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Abstract

Very low resolution (VLR) image recognition corre-

sponds to classifying images with resolution 16 × 16 or

less. Though it has widespread applicability when ob-

jects are captured at a very large stand-off distance (e.g.

surveillance scenario) or from wide angle mobile cameras,

it has received limited attention. This research presents a

novel Dual Directed Capsule Network model, termed as

DirectCapsNet, for addressing VLR digit and face recog-

nition. The proposed architecture utilizes a combination of

capsule and convolutional layers for learning an effective

VLR recognition model. The architecture also incorporates

two novel loss functions: (i) the proposed HR-anchor loss

and (ii) the proposed targeted reconstruction loss, in order

to overcome the challenges of limited information content

in VLR images. The proposed losses use high resolution

images as auxiliary data during training to “direct” dis-

criminative feature learning. Multiple experiments for VLR

digit classification and VLR face recognition are performed

along with comparisons with state-of-the-art algorithms.

The proposed DirectCapsNet consistently showcases state-

of-the-art results; for example, on the UCCS face database,

it shows over 95% face recognition accuracy when 16× 16
images are matched with 80× 80 images.

1. Introduction

In typical surveillance scenarios, images are often cap-

tured from a large stand-off distance, thus rendering the re-

gion of interest to be of a very low resolution (VLR), often

times less than 16 × 16 [33]. Figure 1(a) shows sample

real-world applications of VLR recognition where the re-

gion of interest can be a face, a suspicious object, or the

license plate number of a moving vehicle. These samples

demonstrate the arduous nature of the problem where some

of the key challenges of VLR recognition are the presence

of limited information content and blur. VLR recognition

also has applicability in image tagging, where multiple ob-

jects/people are captured in the frame, and each of these

entities are of small resolution.

(i) Digit Classification (ii) Face Recognition

(a) Real-world applications of VLR recognition. Image source: (i) Inter-

net, (ii) UCCS dataset [24]
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Figure 1: The proposed DirectCapsNet utilizes HR samples

to direct learning of more meaningful and discriminative

features for VLR image recognition via the proposed HR-

anchor loss and the targeted reconstruction loss.

Netzer et al. [17] demonstrated the poor performance

of humans on identifying VLR digits captured in real sur-

roundings. For the Street View House Numbers (SVHN)

dataset, the authors observed cent percent accuracy by hu-

mans for samples with 101−125 pixel height. On the other

hand, the performance dropped to 82.0% ± 2% when clas-

sifying very low resolution samples, i.e. images of height

up to 25 pixels, thereby reinstating the challenging nature

of the problem. Direct up-sampling via interpolation could

be viewed as a possible solution for VLR recognition, how-

ever, multiple studies have demonstrated poor performance

owing to the required large magnification factor [14, 25] and
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possible introduction of noise, which can also be observed

in Figure 1(a)(i). Further, in the literature, researchers have

also demonstrated the inability of models trained on high

resolution (HR) images (containing high information con-

tent) to perform well on (V)LR images [25]. The current

state of scarce available solutions and the wide applicabil-

ity of VLR recognition makes it an important problem, de-

manding dedicated attention.

This research proposes a novel capsule network based

model for VLR image recognition. Hinton et al. [7] pro-

posed learning “capsules”, which represent a vector of in-

stantiation parameters in order to encode the input more ef-

ficiently. Instantiation parameters may constitute the prop-

erties of an image such as the pose, lighting, and defor-

mation of the visual entity relative to an implicitly defined

canonical version of that entity [7]. We believe that such

parameters would be invariant to the resolution of the im-

age, therefore presenting the potential of being useful for

VLR recognition. Due to the limited information content

in VLR images, the VLR recognition model could benefit

from the information-rich HR samples as well. To this ef-

fect, we propose Dual Directed Capsule Network (termed

as DirectCapsNet) (Figure 1(b)) to learn meaningful fea-

tures for VLR recognition, directed (or guided) by the HR

samples. The contributions of this research are as follows:

• A novel Dual Directed Capsule Network (DirectCap-

sNet) model is proposed for VLR recognition, which

directs the features learned from the VLR images con-

taining limited information towards the more meaning-

ful and discriminative features of the HR images.

• Two losses are proposed for directing the VLR recog-

nition model: (i) HR-anchor loss and (ii) targeted re-

construction loss. HR-anchor loss is proposed for the

feature learning module, which pushes the VLR fea-

tures of a particular class towards a representative HR

feature (anchor) of that class. Targeted reconstruction

loss is utilized at the classification module, where HR

images are reconstructed from the capsule outputs of

the VLR images, thereby forcing the capsules of VLR

and HR images of the same class to be similar.

• Experimental results and analysis demonstrate the ad-

vantages of the proposed DirectCapsNet model for

VLR digit classification and VLR face recognition.

Experiments are performed on the SVHN [17], CMU

Multi-PIE [6], and UCCS [24] databases, and compar-

isons are performed with state-of-the-art algorithms.

The proposed model yields over 95% accuracy on

the challenging UCCS face database. On the SVHN

database, it achieves about 84% classification accuracy

with 8×8 VLR images demonstrating an improvement

of almost 27% from the existing results.

2. Related Work

There have been several advances in the field of low res-

olution recognition [11, 14, 18, 31]; however, the area of

very low resolution (VLR) recognition remains relatively

less explored. As mentioned previously, very low resolu-

tion (VLR) recognition refers to identifying regions of in-

terest with 16× 16 resolution or less. Owing to the limited

information content in a given VLR image, a potential so-

lution is to super-resolve or synthesize its higher resolution

image [20, 28], which is then used for recognition. While

there exists vast literature on super-resolution or synthesis

algorithms [13, 23, 29], most of them focus primarily on the

visual quality of the generated image, and not on the task of

recognition. Zou and Yuen [33] proposed one of the ini-

tial super resolution techniques with specific focus on VLR

face recognition. The proposed algorithm utilizes a com-

bination of visual quality based constraint for good quality

HR synthesis, and a discriminative constraint for learning

features useful for recognition. Singh et al. [25] proposed

an identity-aware face synthesis technique for generating a

HR image from a given LR input. The synthesized images

were provided to a Commercial-Off-The-Shelf (COTS) sys-

tem for recognition.

Apart from super-resolution based techniques, in the lit-

erature, researchers have also proposed algorithms for en-

hancing or improving the features learned for VLR images

by using the information extracted from the HR images. For

instance, Bhatt et al. [2] proposed an ensemble-based co-

transfer learning algorithm for face recognition. The co-

transfer algorithm operates at the intersection of co-training

and transfer learning by utilizing the information of HR

images for enhancing the VLR classification. Wang et al.

[30] proposed Robust Partially Coupled Networks for VLR

recognition. HR images are used as “auxiliary” data dur-

ing training for learning more discriminative information,

which might not be available in VLR images. As demon-

strated via multiple experiments, using HR images at the

time of training, enhances the learned VLR features, re-

sulting in improved recognition performance. Mudunuri

and Biswas [16] proposed a reference-based approach along

with multidimensional scaling for learning a common space

for HR and VLR images. Recently, Li et al. [14] analyzed

different metric learning techniques for LR and VLR face

recognition, by learning a common feature space for HR

and LR samples. Ge et al. [4] proposed a selective knowl-

edge distillation technique for (V)LR face recognition. A

base network trained on HR face images is used for select-

ing the most informative facial features for a (V)LR CNN

model, in order to enhance the (V)LR features and the clas-

sification performance.

In the literature, VLR recognition algorithms have

shown to benefit from HR samples by learning shared rep-

resentations between the HR and VLR samples [30] or by
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(a)

(c)(b)

Figure 2: Sample HR and VLR images from the (a) SVHN

dataset, (b) CMU Multi-PIE dataset, and (c) UCCS dataset.

The HR images (first row) contain high information content,

which is often missing in the VLR samples (second row).

transferring the model information learned by the HR data

onto the VLR recognition model [4]. By utilizing the addi-

tional information from the HR images at the time of train-

ing, such algorithms are able to learn more discriminative

and meaningful features, as compared to those learned inde-

pendently from the VLR images. This research proposes to

utilize the auxiliary HR samples during training to direct the

VLR features towards the more informative HR features,

via a novel DirectCapsNet model.

3. Proposed Dual Directed Capsule Network

As shown in Figure 2, the problem of very low resolu-

tion (VLR) recognition suffers from the challenge of lim-

ited information content in the input images, which often

results in lack of discriminative features useful for recog-

nition/classification. In order to overcome this challenge,

we propose a novel Dual Directed CapsNet, termed as Di-

rectCapsNet. DirectCapsNet enhances the VLR represen-

tations by directing them in two ways: via the proposed (i)

HR-anchor loss and (ii) targeted reconstruction loss, both of

which provide additional supervision using the HR images.

The HR information is used to direct/guide the framework

to extract discriminative representations even from the VLR

images having limited information content. This is accom-

plished by using the HR-anchor loss which brings the rep-

resentations of VLR images closer to the representations of

their corresponding HR samples. This is also enforced at

the classification stage via the targeted reconstruction loss,

which promotes similar features for HR and VLR samples

of the same class. Since the base architecture of the pro-

posed model is a capsule network, we first briefly explain

its functioning, followed by the in-depth explanation of the

proposed model.

3.1. Preliminaries: Capsule Networks

Hinton et al. [7] proposed the concept of capsules as

an effective method of learning representations. It was fur-

ther developed by Sabour et al. [22], where a capsule net-

work (CapsNet) is presented for classification. A capsule

is a “group of neurons whose activity vector represents the

instantiation parameters of a specific type of entity such as

an object or an object part”. In other words, instead of a sin-

gle scalar output, each capsule outputs a vector, the values

of which are referred to as the activity vector. The length of

each capsule vector (‖.‖2) is bounded in the range of [0−1].
Sabour et al. [22] proposed the concept of dynamic routing

between capsules, wherein multiple layers of capsules were

stacked for object classification. The final layer contains the

classification capsules of dimension k ×m, where k is the

number of classes and m is the capsule dimension. For a

given input, the predicted class is the class corresponding to

the capsule with the maximum activity vector (length). In

order to learn an effective classification model, margin loss

is used to learn the network. Given a K class problem, with

vx
c

k as the output of the kth class capsule for an input xc

(belonging to class c), and Tk being the label corresponding

to the kth class, the margin loss of CapsNet is defined as:

LMargin =

K
∑

k=1

(

Tk max(0,m+ − ‖vx
c

k ‖)2

+ λ(1 − Tk)max(0, ‖vx
c

k ‖ −m−)2
)

(1)

where, Tk ∈ {0, 1}, that is, whether the input sample be-

longs to class k (Tk = 1) or not (Tk = 0). m+ and m−

correspond to the positive and negative margin used to in-

crease the intra-class similarity and reduce the inter-class

similarity, respectively, and λ is a constant for controlling

the weight of each term. The above loss (Equation 1) pro-

motes a larger length of capsule (‖vk‖) for the correct class,

and a smaller length for capsules corresponding to the other

classes. Capsule networks are relatively less explored in the

literature, with limited or no modification to the architec-

ture or loss function. They have been used for brain tumor

detection [1], sea grass detection [9], generating synthetic

data [10], and image classification [32]. Capsule networks

encode the instantiation parameters for a given input, and

thus present the potential of being the appropriate network

for VLR image recognition.

3.2. Proposed DirectCapsNet

As shown in Figure 3, the proposed DirectCapsNet net-

work can be broken down into three components: (i) input,

(ii) feature extraction, and (iii) classification. At the time of

training, the input consists of both HR and VLR samples.

The feature extraction module consists of convolutional lay-

ers and the proposed HR-anchor loss, and the classification
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Figure 3: Architecture of the proposed Dual Directed Capsule Network (DirectCapsNet) for the SVHN dataset [17]. A

diagrammatic representation of the HR-Anchor loss is presented for a given class. HR images are used to complement the

features learned by the VLR recognition model by directing the model to learn discriminative and information rich features.

module consists of a capsule network coupled with the pro-

posed targeted reconstruction loss. By enforcing dual direc-

tion via the proposed (i) HR-anchor loss and (ii) targeted re-

construction, the proposed DirectCapsNet focuses on learn-

ing meaningful feature-rich representations for VLR inputs,

aided by the auxiliary HR samples. The loss function of the

proposed DirectCapsNet is formulated as:

LDirectCapsNet = LMargin + λ1LHR−anchor

+λ2LT−Recon

(2)

where, λ1 and λ2 are used to balance the weights of the

HR-anchor and targeted reconstruction loss with respect to

the margin loss. The margin loss introduces discriminabil-

ity between classes, while the HR-anchor loss and targeted

reconstruction loss enforce information-rich representations

at the feature and classification level. At the time of testing,

for a given VLR input, the class capsule with the highest

length is chosen as the class of the given input. It is essential

to note that, simulating the real world scenarios, DirectCap-

sNet utilizes the HR samples only at the time of training,

and operates with a given VLR image during testing. As

will be demonstrated in the remainder of this section, each

component of the proposed model facilitates learning dis-

criminative features for VLR recognition.

Proposed HR-anchor Loss: Input samples in Figure 3 are

HR (32× 32× 3) and VLR (8× 8× 3 resolution upscaled

to HR resolution) images from the SVHN dataset [17]. The

limited information content in VLR images makes it dif-

ficult to extract discriminative information, often resulting

in ineffective recognition, a phenomenon observed in hu-

mans as well [27]. The proposed HR-anchor loss addresses

this challenge by pushing VLR features closer to their HR

counter parts. This ensures learning of a discriminative

space for VLR recognition, even with limited information.

For an input xc belonging to class c, with features fxc

learned from the convolutional layers, the HR-anchor loss

is formulated as:

LHR−anchor =
1

2

(

(1−rx
c

)‖fxc

−A
c‖22 + rx

c

‖fxc

−Ac‖22
)

(3)

where, rx
c

is a binary variable to denote the resolution of

the sample, i.e., rx
c

= 1 for a HR sample, and rx
c

= 0
for a VLR sample. Since HR samples are only used during

training, this information is readily available. fxc

refers to

the features extracted from the convolutional layers in the

feature module, Ac and A
c both refer to the HR-anchor of

class c, which is used to enhance the VLR representations.

Specifically, Ac refers to the HR-anchor in a constant state,

whereas Ac represents the HR-anchor in a parameter form,

which needs to be optimized. The HR-anchor of a partic-

ular class corresponds to the average feature vector of all

HR samples belonging to that class. Given a VLR sam-

ple (rx
c

= 0), the first part of Equation 3 (‖fxc

− A
c‖22)

is active, where the HR-anchor of class c assists the VLR

feature fxc

to be closer to the anchor, thereby facilitating

learning of discriminative features useful for classification.

For a HR sample (rx
c

= 1), the second half of Equation 3

(‖fxc

− Ac‖22) becomes active, where both the HR-anchor

and features are updated.

The proposed HR-anchor loss is a combination of learn-
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ing the HR-anchors and learning the VLR features closer

to the HR feature space, in order to learn discriminative

VLR features. The first term attempts to direct the VLR

features towards the HR anchors, and the second term

learns representative HR anchors from the HR features.

It is important to note that there is no contribution of

the VLR features in the anchor generation, since the HR

anchors are constant in the first term. This ensures that the

VLR features are directed towards the higher quality HR

features, and not the other way round. Therefore, Equation

3 promotes the learning of informative VLR features with

assistance from the HR samples.

Proposed Targeted Reconstruction Loss: The second

form of direction is imposed via the targeted reconstruc-

tion loss (Figure 3) at the classification module (capsule net-

work). The targeted reconstruction loss promotes learning

similar classification capsules for HR and VLR samples. As

explained previously, a capsule is a vector which encodes

the instantiation parameters of the input sample [22]. For

a given input, the activations of a capsule are termed as the

activity vector. For reconstruction, only the activity vector

of the target class is selected and used to reconstruct the in-

put sample. For an input image xc belonging to class c, the

reconstruction loss is mathematically formulated as:

LRecon =
1

2
‖xc − g(vx

c

c )‖22 (4)

where, vx
c

c is the activity vector of the classification capsule

of the cth class for the input xc, and g(.) refers to the re-

construction network. The reconstruction loss attempts to

encode instantiation parameters that are able to explain the

input image, and thus are able to reconstruct the input. In-

tuitively, we believe that the instantiation parameters of a

HR sample and its corresponding VLR sample should be

similar. Therefore, in order to incorporate a second level of

direction, the targeted reconstruction loss is introduced in

the proposed DirectCapsNet.

The targeted reconstruction loss enforces the HR

counter-part of a VLR image at the output of the recon-

struction network. Regardless of a HR or a VLR input, the

reconstructed sample is forced as a HR image. For an input

xc, the targeted reconstruction loss can be written as:

LT−Recon = ‖hrx
c

− g(vx
c

c )‖22 (5)

where, hrx
c

is the HR image corresponding to the input

HR/VLR sample and vx
c

c is the activity vector of the cth

class. In case of a HR input image, Equation 5 ensures that

the HR input is reconstructed at the output of the recon-

struction network. For a VLR image, its HR counter-part is

provided as the target of the reconstruction network. Since

the reconstruction network operates on the final classifica-

tion capsule, the targeted reconstruction loss pushes the HR

and VLR samples to have a similar capsule activity vector,

driven by the HR samples. Therefore, the reconstruction

loss promotes learning similar capsule features for HR and

VLR samples directly at the classification stage, by direct-

ing the model to reconstruct a HR sample from an extracted

VLR feature.

Equations 3 and 5 are combined to update Equation 1

and the loss function of the proposed DirectCapsNet for an

input xc (belonging to class c) is written as:

LDirectCapsNet =

K
∑

k=1

(

Tk max(0,m+ − ‖vx
c

k ‖)2+

λ (1− Tk) max(0, ‖vx
c

k ‖ −m−)2
)

+
1

2

(

λ1(1− rx
c

)

‖fxc

− A
c‖22 + λ1r

xc

‖fxc

−Ac‖22 + λ2 ‖hr
xc

− g(vx
c

c )‖22

)

(6)

3.3. Implementation Details

DirectCapsNet has been implemented in Python, using

the PyTorch framework on the NVIDIA Tesla P-100 GPU.

Adam optimizer [12] has been used for learning the model.

The weight of the HR-anchor loss (λ1 of Equation 6) is set

to 1e− 3, and the weight of the targeted reconstruction loss

(λ2 of Equation 6) is set to 1e − 5. The positive and nega-

tive margins for the margin loss (m+ and m− of Equation

1) are set to 0.9 and 0.1, respectively. As shown in Figure 3,

for all the experiments, the DirectCapsNet model contains

n convolution layers, followed by two capsule layers. The

HR-anchor loss is applied on the final convolution layer of

the DirectCapsNet. The final capsule layer is connected to a

reconstruction network of three fully connected layers. For

cases where the HR samples are larger than 96 × 96, three

convolutional layers with [16, 32, 128] filters are used with a

batch size of 32 samples. In cases where the HR samples are

smaller, a convolutional layer with 128 filters is used with

a batch size of 100 samples. ReLU activation function is

used between the convolutional layers along with batch nor-

malization [8]. All models have been trained from scratch

and no pre-trained networks have been used.

4. Experiments and Protocols

The proposed DirectCapsNet has been evaluated for

three very low resolution (VLR) recognition problems: (i)

VLR digit recognition, (ii) VLR face recognition, and (iii)

unconstrained VLR face recognition. Details regarding the

dataset and protocols for each case study are as follows:

Case study 1 - VLR Digit Recognition: The Street View

House Numbers (SVHN) dataset [17] has been used for

VLR digit recognition. The dataset contains real-world im-

ages of digits in the range [0 − 9]. Pre-defined bench-

mark protocol has been used for the given 10-class problem,

wherein 73,257 digits are used for training and 26,032 digits
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are used for testing. For VLR recognition, consistent with

the existing protocol [30], 32×32 HR images are used, and

8 × 8 VLR images are used. Results are reported in terms

of the top-1 and top-5 accuracies.

Case study 2 - VLR Face Recognition: VLR face recog-

nition has direct applicability in scenarios of image tagging

or situations where multiple people are captured in a sin-

gle image. For this particular case-study, experiments have

been performed on the CMU Multi-PIE dataset [6] which

simulates a constrained setting. Consistent with the exist-

ing protocol [25], 237 subjects are used. One image per

subject is added to the training set/gallery which consists

of the HR images, and one image per subject is added to

the testing set/probe (VLR). The HR images are of 96× 96
resolution and the VLR images are of 8 × 8 and 16 × 16,

respectively. Results are reported using the rank-1 identifi-

cation accuracy.

Case study 3 - Unconstrained VLR Face Recognition:

Unconstrained VLR face recognition has wide applicability

in surveillance scenarios, where the VLR face image often

contains other variations such as pose, illumination, and oc-

clusion. Experiments have been performed on two datasets:

(a) UnConstrained College Students (UCCS) dataset [24]

for an unconstrained surveillance setting and (b) CMU

Multi-PIE dataset [6] with pose and illumination variations

for a semi-constrained setting.

The UCCS dataset contains images of college students, cap-

tured using a long-range high-resolution surveillance cam-

era kept at a standoff distance of 100 to 150 meters. The

images show students walking around the campus, between

classes. The large standoff distance and unconstrained na-

ture of the data simulates real world surveillance settings.

The dataset contains a labeled subset of 1732 identities.

Consistent with the existing protocol [4, 30], a subset con-

taining the top 180 identities (in terms of the number of

images) is used for evaluation. As per the protocol, each

subject’s images are divided into a 4 : 1 ratio corresponding

to training:testing. The VLR images are of 16× 16 resolu-

tion, whereas the HR images are of 80× 80 pixels.

As described above, CMU Multi-PIE dataset [6] contains

images with pose, expression, and illumination variations.

As per the existing protocol [16], in this case-study face

recognition is performed across pose and illumination vari-

ations for VLR images. Images pertaining to 50 subjects

are used for training and images of the remaining subjects

form the test set. In our experiments, we do not utilize the

training set and only use the gallery images of the test set

in order to train the proposed DirectCapsNet model. The

gallery comprises of the frontal images (used for training

the proposed model), and the probe (test set) are images

having a different pose (‘05 0’ of the dataset) and illumina-

tion. Experiments are performed across five different pairs

of illumination conditions and average rank-1 identification

Table 1: Top-1 and top-5 accuracy (%) on the SVHN dataset

[17] for VLR digit recognition (8× 8).

Algorithm
Accuracy (%)

Top-1 Top-5

CNN (VLR) (2016) [30] 45.29 66.78

RPC Nets (2016) [30] 56.98 70.82

P
ro

p
o

se
d

CapsNet (HR) 77.82 87.86

CapsNet (VLR) 79.19 88.89

DirectCapsNet - (HR-anchor Loss) 82.42 90.15

DirectCapsNet - (Targeted Recon.) 81.95 90.35

Proposed DirectCapsNet 84.51 91.20

accuracy has been reported. Consistent with [16], the HR

images are of 36 × 30 resolution, while VLR images have

resolution of 18× 15, 15× 12, 12× 10, and 10× 9.

Figure 2 presents some HR and VLR images from the

datasets used in the three case-studies. Bicubic interpola-

tion is used for conversion from HR to VLR and vice-versa.

At the time of training, the HR and VLR pairs are used

for the targeted reconstruction loss. Data augmentation is

applied by introducing brightness variations, flipping along

the y-axis, and random crops. At the time of testing, only

the VLR image is provided for classification.

5. Results and Analysis

Tables 1 - 3 and Figures 4 - 6 present the results for

the three case-studies: (i) VLR digit recognition, (ii) VLR

face recognition, and (iii) unconstrained VLR face recog-

nition. Analysis of the proposed DirectCapsNet has also

been performed in order to demonstrate the effectiveness of

each component. Since existing protocols have been used

for analysis, results have directly been reported from the re-

spective publications.

Ablation Study and Analysis of DirectCapsNet: Exper-

iments have been performed on the SVHN dataset to ana-

lyze each component of the proposed DirectCapsNet, and

motivate their inclusion in the final model. As observed

from Table 1, the native CapsNet model (having the mar-

gin loss) when trained on VLR images (CapsNet (VLR))

attains the top-1 classification accuracy of 79.19%, which

demonstrates large improvement over the native CNN ar-

chitecture (45.29%) [30]. The improved performance pro-

motes the usage of capsule networks for the task of VLR

recognition. Consistent with literature [22], it is our belief

that since CapsNet attempts to encode the instantiation pa-

rameters of the data, it results in learning features invariant

to minor variations, a desirable property of a robust VLR

recognition module.

Further, in order to reaffirm the necessity of a VLR

recognition model, a CapsNet with the same architecture

is trained on HR images only. In this case, the model
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(a) VLR Input (b) Reconstructions

Figure 4: Sample reconstructions obtained on the SVHN

dataset from VLR input. DirectCapsNet is able to recon-

struct digits where limited information content is available

(e.g. green boxes), however it also fails to correctly recon-

struct some challenging cases (e.g. red boxes).

does not see any VLR images at the time of training and

is evaluated on VLR test images. As can be observed,

the CapsNet (HR) achieves a classification accuracy of

77.82%, thus reaffirming the need to develop dedicated

VLR recognition networks or utilize task-specific infor-

mation while training. We also performed the McNemar

test [15] and achieved statistical difference at a confi-

dence interval (C.I.) of 99% (p-value<0.01) between the

proposed DirectCapsNet and CapsNet. Table 1 can also

be analyzed to understand the effect of each component

of the proposed DirectCapsNet model. Upon removing

the HR-anchor loss from the DirectCapsNet model, top-1

accuracy of 82.42% is achieved, whereas, removal of the

targeted reconstruction loss results in a top-1 accuracy of

81.95%. Both these models demonstrate poor performance

as compared to the proposed DirectCapsNet model, thus

supporting the inclusion of the HR-anchor loss, targeted re-

construction loss, and capsules in the DirectCapsNet model.

Case study 1 - VLR Digit Classification: Table 1 presents

the top-1 and top-5 classification accuracy for the SVHN

dataset of the proposed DirectCapsNet and comparison

with other techniques. The proposed DirectCapsNet model

achieves top-1 accuracy of 84.51% and top-5 accuracy of

91.20%. DirectCapsNet demonstrates an improvement of

over 27% at top-1 with respect to the state-of-the-art results

of Robust Partially Coupled Networks (RPC Nets) [30],

which is a CNN based framework to learn partial shared

weights for VLR and HR samples, and partial independent

weights for the two. The superior performance of the pro-

posed DirectCapsNet model motivates its usage for VLR

recognition. Figure 4 presents sample reconstructions ob-

tained from the DirectCapsNet for 8× 8 VLR samples. It is

motivating to note that the DirectCapsNet model is able to

reconstruct the digits for the input samples, which motivates

the inclusion of the targeted reconstruction loss. Similar re-

constructions are obtained for samples of the same class,

which demonstrate the effectiveness of the HR-anchor loss

for increasing the intra-class similarity between features.

Case study 2 - VLR Face Recognition: Table 2 presents

(a) VLR Input

(b) Reconstruction for VLR Input

(c) HR Input

(d) Reconstruction for HR Input

Figure 5: Sample reconstructions obtained from the pro-

posed DirectCapsNet model on the CMU Multi-PIE dataset.

For the same class, DirectCapsNet is able to project VLR

and HR samples onto a similar target, suggesting robust

resolution-invariant feature representations.

Table 2: Rank-1 accuracy (%) for VLR recognition on the

CMU Multi-PIE dataset [6]. The HR images are of 96× 96
resolution.

Algorithm
Accuracy (%)

8× 8 16× 16

Original + COTS (2018) [25] 0.0 0.0

Bicubic Interp. + COTS (2018) [25] 0.1 1.1

SHSR (Synthesis + COTS) (2018) [25] 82.6 91.1

Proposed DirectCapsNet 94.5 97.4

Table 3: Rank-1 accuracy (%) on the UCCS dataset [24]

for VLR face recognition (16× 16). The HR images are of

80× 80 resolution.

Algorithm Acc. (%)

Robust Partially Coupled Nets (2016) [30] 59.03

Selective Knowledge Distillation (2019) [4] 67.25

LMSoftmax for VLR (2019) [14] 64.90

L2Softmax for VLR (2019) [14] 85.00

Centerloss for VLR (2019) [14] 93.40

Proposed DirectCapsNet 95.81

the rank-1 identification (or top-1 recognition) accuracy

for two protocols of VLR face recognition. The proposed

DirectCapsNet model achieves an accuracy of 94.5% and

97.4% for 8× 8 and 16× 16 VLR images, while having the

HR auxiliary images as 96×96 (Table 2) on the constrained

CMU Multi-PIE dataset. DirectCapsNet demonstrates an

improvement of almost 12% as compared to the state-of-

the-art (Synthesis via Hierarchical Sparse Representations

(SHSR)) [25] for 8×8 resolution images. Figure 5 presents

sample VLR and HR face images, along with the recon-

structions obtained from the DirectCapsNet. The proposed

model is able to reconstruct faces belonging to the same

subject onto a similar target, suggesting high within-class

similarity. Both VLR and HR samples are reconstructed as

similar images, which reinstates the benefit of the targeted

reconstruction and HR-anchor loss.
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Figure 6: Performance of the proposed DirectCapsNet for

varying resolutions of VLR face recognition with pose and

illumination variations. The HR resolution was fixed to 36×
30 pixels. Comparison has been shown with HR-LR (MDS)

[3] and Mudunuri and Biswas [16].
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Figure 7: Scores obtained by the proposed DirectCapsNet

for VLR recognition on some samples of the UCCS dataset.

Each test image has one genuine score (correct class) and

179 imposter scores (incorrect class).

Case study 3 - Unconstrained VLR Face Recognition:

Table 3 and Figure 6 present the rank-1 identification (or

top-1 recognition) accuracy for unconstrained VLR face

recognition. As shown in Table 3, on the UCCS dataset, Di-

rectCapsNet model achieves a rank-1 accuracy of 95.81%

demonstrating an improvement of almost 2.5% over the

state-of-the-art network and almost 10% from the current

second best [14]. Comparison has also been performed with

the recently proposed large-margin softmax (LMSoftmax),

l2-constrained softmax (L2Softmax), and center-loss based

VLR recognition systems [14]. The improved performance

of the proposed DirectCapsNet over metric learning tech-

niques demonstrates the benefit of incorporating auxiliary

HR information to provide direction while training with the

proposed dual directed loss functions. Figure 7 presents the

scores obtained on samples of the UCCS dataset by the Di-

rectCaspNet model. The scores correspond to the length

of the activity vectors of the capsules used for classifica-

tion. Figure 7 suggests that the model is able to generate

a high score for the correct class and a small score for the

other classes, which promotes separability, resulting in high

recognition performance.

Similar performance is obtained on the CMU Multi-

PIE dataset (Figure 6) with pose and illumination varia-

tions, where the proposed DirectCapsNet achieves an av-

erage recognition performance of 95.17%, demonstrating

an improvement of around 1.64% from the current state-

of-the-art algorithm [16]. Figure 6 demonstrates that the

proposed DirectCapsNet does not suffer a major decrease in

accuracy as other techniques with reducing the resolution.

The model achieves the recognition accuracy of 92.15% and

90.34% for 15 × 12 and 10 × 9, respectively, whereas, the

second best performing model [16] shows a drop of almost

9% between the two resolutions. Improved recognition per-

formance across multiple very low resolutions motivates the

applicability of the proposed DirectCapsNet model for real

world scenarios.

6. Conclusion

Existing research has primarily focused on high reso-

lution and low resolution image recognition; however, the

problem of VLR recognition has received limited attention.

VLR recognition, an arduous problem with wide applica-

bility in real world scenarios, suffers from the primary chal-

lenge of low information content. This research presents a

novel Dual Directed Capsule Network (DirectCapsNet) for

VLR recognition. The DirectCapsNet combines the mar-

gin loss for classification with the proposed HR-anchor loss

and the targeted reconstruction loss for enhancing the VLR

features. HR images are used during training as ‘auxil-

iary’ data to complement the VLR feature learning. Exper-

imental results on VLR digit recognition (SVHN database)

and constrained/unconstrained VLR face recognition (CMU

Multi-PIE and UCCS databases) demonstrate the efficacy of

the proposed model, and promote its usability for different

VLR tasks. In future, we plan to extend the proposed al-

gorithm to address multiple covariates; for example, in face

recognition applications, VLR recognition in the presence

of disguise [26], aging [21], spectral variations [19], and

adversarial attacks [5].
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