradations such as rain, haze,

snow, etc. (as as shown in Fig. 3(b-d) ). Table 1 summarizes

images collected under adverse conditions.

(iii) Dataset bias: Existing datasets focus on collecting only

images with crowd, due to which a deep network trained on

such a dataset may end up learning bias in the dataset. Due

to this error, the network will erroneously predict crowd

even in scenes that do not contain crowd.

In order to address this, we include a set of distractor

images that are similar to crowd images but do not contain

any crowd. These images can enable the network to avoid

learning bias in the dataset. The total number of distractor

images in the dataset is 100. Fig 3(e) shows sample distrac-

tor images.
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(a) (b) (c) (d) (e)

Figure 3. Representative samples of the images in the JHU-CROWD dataset. (a) Overall (b) Rain (c) Snow (d) Haze (e) Distractors.

Table 2. Comparison of different datasets. P: Point-wise annotations for head locations, O: Occlusion level per head, B: Blur level per

head, S: Size indicator per head, I: Image level labels.

Dataset
Num of

Images

Num of

Annotations

Avg

Count

Max

Count

Avg

Resolution

Weather

degradations
Distractors

Type of

annotations

UCSD [5] 2000 49,885 25 46 158×238 ✗ ✗ P

Mall [6] 2000 62,325 - 53 320×240 ✗ ✗ P

UCF CROWD 50 [10] 50 63,974 1279 4543 2101×2888 ✗ ✗ P

WorldExpo ’10 [59] 3980 199,923 50 253 576×720 ✗ ✗ P

ShanghaiTech [61] 1198 330,165 275 3139 598×868 ✗ ✗ P

UCF-QNRF [11] 1535 1,251,642 815 12865 2013×2902 ✗ ✗ P

JHU-CROWD (proposed) 4250 1,114,785 262 7286 1450×900 ✓ ✓ P, O, B, S, I

(iv) Limited annotations: Typically, crowd count-

ing datasets provide point-wise annotations for every

head/person in the image, i.e., each image is provided with

a list of x, y locations of the head centers. While these an-

notations enable the networks to learn the counting task,

absence of more information such as occlusion level, head

sizes, blur level etc. limits the learning ability of the net-

works. For instance, due to the presence of large variations

in perspective, size of the head is crucial to determine the

precise count. One of the reasons for these missing annota-

tions is that crowd images typically contain several people

and it is highly labor intensive to obtain detailed annotations

such as size.

To enable more effective learning, we collect a much

richer set of annotations at both image-level and head-level.

Head-level annotation include x, y locations of heads and

corresponding occlusion level, blur level and size level. Oc-

clusion label has three levels: {un-occluded, partially oc-

cluded, fully occluded}. Blur level has two labels: {blur,

no-blur}. Since obtaining the size is a much harder issue,

each head is labeled with a size indicator. Annotators were

instructed to first annotate the largest and smallest head in

the image with a bounding box. The annotators were then

instructed to assign a size level to every head in the image

such that this size level is indicative of the relative size with

respect to the smallest and largest annotated bounding box.

Image level annotations include labels (such as marathon,

mall, walking, stadium etc.) and the weather conditions un-

der which the images were captured. The total number of

point-level annotations in the dataset are 1,114,785.

4.2. Summary and evaluation protocol

Fig. 3 illustrates representative samples of the images in

the JHU-CROWD dataset under various categories. Table 2

summarizes the proposed JHU-CROWD dataset in compar-

ison with the existing ones. It can be observed that the pro-

posed dataset is the largest till date in terms of the number of

images and enjoys a host of other properties such as a richer

set of annotations, weather-based degradations and distrac-

tor images. With these properties, the proposed dataset will

serve as a good complementary to other datasets such as

UCF-QNRF. The dataset is randomly split into training and

test sets, which contain 3,188 and 1,062 images respec-

tively.
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(a) (b) (c)
Figure 4. Results of the proposed dataset on sample images from the JHU-CROWD dataset. (a) Input image (b) Ground-truth density map

(c) Estimated density map.

Following the existing work, we perform evaluation us-

ing the standard MAE and MSE metrics. Furthermore,

these metrics are calculated for the following sub-categories

of images: (i) Low density: images containing count be-

tween 0 and 50, (ii) Medium density: images containing

count between 51 and 500, (iii) High density: images with

count more than 500 people, (iv) Distractors: images con-

taining 0 count, (v) Weather-based degradations, and (vi)

Overall. The metrics under these sub-categories will enable

a deeper understanding of the network performance.

5. Experimental details and results

In this section, we first discuss the results of an ablation

study conducted to analyze the effect of different compo-

nents in the proposed network. This is followed by a discus-

sion on benchmarking of recent crowd counting algorithms

including the proposed residual-based counting network on

the JHU-CROWD dataset. Finally, we compared the pro-

posed method with recent approaches on the ShanghaiTech

[61] and UCF-QNRF [11] datasets.

5.1. Ablative Study

Due to the presence of various complexities such as high

density crowds, large variations in scales, presence of occlu-

sion, etc, we chose to perform the ablation study on JHU-

CROWD dataset.

The ablation study consisted of evaluating the following

configurations of the proposed method: (i) Base network:

VGG16 network with an additional conv block (CB6) at

the end, (ii) Base network + R: the base network with resid-

ual learning as discussed in Section 3.2 , (iii) Base network

+ R + UCEB (λc = 0): the base network with residual

learning guided by the confidence estimation blocks as dis-

cussed in Section 3.3. In this configuration, we aim to mea-

sure the performance due to the addition of the confidence

estimation blocks without the uncertainty estimation mech-

anism by setting λc is set to 0, (iv) Base network + R +

UCEB (λc = 1): the base network with residual learning

guided by the confidence estimation blocks as discussed in

Section 3.3. The results of these experiments are shown

in Table 3. It can be seen that there are considerable im-

provements in the performance due to the inclusion of resid-

ual learning into the network. The use of confidence-based

weighting of the residuals results in further improvements,

thus highlighting its significance in improving the efficacy

of uncertainty-based residual learning.

Table 3. Results of ablation study on the JHU-CROWD dataset.

Method MAE MSE

Base network 81.1 248.5

Base network + R 76.4 218.6

Base network + R + UCEB (λc = 0) 74.6 215.5

Base network + R + UCEB (λc = 1) 66.1 195.5

5.2. JHU­CROWD dataset

In this section, we discuss the benchmarking of recent al-

gorithms including the proposed method on the new dataset.

Benchmarking and comparison. We benchmark recent

algorithms on the newly proposed JHU-CROWD dataset.

Specifically, we evaluate the following recent works: mulit-
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Table 4. Results on JHU-CROWD dataset.

Category Distractors Low Medium High Weather Overall

Method MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

MCNN [61] 103.8 238.5 37.7 92.5 84.1 185.2 499.6 795.5 128.2 288.3 109.3 291.0

CMTL [43] 135.8 263.8 47.0 106.0 82.4 198.3 407.8 660.2 117.8 260.1 102.5 262.6

Switching CNN [38] 100.5 235.5 32.1 80.5 76.1 173.1 395.1 640.1 105.1 245.2 99.1 255.1

SA-Net(image-based) [4] 71.9 167.7 30.0 76.6 65.4 121.5 516.3 762.7 99.4 234.9 98.0 260.3

CSR-Net [20] 44.3 102.4 15.8 39.9 48.4 77.7 463.5 746.1 96.5 284.6 78.4 242.7

CG-DRCN (proposed) 43.4 97.8 15.7 38.9 44.0 73.2 346.2 569.5 80.9 227.31 66.1 195.5

Table 5. Results on ShanghaiTech dataset [61].

Part-A Part-B

Method MAE MSE MAE MSE

Cascaded-MTL [43] 101.3 152.4 20.0 31.1

Switching-CNN [38] 90.4 135.0 21.6 33.4

CP-CNN [44] 73.6 106.4 20.1 30.1

IG-CNN [2] 72.5 118.2 13.6 21.1

Liu et al. [24] 73.6 112.0 13.7 21.4

D-ConvNet [41] 73.5 112.3 18.7 26.0

CSRNet [20] 68.2 115.0 10.6 16.0

ic-CNN [33] 69.8 117.3 10.7 16.0

SA-Net (image-based) [4] 88.1 134.3 - -

SA-Net (patch-based) [4] 67.0 104.5 8.4 13.6

ACSCP [39] 75.7 102.7 17.2 27.4

Jian et al. [12] 64.2 109.1 8.2 12.8

CG-DRCN (proposed) 64.0 98.4 8.5 14.4

Table 6. Results on UCF-QNRF datastet [11].

Method MAE MSE

Idrees et al. [10] 315.0 508.0

Zhang et al. [59] 277.0 426.0

CMTL et al. [43] 252.0 514.0

Switching-CNN [38] 228.0 445.0

Idrees et al. [11] 132.0 191.0

Jian et al. [12] 113.0 188.0

CG-DRCN (proposed) 112.2 176.3

column network (MCNN) [61], cascaded multi-task learn-

ing for crowd counting (CMTL) [43], Switching-CNN [38],

CSR-Net [20] and SANet [4] 2. Furthermore, we also eval-

uate the proposed method (CG-DRCN) and demonstrate its

effectiveness over the other methods.

All the networks are trained using the entire training

set and evaluated under six different categories. For a fair

comparison, the same training strategy (in terms of crop-

ping patches), as described in Section 3.4, is used. Table

4 shows the results of the above experiments for various

sub-categories of images in the test set. It can be observed

that the proposed method outperforms the other methods in

general. Furthermore, it may also be noted that the over-

all performance does not necessarily indicate the proposed

2We used the implementation provided by [9]

method performs well in all the sub-categories. Hence, it

is essential to compare the methods for each of the sub-

category.

5.3. Comparison on other datasets

ShanghaiTech: The proposed network is trained on the

train splits using the same strategy as discussed in Section

3.4. Table 5 shows the results of the proposed method on

ShanghaiTech as compared with several recent approaches

([38], [44], [2], [41], [24], [20], [33] , [4], [39] and [12]). It

can be observed that the proposed method outperforms all

existing methods on Part A of the dataset, while achieving

comparable performance on Part B.

UCF-QNRF: Results on the UCF-QNRF [11] dataset as

compared with recent methods ( [10],[61],[43]) are shown

in Table 6. The proposed method is compared against differ-

ent approaches: [10], [61], [43],[38], [11] and [12]. It can

be observed that the proposed method outperforms other

methods by a considerable margin.

6. Conclusions

In this paper, we presented a novel crowd counting net-

work that employs residual learning mechanism in a pro-

gressive fashion to estimate coarse to fine density maps.

The efficacy of residual learning is further improved by in-

troducing an uncertainty-based confidence weighting mech-

anism that is designed to enable the network to propagate

only high-confident residuals to the output. Experiments

on recent datasets demonstrate the effectiveness of the pro-

posed approach. Furthermore, we also introduced a new

large scale unconstrained crowd counting dataset (JHU-

CROWD) consisting of 4,250 images with 1.11 million an-

notations. The new dataset is collected under a variety of

conditions and includes images with weather-based degra-

dations and other distractors. Additionally, the dataset pro-

vides a rich set of annotations such as head locations, blur-

level, occlusion-level, size-level and other image-level la-

bels.
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[30] Daniel Oñoro-Rubio, Roberto Javier López-Sastre, and

Mathias Niepert. Learning short-cut connections for ob-

ject counting. In British Machine Vision Conference

2018, BMVC 2018, Northumbria University, Newcastle, UK,

September 3-6, 2018, 2018. 2
[31] Viet-Quoc Pham, Tatsuo Kozakaya, Osamu Yamaguchi, and

Ryuzo Okada. Count forest: Co-voting uncertain number of

targets using random forest for crowd density estimation. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 3253–3261, 2015. 2
[32] R. Ranjan, V. M. Patel, and R. Chellappa. Hyperface: A deep

multi-task learning framework for face detection, landmark

localization, pose estimation, and gender recognition. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

41(1):121–135, Jan 2019. 4
[33] Viresh Ranjan, Hieu Le, and Minh Hoai. Iterative crowd

counting. In European Conference on Computer Vision,

pages 278–293. Springer, 2018. 1, 2, 8
[34] Mikel Rodriguez, Ivan Laptev, Josef Sivic, and Jean-Yves

Audibert. Density-aware person detection and tracking in

crowds. In 2011 International Conference on Computer Vi-

sion, pages 2423–2430. IEEE, 2011. 1
[35] David Ryan, Simon Denman, Clinton Fookes, and Sridha

Sridharan. Crowd counting using multiple local features.

In Digital Image Computing: Techniques and Applications,

2009. DICTA’09., pages 81–88. IEEE, 2009. 2
[36] Deepak Babu Sam and R Venkatesh Babu. Top-down feed-

back for crowd counting convolutional neural network. In

Thirty-Second AAAI Conference on Artificial Intelligence,

2018. 1
[37] Deepak Babu Sam, Neeraj N Sajjan, Himanshu Maurya, and

R Venkatesh Babu. Almost unsupervised learning for dense

crowd counting. In Thirty-Third AAAI Conference on Artifi-

cial Intelligence, 2019. 1
[38] Deepak Babu Sam, Shiv Surya, and R. Venkatesh Babu.

Switching convolutional neural network for crowd counting.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2017. 1, 2, 3, 8
[39] Zan Shen, Yi Xu, Bingbing Ni, Minsi Wang, Jianguo Hu, and

Xiaokang Yang. Crowd counting via adversarial cross-scale

consistency pursuit. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2018. 1, 2, 8
[40] Miaojing Shi, Zhaohui Yang, Chao Xu, and Qijun Chen. Re-

visiting perspective information for efficient crowd counting.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 7279–7288, 2019. 2
[41] Zenglin Shi, Le Zhang, Yun Liu, Xiaofeng Cao, Yangdong

Ye, Ming-Ming Cheng, and Guoyan Zheng. Crowd counting

with deep negative correlation learning. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2018. 1, 2, 8
[42] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In International

Conference on Learning Representations, 2015. 1
[43] Vishwanath A. Sindagi and Vishal M. Patel. Cnn-based cas-

caded multi-task learning of high-level prior and density es-

timation for crowd counting. In Advanced Video and Signal

Based Surveillance (AVSS), 2017 IEEE International Con-

ference on. IEEE, 2017. 1, 8
[44] Vishwanath A. Sindagi and Vishal M. Patel. Generating

high-quality crowd density maps using contextual pyramid

cnns. In The IEEE International Conference on Computer

Vision (ICCV), Oct 2017. 1, 2, 3, 5, 8
[45] Vishwanath A Sindagi and Vishal M Patel. A survey of re-

cent advances in cnn-based single image crowd counting and

density estimation. Pattern Recognition Letters, 2017. 2
[46] Vishwanath A. Sindagi and Vishal M. Patel. Dafe-fd: Den-

sity aware feature enrichment for face detection. In 2019

IEEE Winter Conference on Applications of Computer Vision

(WACV), pages 2185–2195. IEEE, 2019. 1
[47] Vishwanath A. Sindagi and Vishal M. Patel. Ha-ccn: Hi-

erarchical attention-based crowd counting network. arXiv

preprint arXiv:1907.10255, 2019. 1, 2
[48] Vishwanath A. Sindagi and Vishal M. Patel. Inverse attention

guided deep crowd counting network. arXiv preprint, 2019.

2
[49] Ying Tai, Jian Yang, and Xiaoming Liu. Image super-

resolution via deep recursive residual network. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, volume 1, page 5, 2017. 1, 4
[50] Elad Walach and Lior Wolf. Learning to count with cnn

boosting. In European Conference on Computer Vision,

pages 660–676. Springer, 2016. 1, 2
[51] Jia Wan, Wenhan Luo, Baoyuan Wu, Antoni B Chan, and

Wei Liu. Residual regression with semantic prior for crowd

counting. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 4036–4045,

2019. 2
[52] Chuan Wang, Hua Zhang, Liang Yang, Si Liu, and Xiaochun

Cao. Deep people counting in extremely dense crowds. In

Proceedings of the 23rd ACM international conference on

Multimedia, pages 1299–1302. ACM, 2015. 2
[53] Qi Wang, Junyu Gao, Wei Lin, and Yuan Yuan. Learning

from synthetic data for crowd counting in the wild. arXiv

preprint arXiv:1903.03303, 2019. 3
[54] Ze Wang, Zehao Xiao, Kai Xie, Qiang Qiu, Xiantong Zhen,

and Xianbin Cao. In defense of single-column networks for

crowd counting. arXiv preprint arXiv:1808.06133, 2018. 2
[55] Bolei Xu and Guoping Qiu. Crowd density estimation based

on rich features and random projection forest. In 2016

IEEE Winter Conference on Applications of Computer Vision

(WACV), pages 1–8. IEEE, 2016. 2
[56] Rajeev Yasarla and Vishal M. Patel. Uncertainty guided

multi-scale residual learning-using a cycle spinning cnn for

single image de-raining. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), June 2019. 4
[57] Beibei Zhan, Dorothy N Monekosso, Paolo Remagnino, Ser-

gio A Velastin, and Li-Qun Xu. Crowd analysis: a survey.

Machine Vision and Applications, 19(5-6):345–357, 2008. 1
[58] Cong Zhang, Kai Kang, Hongsheng Li, Xiaogang Wang,

Rong Xie, and Xiaokang Yang. Data-driven crowd under-

1230



standing: A baseline for a large-scale crowd dataset. IEEE

Transactions on Multimedia, 18(6):1048–1061, 2016. 2, 5
[59] Cong Zhang, Hongsheng Li, Xiaogang Wang, and Xiaokang

Yang. Cross-scene crowd counting via deep convolutional

neural networks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 833–841,

2015. 1, 2, 5, 6, 8
[60] Qi Zhang and Antoni B Chan. Wide-area crowd counting

via ground-plane density maps and multi-view fusion cnns.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 8297–8306, 2019. 2
[61] Yingying Zhang, Desen Zhou, Siqin Chen, Shenghua Gao,

and Yi Ma. Single-image crowd counting via multi-column

convolutional neural network. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 589–597, 2016. 1, 2, 3, 5, 6, 7, 8
[62] Muming Zhao, Jian Zhang, Chongyang Zhang, and Wenjun

Zhang. Leveraging heterogeneous auxiliary tasks to assist

crowd counting. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 12736–

12745, 2019. 2
[63] Feng Zhu, Xiaogang Wang, and Nenghai Yu. Crowd tracking

with dynamic evolution of group structures. In European

Conference on Computer Vision, pages 139–154. Springer,

2014. 1
[64] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In Proceedings of the IEEE

international conference on computer vision, pages 2223–

2232, 2017. 3
[65] Lingxue Zhu and Nikolay Laptev. Deep and confident pre-

diction for time series at uber. In 2017 IEEE International

Conference on Data Mining Workshops (ICDMW), pages

103–110. IEEE, 2017. 1, 4

1231


