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Abstract

Deep neural networks provide powerful tools for pattern

recognition, while classical graph algorithms are widely

used to solve combinatorial problems. In computer vision,

many tasks combine elements of both pattern recognition

and graph reasoning. In this paper, we study how to connect

deep networks with graph decomposition into an end-to-end

trainable framework. More specifically, the minimum cost

multicut problem is first converted to an unconstrained bi-

nary cubic formulation where cycle consistency constraints

are incorporated into the objective function. The new opti-

mization problem can be viewed as a Conditional Random

Field (CRF) in which the random variables are associated

with the binary edge labels. Cycle constraints are intro-

duced into the CRF as high-order potentials. A standard

Convolutional Neural Network (CNN) provides the front-end

features for the fully differentiable CRF. The parameters of

both parts are optimized in an end-to-end manner. The ef-

ficacy of the proposed learning algorithm is demonstrated

via experiments on clustering MNIST images and on the

challenging task of real-world multi-people pose estimation.

1. Introduction

Many computer vision problems such as multi-person

pose estimation [35], instance segmentation [21], and multi-

target tracking [42] can be viewed as optimization prob-

lems, where the decompositions of a graph are feasible so-

lutions. For example, in multi-person pose estimation, a

graph G = (V,E) can be constructed where the nodes V

correspond to body joint detections and the edges E con-

nect a person’s joints [35]. A partitioning of the graph G

into connected components that correspond to the joints of a

single individual can be found, for example, via solving the

Minimum Cost Multicut Problem [4, 8].

This formulation has several appealing properties: First,

it does not favor one decomposition over another and the

number of graph components is determined by the solution

in an unbiased fashion. Contrary to this, some balanced cut

problems [39] rely on a fixed number of graph components

or introduction of biases into the problem definition. Second,

it is straightforward to utilize this optimization problem in

practice: for many vision tasks, an input graph can be easily

constructed and the cost of the incident nodes belonging to

distinct components can be obtained robustly using Deep

Neural Networks, e.g. [14, 21].

By far the most common way of applying the minimum

cost multicut problem to vision tasks is to employ a multi-

stage pipeline [15, 21, 35, 43]. First, the task dependent

detections and the affinity measures between the detections

are obtained by two separately trained networks. Second, the

coefficients of the objective function are constructed based

on the output of the networks and third, the optimization

is performed independently on top of the detection graph

by either branch and bound algorithms [35, 42] or heuristic

greedy search algorithms [6].

While straightforward, a notable downside of this multi-

stage approach is that the deep networks are learned locally.

That is, the dependencies among the optimization variables

are not considered during the training of the deep feature rep-

resentations. However, it has been shown that graphical mod-

els such as Conditional Random Fields (CRFs) can increase

the performance of deep feature learning approaches [44, 50].

In this work we then ask the question whether the global de-

pendencies defined by a general graph decomposition prob-

lem, such as the minimum cost multicut problem, can lead

to learning of better feature representations.

Motivated by this question, we propose an end-to-end

trainable framework to learn feature representations glob-

ally in a graph decomposition problem. We first convert

the minimum cost multicut problem into an unconstrained

binary cubic problem to incorporate the hard consistency

constraints into the objective function. The appealing prop-

erty of this new optimization problem is that it can be viewed

as a conditional random field (CRF). The random variables

of the CRF are associated with the binary edge labels of

the initial graph, and the hard constraints can be introduced

as high-order potentials in the CRF. We further propose an

end-to-end learnable framework that consists of a standard

Convolutional Neural Network (CNN) as the front-end and

a fully differentiable CRF with the high-order potentials.

The advantages of the proposed framework are: (i) The
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parameters of the CRF and the weights of the front-end

CNN are optimized jointly during the training of the full

network via backpropagation. This joint training facilitates

a learnable balance between the unary potentials and high-

order potentials that enforce the validity of the edge labeling,

which leads to a better decomposition. (ii) The cycle inequal-

ities, encoded by the high-order potentials, serve as super-

vision signals during learning of the deep feature represen-

tations. This meta-supervision from the global consistency

constraints is complementary to the direct local supervision

(standard CNN training). In this way it teaches the network

how to behave by taking the dependencies among the output

random variables into account.

In experiments, we first present analyses on the task

of clustering MNIST ([24]) images, showing that the pro-

posed method improves the feature learning via enforcing

the global consistency constraints. Then the applicability

of the proposed approach on the challenging task of multi-

person pose estimation is demonstrated. Results suggest

the effectiveness of the end-to-end learning framework in

terms of better feature learning, cycle constraint validity,

tighter confidence of the marginal estimates and final pose

estimation performance.

2. Related Work

The minimum cost multicut problem. The multicut prob-

lem has been explored for various computer vision tasks

[14, 19, 25, 35, 42, 21]. In [15, 35], a joint node and

edge labeling problem is proposed to model the multi-

person pose estimation task. In [42, 43], the multi-target

tracking task is formulated as a graph decomposition prob-

lem. Meanwhile, many algorithms for efficiently solving

the minimum cost multicut problem have been developed

[5, 17, 18, 20, 31, 48, 41]. Beier at al. [5] propose a correla-

tion clustering fusion method which iteratively improves the

current solution by a fusion operation. The proposed algo-

rithm maintains a valid decomposition at all times. Yarkony

et al. [48] relies on column generation to combine feasible

solutions of subproblems into successively better solutions

in planar graphs. Swoboda and Andres [41] propose a dual

decomposition and linear program relaxation algorithm.

There are also algorithms that integrate optimization prob-

lems as layers into network architectures for end-to-end

training [1, 11, 37, 49]. Schulter et al. [37] propose a joint

learning framework for the cost functions of network flow

problems. Amos and Kolter [1] develop a general method

for integrating quadratic programs with deep networks. Due

to the cubic complexity in the number of constraints, it is

an open question whether this method can be applied to

complex vision tasks. Funke et al. [12] propose to use a

structured loss for training an instance segmentation network

with an iterative region agglomeration algorithm for the task

of neuron segmentation from electron microscopy. To the

best of our knowledge, ours is the first work to introduce an

end-to-end learnable framework for the multicut formulation

by reformulating of the cycle constraints as high-order terms

in a CRF model.

Learning deep structured model. Several approaches

propose to jointly learn the feature representations and

the structural dependency between the variables of inter-

est [3, 7, 9, 27, 40]. Chen et al. [7] propose a learning

framework to estimate the deep representations and the

parameters of their Markov random field model together.

Zheng et al. [50] reformulate the mean field iterations for

the CRFs as recurrent neural network layers with Gaussian

pairwise potentials. The front-end CNNs and the recurrent

neural network can be trained end-to-end with the usual

back-propagation algorithm. Arnab et al. [3] extend the

model proposed in [50] by incorporating object detection

and superpixel information as high-order potentials for the

task of image semantic segmentation. Chu et al. [9] propose

a model to implicitly incorporate the structural information

into the hidden feature layers of their CNN. The goal of

our work is to design an end-to-end learnable framework

for the minimum cost multicut problem. While the mean

field inference used here does not guarantee a feasible graph

decomposition, it effectively allows integration of CNN and

graph decomposition.

Human pose estimation. Recent deep neural network

methods have made great progress on human pose estima-

tion in natural images in particular for the single person

case [26, 28, 30, 34, 44, 47]. As for a more general case

where multiple people are present in images, previous work

can mainly be grouped into either top-down or bottom-up

categories. Top-down approaches first detect individual peo-

ple and then predict each person’s pose [10, 13, 33]. The

top-down approaches generally achieve better performance

on public benchmarks, because they can leverage external

powerful person detection models, turning the pose estima-

tion task into the simpler single-person case. Bottom-up ap-

proaches directly detect individual body joints and then asso-

ciate them with individual people [6, 14, 15, 27, 32, 46, 38].

In [6, 35], the body joint detections and the affinity measures

between the detections are first trained by deep networks,

then the association is performed independently either by

branch and bound algorithms [35] or by heuristic greedy

search algorithms [6]. One potential advantage over top-

down approaches is that the decision making for detections

(typically non-maximum suppression is deployed) is per-

formed at lower levels (joints) rather than at the highest level

(person). Note that in [27], the associations are trained by

predicting person IDs alongside the joint detections.In con-

trast, our method focuses on end-to-end learning of the graph

decomposition problem.
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3. Optimization Problems

3.1. Minimum Cost Multicut Problem

The minimum cost multicut problem [4, 8] is a con-
strained binary linear program with respect to a graph
G = (V,E) and a cost function c : E → R:

min
y∈{0,1}E

∑

e∈E

ce ye (1)

subject to ∀C ∈ cc(G) ∀e ∈ C : ye ≤
∑

e′∈C\{e}

ye′ . (2)

Here, the optimization variables y ∈ {0, 1}E correspond

to a binary labeling of the edges E. ye = 1 indicates that the

edge e is cut. In other words, the nodes v and w connected

by edge e are in distinct components of G. cc(G) denotes

the set of all chord-less cycles of G. The cycle constraints

in Eq. 2 define the feasible edge labelings, which relate

one-to-one to the decompositions of the graph G.

A toy example is illustrated in Fig. 1: (a) shows an exam-

ple graphG; (b) is a valid decomposition ofG; and (c) shows

an invalid solution that violates the cycle inequalities (Eq. 2).

The cost function c : E → R is characterized by model pa-

rameters θ. In previous work [14, 15, 35], the cost function

is defined as log 1−pe

pe

, where pe denotes the probability of

ye being cut. Given a feature fe on the edge e, pe takes a

logistic form: 1
1+exp(−〈θ,fe〉)

. The maximal probable model

parameters θ are then obtained by maximum likelihood es-

timation on training data. fe can be attained via some deep

feature representations extracted from a separately trained

deep network. For example, in [14] and [43], fe is obtained

from a CNN and a Siamese network respectively.

Research questions. At the heart of this work lie the fol-

lowing research questions: first, how to jointly optimize

the model parameters θ and the weights of the underlying

deep neural network for the graph decomposition problem?

Second, how to utilize the cycle consistency constraints as a

supervision signal and to capture the dependencies between

the output random variables during training? In the follow-

ing, we present our end-to-end learnable framework, which

provides solutions to these research questions.

3.2. Unconstrained Binary Cubic Problem

Our first observation is that the minimum cost multicut

problem can be equivalently stated as an unconstrained bi-

nary multilinear program with a large enough K ∈ N

min
y∈{0,1}E

∑

e∈E

ce ye +K
∑

C∈cc(G)

∑

e∈C

ye
∏

e′∈C\{e}

(1− ye′ ) . (3)

In the special case where G is complete, every 3-cycle is

chordless. Thus, Eq. 3 specializes to the binary cubic prob-

lem, where ȳvw := 1− yvw:

u

v

w
(a)

u

v

w
(b)

u

v

w
(c) (d)

Figure 1: We illustrate a graph G in (a); a feasible solution

and an infeasible solution are shown in (b) and (c) respec-

tively; the factor graph of the CRF model of G is in (d).

min
y∈{0,1}E

∑

e∈E

ce ye+K
∑

{u,v,w}∈
(

V
3

)

(yuv ȳvw ȳuw

+ȳuvyvw ȳuw + ȳuv ȳvwyuw) . (4)

An invalid cycle labeling, e.g. Fig. 1(c) where yvw =
1, yuw = yuv = 0 and ȳuvyvwȳuw = 1, contributes a value

K into the objective (Eq. 4). By settingK to be large enough,

the right-hand side terms in Eq. 4 are forced to be 0, so that

the cycle consistent constraints defined in Eq. 2 are satisfied.

3.3. Multicut as Conditional Random Fields

Our second observation is that the unconstrained binary

cubic problem (Eq. 4) can be expressed by a Conditional Ran-

dom Field (CRF) with unary potentials that are defined on

each edge variable and high-order potentials that are defined

on every three edge variables. More specifically, we define

a random field over the variables X = (X1, X2 · · · , X|E|)
that we want to predict. I is the observation, in our case

this is an image. The optimization problem (Eq. 4) can be

expressed as the following CRF model:

E(x|I) =
∑

i

ψU
i (xi) +

∑

c

ψCycle
c (xc) (5)

where we associate each random variable xi with an edge

variable ye in Eq. 4. The random variable xi takes a value

from the label set {0, 1}. Furthermore, each xc in Eq. 5 is

associated with every three edge variables, namely yuv, yvw
and yuw, where {u, v, w} ∈

(

V
3

)

. E(x|I) is the energy asso-

ciated with a configuration x conditioned on the observation

I. Our goal is to obtain a labeling with minimal energy,

namely x̂ ∈ argmin
x
E(x|I). Such a labeling is the maxi-

mum a posteriori (MAP) solution of the Gibbs distribution

P (X = x|I) = 1
Z(I) exp (−E(x|I)) defined by the energy

E(x|I), where Z(I) is the partition function.

Unary potentials. The unary potentials ψU
i (xi) corre-

spond to the left-hand side term in Eq. 4, measuring the

inverse likelihood of an edge being cut or not. The unary

potential can take inputs from various sources. As shown in

Sec. 4, in case of multi-person pose estimation, ψU
i (xi) can

directly be the output of a state-of-the-art CNN [6].
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High-order potentials. The high-order terms ψCycle
c (xc)

are introduced to model the cycle inequalities (Eq. 2) in the

minimum cost multicut problem and correspond to the right-

hand side terms in Eq. 4. Each high-order potential asso-

ciates a cost to a cycle in the initial graph. The primary idea

is that, for every cycle in the graph, a high cost is incurred if

the current edge labelings in the cycle violate the consistency

constraint. More specifically, for a fully connected graph,

each cycle in the graph consists of three edges. There are

three types of valid edge labelings (1-1-0,1-1-1,0-0-0) and

one type of invalid edge labeling (0-0-1) that violates the

constraints defined in Eq. 2. Fig. 1 illustrates a simple graph

and examples of valid (1-1-0) and invalid (1-0-0) edge label-

ings. To assign high/low cost for the invalid/valid cycles, we

deploy the pattern-based potentials proposed in [23]

ψCycle
c (xc) =

{

γxc
if xc ∈ Pc

γmax otherwise,
(6)

where Pc is the set of recognized label configurations for the

clique, namely, valid cycles in the initial graph. We assign

a cost γxc
to each of them. γmax is then assigned to all the

invalid label configurations for the clique, namely, invalid

cycles in the initial graph.

Given the proposed potentials, minimizing the energy

of the proposed CRF model (Eq. 5) is then equivalent to

minimizing the optimization problem defined in Eq. 4.

Inference. We resort to the mean-field update formulation

of [50] to minimize the energy defined in Eq. 5 iteratively as

part of the joint framework. For the mean field inference, an

alternative distribution Q(x) defined over the random vari-

ables is introduced to minimize the KL-divergence between

Q(x) and the true distribution P (x). The general mean field

update follows [22]:

Qi(xi = l) =
1

Zi

exp{−
∑

c∈C

∑

{xc|xi=l}

Qc−i(xc−i)ψc(xc)}. (7)

Here xc is a configuration of all the variables in the clique

c and xc−i is a configuration of all the variables in the clique

c except xi. Given the definition of the pattern-based poten-

tial in Eq. 6, the mean field updates for our CRF model can

be derived from the work of [45] as:

Qt
i(xi = l) =

1

Zi

exp{−
∑

c∈C

(
∑

p∈Pc|xi=l

(
∏

j∈c,j 6=i

Qt−1
j (xj = pj))γp

+ γmax(1− (
∑

p∈Pc|xi=l

(
∏

j∈c,j 6=i

Qt−1
j (xj = pj)))))}

(8)

where xj represents a random variable in the clique c

apart from xi, Pc|xi=l is the subset of Pc where xi = l. t

denotes the tth iteration of the mean field inference. Assume

L is the value of a loss function defined on the result obtained

by the mean filed inference, Eq. 8 allows us to backpropagate

the error ∂L
∂Q

to the input x and the parameters γxc
, γmax.

Note that the mean field inference does not guarantee that

we obtain a valid graph decomposition. In our formulation

the inference enforces the validity of the cycle consistency

but does not guarantee that all the hard constraints (Eq. 2) are

fulfilled. Therefore in practice, we resort to fast heuristics

(e.g. [19]) to return a feasible graph decomposition following

the mean field inference.

Learning. Leveraging the message passing update (Eq. 8)

allows us to backpropagate the error signals, which facili-

tates the whole learning mechanism. More specifically, we

are now able to jointly optimize the deep feature represen-

tation and the parameters for partitioning of the graph, by

reformulating the original optimization problem into a CRF

model. The following parameters can be jointly learned via

backpropagation:

– W : the weights of the front-end neural network

– θ: characterizing the cost function c : E → R

– γxc
, γmax: parameters of the high-order potentials.

By joint training, the dependencies between the optimization

variables are incorporated into the learning for a better deep

feature representation via the proposed high-order potentials.

3.4. Example: Clustering MNIST Digits

To understand how the proposed end-to-end learning

model integrates the dependencies among the output ran-

dom variables during training, we consider a simple task that

clusters images of hand-written digits (MNIST [24]) without

specifying the number of clusters. This problem can be for-

mulated as a minimum cost multicut problem (Eq. 1-2) that

is defined on a fully connected graph. The nodes of the graph

indicate the digits and edges connect the images that hypo-

thetically indicate the same digit. Through this simple task,

we discuss two approaches to learn feature representations

used to associate the images.

Approach I: Standalone Siamese network. A straight for-

ward way to obtain the similarity measures between any two

images is to train a Siamese network which takes a pair of

images as input and produces a probabilistic estimation to

indicate whether they are the same or different digits. We

use the architecture of LeNet [24] which is commonly used

on digit classification tasks. Fig. 2 shows two example re-

sults. In Fig. 2 (a), the probabilities for the top/left pair and

left/right pair being the same digit are 0.96 and 0.86 respec-

tively, which are correctly estimated. But for the top/right

pair, it is 0.48, likely due to the high intra-class variation.

Similarly for the example in Fig. 2 (b), the probability for
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(a) (b)

Figure 2: Examples of inconsistent edge labels produced by

a stand alone Siamese network on the MNIST digits.

the top/right pair being the same digit is incorrectly esti-

mated. When we partition these digits into clusters, the

incorrect similarity estimates introduce invalid cycles. Now

the question is whether we can deploy cycle constraints to

learn a better Siamase network, resulting in more robust and

consistent similarity measures.

Approach II: Train CRF and Siamese network jointly.

In this approach, we aim to train the Siamese network by

taking the cycle consistency constraints into account. For this

we leverage our formulation, where the partitioning problem

is converted into the energy minimization problem defined in

the CRF (Eq. 5). Specifically, we add a stack of customized

inference layers that perform the iterative mean field updates

with high-order potentials on top of the Siamese network (the

details are in Sec. 4.2). Now we are able to train the Siamese

network and the CRF model jointly. In this configuration

the probability of the top/right pair (in Fig 2 (a)) indicating

the same digit is increased to 0.57 (+0.09), using the end-

to-end learned Siamese network. It is further improved to

0.62 (+0.14) after the mean-field updates with the jointly

learned CRF parameters. In terms of overall performance,

the accuracy of similarity measures is increased from 91.5%

to 93.2%. The corresponding final clustering accuracy is

increased from 94.1% to 95.9%.

Discussion: This simple setting illustrates that our approach

can produce more robust and consistent results on clustering

task such as the MNIST digits. The next open question

is how to design a jointly learnable framework for more

challenging real-world vision tasks that rely on clustering.

4. Multi-person Pose Estimation

In this section, we further design an end-to-end learnable

framework for the task of multi-person pose estimation.

Our network consists of four parts: 1) a front-end CNN

that outputs feature representations (Sec. 4.1); 2) fully con-

nected layers to convert the features to the unary potentials

(Sec. 4.1); 3) a stack of customized layers that perform the

iterative mean field updates (Sec. 4.2) and 4) the loss layer

on top of the mean field iteration (Sec. 4.3). We choose

multi-person pose estimation as case study because this

task is considered to be one of the fundamental problems

in understanding people in natural images. Recent work

[13, 35, 6, 14] has made significant progress on this task.

For instance, the work proposed by Cao et al. [6] presents

a powerful deep neural network to learn feature representa-

tion for body joints and limbs, followed by a fast heuristic

matching algorithm to associate body joints to individual

poses. Given the performance of [6] on benchmarks, in the

following, we utilize their network architecture as the front-

end CNN. Our approach is complementary to [6] in that our

focus is the joint optimization of the deep feature learning

and the detection association.

4.1. From CNN to Unary Potentials

Network Architecture. The network proposed in [6] has

two separate branches after sharing the same basic convolu-

tional layers: one branch predicts the confidence maps for

14 body joints and the other branch estimates a set of part

affinity fields, which encode joint to joint relations. The part

field is a 2D vector field. More specifically, each pixel in

the affinity field is associated with an estimated 2D vector

that encodes the direction pointing from one joint to the

other. In [6], the part fields are implemented only for pairs

of joints that follow the kinematic tree of the human body,

e.g. left elbow to left hand. However, in order to incorporate

high-order potentials among neighboring joints, we train

the model to also capture the feature between non-adjacent

detections, e.g. shoulder to wrist.

Graph Construction. Given an input image, we first obtain

the body joint candidates from the detection confidence maps.

For each type of joint, we keep multiple detection hypotheses

even for those that are in close proximity. A detection graph

is constructed by introducing edges for pairs of hypotheses

that describe the same type of body joint, and for pairs

of hypotheses between two different joints. Note that the

constructed graph is not fully connected but every chordless

cycle in the graph consists of only three edges.

Edge Feature. The key to the robust graph decomposi-

tion is a reliable feature representation on the edges to in-

dicate whether the corresponding joint detections belong to

the same/different person. For the edges that connect the

detection hypotheses of different body types, we use the

corresponding part field estimation. More specifically, we

compute the inner product between the unit vector defined

by the direction of the edge and vectors that are estimated by

the part field. We collect 10 values by uniformly sampling

along the line segment defined by the edge. These values

form the feature fe for the corresponding edge. For the edges

that connect the detection hypotheses of the same joint type,

we simply use the euclidean distance between the detection

as the feature.

The Unary ψU . It is straightforward to construct the unary

potentials ψU
i (xi) (Eq. 5) from the edge feature fe. We

incorporate two fully connected layers to encode the feature

to classify if an edge is cut, namely, the two corresponding

joints belong to different persons. As described in Sec. 3.3,

during training, we can obtain the error signal from the mean
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field updates to learn the parameters of the fully connected

layers and the front-end CNN that produces the edge feature.

4.2. Mean Field Updates

Zheng et al. [50] propose to formulate the mean field

iteration as recurrent neural network layers, and [3] fur-

ther extend it to include high-order object detection and

superpixel potentials for the task of semantic segmentation.

In this work, we follow their framework with the modifi-

cation of incorporating the proposed pattern-based poten-

tials. The goal of the mean field iterations is to update

the marginal distribution Qt
i(xi = l). For initialization,

Q1
i (xi = l) = 1

Zi

exp{−ψU
i (xi = l)} is performed, where

Zi =
∑

l exp{−ψ
U
i (xi = l)}. This is equivalent to ap-

plying a soft-max function over the negative unary energy

across all the possible labels for each link. This operation

does not include any parameters and the error can be back-

propagated to the front-end convolutional or fully connected

layers where the unary potentials come from. Once the

marginal has been initialized, we compute the high-order

potentials based on Eq. 8. Specifically, the valid cliques in

Pc are 0-0-0, 1-1-1 and 1-1-0, while the non-valid cliques

are 0-0-1, where 1 indicates that the corresponding edge

is cut. This operation is differentiable with respect to the

parameters γxc
and γmax introduced in Eq. 8, allowing us

to optimize them via backpropagation. The errors can also

flow back to Q1(X). Once the high-order potential is ob-

tained, it is summed up with the unary potential and then

the sum is normalized via the soft-max function to generate

the new marginal for the next iteration. Multiple mean-field

iterations can be efficiently implemented by stacking this

basic operation. During the inference, as the mean field in-

ference does not guarantee a feasible solution to the original

optimization problem, we use the fast heuristic proposed in

[6] as an additional step to come back to the feasible set.

4.3. Loss and Training

During training, we first train the joint confidence maps

and part affinity field maps with a standard L2 loss as de-

scribed in [6]. Once the basic features are learned, the next

step is to train the unary with the softmax loss function. This

is performed in an on-the-fly manner, which means the de-

tection hypotheses for the body joints are estimated and then

the links between the hypotheses are also established during

training time. Their ground-truth labels are also generated

online at the same time. The final step is to train the param-

eters of the CRF with high-order potentials with a softmax

loss function in an end-to-end manner along with the basic

convolutional and fully connected layers.

4.4. Experiments

Dataset. We use the MPII Human Pose dataset [2] which

consists of about 25k images and contains around 40k total

H-N N-S S-E E-W S-Hi Hi-K K-A Mean

origin 0.755 0.656 0.662 0.558 0.679 0.593 0.611 0.635

Iter 1 0.792 0.699 0.696 0.591 0.718 0.631 0.644 0.663

Iter 2 0.811 0.716 0.719 0.613 0.731 0.649 0.656 0.675

Iter 3 0.819 0.721 0.725 0.617 0.735 0.654 0.662 0.685

Table 1: Marginal distribution updates. Numbers repre-

sent evolution of the marginal probabilities along with the

mean-field iterations for different type of limbs.

H-N-S S-E-W N-LH-RH H-K-A Mean

origin 1.68 3.40 1.41 3.83 2.60

Iter 1 1.08 2.63 1.01 3.05 2.02

Iter 2 0.98 2.48 0.88 2.76 1.78

Iter 3 0.91 2.42 0.85 2.68 1.67

Table 2: Ratio of non valid cycle. Numbers (%) represent

the ratio of non valid cycle for four different types of cliques

that are defined for adjacent body joints.

annotated people. The training and test split contain 3844

and 1758 groups of people respectively. We conduct ablation

experiments on a held out validation set. During testing, no

information about the number of people or the height of

individuals is provided. We deploy the evaluation metric pro-

posed by [35] as our final association measure. The metric

is calculated as the average precision of the joint detections

for all the people in the images. In the following experi-

ments, we use shortcuts for body joints (Head-H, Neck-N,

Shoulder-S, Elbow-E, Wrist-W, Hip-Hi, Knee-K, Ankle-A).

Implementation Details. The front-end CNN architecture

has several stacked fully convolutional layers with an input

size of 368x368 (cf. [6]). We train the basic CNN using a

batch size of 12 with a learning rate of 1e-4. For training of

the CRF parameters, the learning rate is 1e-5. The whole

architecture is implemented in Caffe [16]. As for runtime ef-

ficiency, on the validation set, the mean field inference takes

about 0.3ms and the whole inference time of the proposed

end-to-end framework is around 88ms on average.

Effectiveness of the CRF Inference. To demonstrate the

effectiveness of our proposed mean-field layers approximat-

ing the CRF inference, we evaluate the evolution of the

marginal distribution for the random variables Xi. In the

case of pose estimation, each Xi in the CRF represents a

link between two body joints. Tab. 1 summarizes 7 different

types of such links. Each row shows the average marginal

probabilities Pr(X = 0) for the links with ground-truth of

0, where the label 0 indicates that the edge should not be cut.

The marginal probability can be read as the confidence that

two joints belong to the same person. The marginal distribu-

tions for all limbs in Tab. 1 increase with each iteration even

for very challenging combinations, e.g. Elbow-Wrist and

Knee-Ankle. After three iterations of inference, the update

converges. We use this setting for further experiments.
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Validity of the Cycle Constraints. Another important mea-

surement is the ratio of non-valid cycles after the mean field

iterations. Recall that the type of non-valid 3-clique is link-

link-cut (Sec. 4). Tab. 2 shows that, with CRF inference, the

ratio of non-valid cycles decreases, indicating the effective-

ness of the high-order potential.

Benefit of End-to-End Learning on feature representa-

tion. One of the key motivations to train the CNN and CRF

jointly is to obtain better feature representations. We illus-

trate this via inspection of the part field feature maps before

and after the CRF inference. Fig. 3 shows that the confi-

dence maps generally increase in sharpness and contain less

noise. This is particularly apparent for images that contain

heavy occlusions; e.g. in the second image in the second

row, the limbs of the partially occluded people become more

distinguishable, suggesting a notable improvement in the

feature learning, especially for the challenging cases (see

highlights in blue). This confirms one of our central assump-

tions, motivating this work. The learned features are more

informative if learned with additional supervision signals

from the high-order terms.

Return to a Feasible Solution. After the inference, we do

not obtain a valid graph decomposition directly. Some heuris-

tics (either the greedy search [6] or the KL heuristic [14])

are required to generate a valid decomposition efficiently.

We evaluate these two heuristics with three different settings:

1) only front-end CNN and fully connected layers (unary);

2) separately trained CRF and front-end CNN (unary and

CRF); 3) end-to-end training of the whole network (end-to-

end). Tab. 3 summarizes the respective performance on the

validation set. The advantage of the end-to-end strategy over

the baselines is clearly observable. Fig. 4 shows that these

improvements are more pronounced in the most challenging

cases with heavy occlusion, where modeling the high-order

dependencies among the variables has the most impact.

Comparison With Others. We compare ours with other

methods on the MPII Human Pose dataset. Tab. 4 summa-

rizes the results. Note that, as described in Sec. 2, there are

in general two types of approaches for multi-person pose

estimation: bottom-up approaches and top-down approaches.

On public benchmarks, the top-down approaches generally

achieve better performance because they can leverage ex-

ternal powerful person detection models, turning the pose

estimation task into the simpler single-person case. In con-

trast, bottom-up approaches first detect joint candidates and

then cluster them into individual skeletons. In this work,

we focus on improving performance in the bottom-up set-

ting since it is a direct match for the proposed end-to-end

learnable graph decomposition method.

Our implementation of Cao et al., [6] serves as baseline

and achieves 75.2 mAP, whereas our end-to-end method

increases this accuracy to 76.7 mAP. Given that the available

dataset is relatively small and bottom-up methods seem to

Method Head Shou Elbo Wris Hip Knee Ankl Mean

unary (KL) 88.55 83.98 71.43 60.97 73.44 65.25 56.66 71.32

unary and CRF (KL) 89.26 84.57 72.34 61.65 73.93 66.98 58.32 72.15

end-to-end (KL) 89.52 85.13 72.92 62.41 74.43 67.33 58.75 72.96

unary (greedy) 91.30 86.14 73.69 62.84 73.40 66.43 58.73 73.21

unary and CRF (greedy) 91.43 86.93 74.96 64.71 74.12 67.36 59.97 74.39

end-to-end (greedy) 91.70 87.48 75.43 65.23 74.57 67.99 60.61 75.02

Table 3: Ablation study on the validation set. End-to-end

training notably increases accuracy of multi-person pose

estimation.

Method Head Shou Elbo Wris Hip Knee Ankl Mean

Bottom-up methods:

Insafutdinov et al., [15] 78.4 72.5 60.2 51.0 57.2 52.0 45.4 59.5

Pishchulin et al., [35] 89.4 84.5 70.4 59.3 68.9 62.7 54.6 70.0

Insafutdinov et al., [14] 88.8 87.0 75.9 64.9 74.2 68.8 60.5 74.3

Cao et al., [6] 91.2 87.6 77.7 66.8 75.4 68.9 61.7 75.6

Our Baseline 90.7 87.4 77.3 66.5 75.7 69.0 60.9 75.2

Our Method with CRF 91.8 88.3 78.5 67.8 77.1 70.0 63.0 76.7

Top-down methods (use separate person detector or single-person pose refinement):

Fang et al., [10] 88.4 86.5 78.6 70.4 74.4 73.0 65.8 76.7

Newell et al., [27] 92.1 89.3 78.9 69.8 76.2 71.6 64.7 77.5

Nie et al., [29] 92.2 89.7 82.1 74.4 78.6 76.4 69.3 80.4

Table 4: Comparison on MPII Human Pose dataset. Ours

outperforms all other bottom-up methods by a good margin

and is comparable to top-down methods. Top-down methods

can leverage larger datasets to train external person detectors.

have saturated, this improvement is notable.

The bottom-rows in Tab. 4 also list methods that utilize

a person detector or single-person pose refinement. Specifi-

cally, the method in [27] uses a single-person pose estimator

to refine the final result, and [10] uses a separate Faster R-

CNN [36] person detector. [29] proposes a hybrid model

which combines the top-down and bottom-up information.

5. Conclusion, Limitation and Future Work

In this work, our goal is to answer the following research

questions: (1) how to jointly optimize the model parameters

and the weights of the underlying deep neural network for

the graph decomposition problem? (2) how to use the cycle

consistency as a supervision signal to capture the dependen-

cies of the output random variables during training? To that

end, we propose to convert the minimum cost multicut prob-

lem to an energy minimization problem defined in a CRF.

The hard constraints of the multicut problem are formulated

as high-order potentials of the CRF whose parameters are

learnable. We perform analyses on the task of clustering

digit images and multi-person pose estimation. The results

validate the potential of our method and show improvement

both for the feature learning and the final clustering task.

Although, as we show in this work, the proposed learning

method for the multicut problem has several strong points,

there are still some limitations. First, with the proposed mean

field update, we can jointly learn the front end deep networks

and the parameters of the graph decomposition. However,

the hard constraints in the optimization problem are not guar-

anteed to be satisfied. Therefore during testing, we resort
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Figure 3: Feature learning comparison. Left: input image; Middle: part field map learned locally; Right: part field map

learned with the cycle consistency. The right samples clearly show sharper and more accurate confidence maps.

Figure 4: Qualitative Results. Left: association without CRF; Right: association after inference. First row, obvious wrong

connections are corrected by inference. In the second row occluded people are separated. The last example is a failure case.

to efficient heuristic solvers to return a feasible graph de-

composition. Second, we show notable improvement on the

feature learning and validity of the cycle inequality for the

multi-person pose estimation task, but the final performance

gain on pose association does not support us to outperform

the state-of-the-art top-down methods. One reason is that our

end-to-end training only operates on the part affinity field,

not on the body joint detections, which is crucial for the final

result. To include the body joint detections in the end-to-end

training pipeline is a practical future direction. Nevertheless,

We think that this work adds an important primitive to the

toolbox of the graph decomposition problem and opens up

many avenues for future research.
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