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Abstract

Deep Convolutional Neural Networks (CNNs) have been

pushing the frontier of face recognition over past years.

However, existing general CNN face models generalize

poorly for occlusions on variable facial areas. Inspired by

the fact that the human visual system explicitly ignores the

occlusion and only focuses on the non-occluded facial ar-

eas, we propose a mask learning strategy to find and dis-

card corrupted feature elements from recognition. A mask

dictionary is firstly established by exploiting the differences

between the top conv features of occluded and occlusion-

free face pairs using innovatively designed pairwise dif-

ferential siamese network (PDSN). Each item of this dic-

tionary captures the correspondence between occluded fa-

cial areas and corrupted feature elements, which is named

Feature Discarding Mask (FDM). When dealing with a

face image with random partial occlusions, we generate

its FDM by combining relevant dictionary items and then

multiply it with the original features to eliminate those cor-

rupted feature elements from recognition. Comprehensive

experiments on both synthesized and realistic occluded face

datasets show that the proposed algorithm significantly out-

performs the state-of-the-art systems.

1. Introduction

Deep Convolutional Neural Networks (CNNs) have re-

cently made a remarkable improvement in unconstrained

face recognition problem. Researchers are racing in ways

to boost the performance using advanced network architec-

tures [25, 3, 27, 6, 32] or designing new loss functions to fa-

cilitate discriminative feature learning [24, 33, 13, 31, 2, 42,

30]. Some of them even surpass human recognition ability

on certain benchmark database [7].

∗Corresponding author

Despite the huge success of deep learning models un-

der general face recognition scenario, the deep features

still show imperfect invariance to uncontrollable variations

like pose, facial expression, illumination, and occlusion.

Among all these factors, occlusion has been considered a

highly challenging one. In real-life images or videos, facial

occlusions can often be observed, e.g. facial accessories in-

cluding sunglasses, scarves, and masks or other random ob-

jects like books and cups. As indicated in [17], without

specifically trained with a large number of occluded face

images, deep CNN-based models indeed cannot function

well because of the larger intra-class variation and higher

inter-class similarity that caused by occlusions.

One possible approach to improve the performance of

CNN models under partial occlusions is to train the network

with occluded faces. Daniel et al. [28] proposed to aug-

ment training data with synthetic occluded faces in a strate-

gic manner and observed improved performance. However,

it does not solve the problem intrinsically because it only

ensures the features are more locally and equally extracted,

as analyzed in [21]. The inconsistency between features of

two faces with different occlusion situations still exists. For

example, features of an occlusion-free face bear much more

information in eyes area than that of a face wearing a pair

of sunglasses unless the network is trained not to utilize the

eyes area at all, which is unreasonable.

Inspired by the fact that the human visual system pays at-

tention to the non-occluded facial areas for recognition (and

ignores the occluded areas), we propose to discard feature

elements that have been corrupted by occlusions. A core

question would be: given a face image with random par-

tial occlusions, how to locate those corrupted feature ele-

ments? It is not a big deal for traditional low-level features

like LBP, HOG or SIFT because there is a clear correspon-

dence between image pixels and final feature elements, but

what about the deep CNN features? Therefore, the core of

this work is to find corrupted feature elements under ran-

dom partial occlusion and eliminate the response of these
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Figure 1. An overview of the proposed framework. Based on a trunk CNN model trained for face recognition, we propose the pairwise

differential siamese network (PDSN) structure to learn the correspondence between occluded facial blocks and corrupted feature elements.

Then a mask dictionary is established accordingly, which is used to composite the feature discarding mask (FDM) for a test face with ran-

dom partial occlusions. Finally, we multiply the FDM with original face features to eliminate corrupted feature elements from recognition.

elements from the recognition process. It is worth stated

that the facial occlusion detection problem is not the focus

of this paper, thus we directly adopt a similar way as [23] to

detect the occlusion location in image space.

To learn the correspondence between occluded facial re-

gions and corrupted feature elements, we develop a novel

pairwise differential siamese network (PDSN) structure

with a mask generator module that takes pairwise images

(one is a clean face and the other is an occluded one of the

same identity) as input. The differential signal between the

conv features of clean and corresponding occluded faces is

fed into the mask generator module. It acts as a role of

attention mechanism which encourages the model to focus

on those feature elements that have deviated from its true

values owing to partial occlusions. Moreover, we propose

to learn the mask generator by minimizing a combination

of two losses: a pairwise contrastive loss that penalizes the

large differences between the masked conv features of clean

and occluded faces, and a classification loss which ensures

those feature elements that harm the recognition are masked

out. With these two losses, our mask generator will identify

those feature elements that are harmful for the recognition

as well as far from its genuine values as corrupted ones.

To handle the random partial occlusions, we first divide the

aligned face into several predefined blocks and only learn

PDSNs for these blocks, since severely performance drop-

ping usually only occurs when critical facial components

are missing. Then we construct a mask dictionary from

these trained PDSNs by strategic binarization. Each item

in this dictionary is a binary mask, named Feature Discard-

ing Mask (FDM), which indicates the feature elements that

should be set to zero when one facial block is occluded.

In the testing phase, the FDM of a face with random par-

tial occlusions is derived by element-wise logical “AND”

of relevant dictionary items, which is then multiplied with

the original face feature to discard those corrupted feature

elements from the recognition. Figure 1 gives an overview

of the proposed framework.

The main contributions of this paper are two-fold: (1)

we propose a novel PDSN framework to explicitly find cor-

respondence between occluded facial blocks and corrupted

feature elements for deep CNN models, which is innova-

tive and inspiring; (2) based on the PDSN, we develop a

face recognition system that is robust for occlusions. Our

system demonstrates superior performance on face datasets

with both realistic and synthesized occlusions and general-

izes very well on general face recognition tasks.

2. Prior Work

Partial occlusion is one of the major challenges in face

recognition that has received much attention in the era of

hand-crafted features. Before the emergence of deep CNNs,

face recognition under partial occlusions has been typically

handled using two types of algorithms, namely, (i) meth-

ods that extract local face descriptors only from the non-

occluded facial areas or (ii) methods that recover clean faces

from the occluded ones. The first type usually explicitly
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Figure 2. Neural response differences between two face images of

different subjects with the same partial occlusion. Left: neural ac-

tivation differences of the top conv layer. Right: neural activation

differences of the top fc layer. We randomly sample 64 neurons

for illustration here.

divides face images into several local regions. A support

vector machine (SVM) is trained to identify which local re-

gions are occluded and then they are discarded from recog-

nition [20, 18, 22], with optional subspace methods [10, 12]

to reduce feature dimension before the classification stage.

However, the discriminative power of this kind of approach

is limited in view of using shallow features like Local Ga-

bor Binary Patterns (LGBP) [20]. Among the second type

of methods, the sparse representation-based classification

(SRC) [36] is considered to be the pioneering work on oc-

clusion robust face recognition. This model reconstructs

an occlusion-free face using a linear combination of im-

ages from the training set together with a sparse constraint

term accounting for occlusions. Inspired by this model, re-

searchers extended it by rethinking the distribution of the

sparse constraint term [39, 5, 4] or characterizing the struc-

ture information of it [44, 9]. These approaches do not gen-

eralize well since they require test samples have identical

subjects with the training samples.

Deep learning has been dominant in the field of face

recognition for several years. As early as 2014, Sun

et al. [26] have discovered that the feature learned by

DeepID2+ show certain degree of robustness to image cor-

ruption in face verification task. Combining DeepID2+ fea-

tures extracted from 25 face patches further improves the ro-

bustness. Cheng et al. [43] present an LSTM-Autoencoder

to restore occluded facial areas in the wild and carried out

recognition on the recovered face images. But there is no

guarantee the recovered part indeed matches the identity of

the individuals to be recognized especially under the open-

set scenario. Daniel et al. [28] tackle the occlusion problem

by augmenting training data with synthetic occluded faces

that only specific regions where a CNN extracts the most

discriminative features from are covered. In this way, fea-

tures are more equally and locally extracted. Wan et al. [29]

propose to add a MaskNet branch to the middle layer of

CNN models which is expected to assign lower weights to

hidden units activated by the occluded facial areas. But

the middle conv layer is not discriminative enough and the

MaskNet branch lacks additional supervision information

to ensure the functionality.

In a word, the discriminative ability of traditional low-

level feature-based methods is limited, and the existing few

deep learning-based methods lack the awareness of how

partial occlusions truly affect the CNN models. The in-

consistency between features of two faces with different

occlusion situations has not been carefully considered yet.

The proposed method complements the missing piece of the

puzzle and is able to explicitly locate corrupted feature el-

ements for trained CNN models and discard them from the

recognition, to ensure a fair comparison. Therefore, our ap-

proach is an intrinsic way with good generalization ability

compared to the aforementioned studies.

3. Proposed Approach

The overall pipeline of the proposed approach is shown

in Figure 1, which decomposes the problem of face recog-

nition under random partial occlusions into three stages.

Stage I: Learning mask generators using the proposed pair-

wise differential siamese network (PDSN) to capture the

correspondence between occluded facial blocks and cor-

rupted feature elements. Stage II: Establishing a mask dic-

tionary from the learned mask generators. Stage III: In

the testing phase, combining the feature discarding mask

(FDM) of random partial occlusions from this dictionary,

which is then multiplied with the original feature to elimi-

nate the effect of partial occlusions from recognition.

3.1. Stage I: Learning Mask Generators

3.1.1 Problem Analysis

Face images fed into the CNN model are mostly well-

aligned by detected facial keypoints, we divide the aligned

face into non-overlapping N × N blocks, denoted as

{bj}
N∗N
j=1

, and aim to learn a mask generator for every bj
to find the corrupted feature elements when this block is oc-

cluded. In our implementation, we set N = 5 according

to the input image size so that the facial components like

eyes, nose tip and mouth are appropriately associated with

a block. The face (a) in Figure 1 gives the division example.

Then we define our core problem in Stage I as: given

the feature of a face image with block bj occluded, denoted

as f(xj), how to learn a mask generator Mθ whose output

is multiplied with the f(xj) to mask out those corrupted

elements. Let the purified feature be denoted as f̃(xj), then

f̃(xj) = Mθ(·)f(xj). There are two choices to be decided

before running into the learning process:

The choice of f. For the CNN-based face recognition

model, the face feature usually refers to the output of the fi-

nal fully-connected (fc) layer before the classification layer.

However, every neuron in the fc layer integrates information

from all the output elements of the previous layer, so the oc-
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Figure 3. The median relative rate of change (MED) of neuron’s

activation values in the top conv layer under three types of occlu-

sions. We select eight channels for illustration here.

cluded areas might be mixed up with the non-occluded areas

in the final fc feature. From another perspective, neurons

in the top fc layers are highly selective to identities [26].

Therefore even if different subjects are contaminated by

the same occlusion, the positions of feature elements that

changed by this occlusion will be highly dependant on face

identity, as shown in the rightmost column in Figure 2. In

contrast, we can see from the left column of Figure 2 that

the positions of feature elements that changed by the same

occlusion of different individuals are quite consistent for the

top conv layer, and it still preserves local information, thus

we choose the top conv feature as our f .

The output dimension of Mθ. In [29], they learned

a 2D mask M ∈ R
W×H for the 3D conv feature maps

U ∈ R
C×W×H . That is to say, the feature elements of all C

channels in the same spatial location share the same weight

from their learned mask. In other words, they assumed that

feature elements of all the conv feature channels respond

the same to the occlusion. With questions about the ratio-

nality of their hypothesis, we’d like to gain more insights

into the true reaction of the top conv feature to partial oc-

clusions. We use a criterion named median relative rate of

change (denoted as MED) to capture the extent to which

each feature element is away from its true value under par-

tial occlusions. Given a pair of clean face image xclean and

its corresponding occluded face image xocc, we first calcu-

late the relative rate of change of neuron activation values

of the top conv layer:

ri = |
f i(xclean)− f i(xocc)

f i(xclean)
| (1)

where ri denotes the relative rate of change of the ith fea-

ture element value of the top conv layer. We randomly se-

lect N images from the CASIA-WebFace [40] and add oc-

clusions on the faces, then calculate the ris for every face

pair. The metric MED to approximately represents the al-

tered degree of the ith feature element under occlusions is

obtained by calculating the median value of these ris. If the

MED of a feature element is high when an area of the input

face is occluded, then it will likely bring unreasonable noise

into the final feature.

In Figure 3 we show the MED values of feature elements

in 8 channels of the top conv feature maps under three types

of occlusions. Obviously, the feature values are altered in

a different way for different channels, elements of some

channels change very little while elements of some chan-

nels change drastically in the same spatial locations. This is

interesting because in view of the receptive field, the same

spatial location of different conv channels gather informa-

tion from the same region of the input image, but they ac-

tually react quite differently to occlusions. Therefore, we

believe the output dimension of Mθ should be the same as

the top conv feature maps, which is C ×W ×H .

3.1.2 Pairwise Differential Siamese Network

Given the analysis in Sec. 3.1.1, we propose the pairwise

differential siamese network (PDSN) structure to learn the

relations between occluded facial blocks and corrupted fea-

ture elements. As illustrated in Figure 4, it consists of a

trunk CNN and a mask generator branch, forming a siamese

architecture. The trunk CNN is responsible for extracting

base face representation, which is shared by the clean and

occluded face pairs and could be any CNN architecture. The

core mask generator module Mθ in our PDSN is expected

to output a mask whose element is a real value in [0, 1] and

is multiplied with the input contaminated feature to dimin-

ish its corrupted elements: f̃(xi
j) = Mθ(·)f(x

i
j), where

f(·) is top conv feature and xi
j denotes occluded face image

of the ith pair. The two faces inside an input pair belong to

the same identity yi and the only difference is that one of

them has partial occlusion on the facial block bj . The key

requirement for learning the mask generator is that the re-

maining part of the feature f(xi
j) after masking should be as

similar to its corresponding clean feature f(xi) as possible

while guarantees a successful recognition.

To this end, we propose to learn Mθ by minimizing a

combination of two losses:

Lθ =
∑

i

ℓcls(θ; f̃(x
i
j), y

i)+λℓdiff (θ; f̃(x
i
j), f̃(x

i)) (2)

The first part of the cost, ℓcls, is accounting for evaluating

the importance of each feature element for recognition, and

the second part, ℓdiff , assesses how far the feature of an

occluded face is away from its true value. We will expand

this formulation in the following part.

The classification loss ℓcls. To find the corrupted feature

elements, an intuitive idea is that, these feature elements

contribute little to identifying the input face and may instead

cause higher classification loss. Therefore the most straight-

forward supervision signal is the identity information, that

is, the occluded face should be correctly classified by the

classifier of the trunk CNN after masking, which gives us

the first loss item (softmax loss for example):

ℓcls(θ; f̃(x
i
j), y

i) = −log(pyi(F (f̃(xi
j)))) (3)
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Figure 4. The illustration of the proposed Pairwise Differential Siamese Network.

The f̃(xi
j) is the top conv feature of an occluded face after

masking, F is the fc layer(s) of the trunk CNN model next to

the top conv layer, and it could also be the average pooling

layer in models like [13].

The differential signal and pairwise loss ℓdiff . The

results shown in Figure 3 inspired us that the differential

signal between the top conv activation values of an occluded

face and its corresponding clean one could be a good indica-

tor of which feature elements are potential corrupted ones.

To put it another way, the differential input signal acts as

a role of attention mechanism which encourages the mask

generator to focus on those feature elements that have devi-

ated from its true values owing to partial occlusion. There-

fore we feed our mask generator module with the absolute

difference between features of an occlusion-free face and its

occluded counterpart.

To further make use of the supervision information of

what this subject’s occlusion-free feature looks like, we pro-

pose a pairwise contrastive loss that minimizes per-element

differences between the masked features of the occluded

and occlusion-free faces:

ℓdiff (θ; f̃(x
i
j), f̃(x

i))

= ‖Mθ(·)f(x
i)− Mθ(·)f(x

i
j)‖1 (4)

where Mθ(·) = Mθ(|f(x
i
j) − f(xi)|), and ‖·‖1 is the L1

norm. Obviously, this contrastive loss will punish those fea-

ture elements of the occluded face which are largely differ-

ent from its occlusion-free one. Together with the classifi-

cation loss, our mask generator will identify those feature

elements that are harmful for the recognition as well as far

from its genuine values as corrupted ones.

Thus, the overall object function in Eq. (2) used in our

implementation is:

Lθ = −
∑

i

log(pyi
(F (Mθ(·)f(x

i
j))))

+λ‖Mθ(·)f(x
i)− Mθ(·)f(x

i
j)‖1

(5)

The λ is set to 10 to make the different components of the

object function have the same scale in our experiments.

We implement Mθ as a module with several conv blocks

and learn the different θ for occlusions on different facial

blocks. The different θ is accounting for the distinct prop-

erty of different facial components. For example, the eyes

bear much more significance than the cheek area, therefore

the input distribution of the mask generator varies accord-

ingly. When learning mask generator j, in addition to the

faces that only the target block bj is occluded, we augment

samples with other blocks also occluded, which are the 4-

neighbors of the target block bj , to capture the dependency

of adjacent blocks, as shown in Figure 4.

3.2. Stage II: Establishing the Mask Dictionary

In the testing phase, we don’t have the paired images of

a probe face and its occlusion location is random. There-

fore, the trained PDSNs cannot be directly used to output

the feature discarding mask(FDM) of a probe face. In Stage

II, we would like to extract a fixed mask from every trained

mask generator Mθ and build a dictionary accordingly.

Mj [k] =

{

0 if m̄j [k] ∈ {m̃j [1], . . . , m̃j [τ ∗K]},

1 else.
(6)

For a mask generator Mθj , we first feed the trained net-

work with large amount of face pairs, one of which is oc-

cluded on the jth facial block and obtain the output masks

of this generator, forming a large set of m1

j ,m
2

j , . . . ,m
P
j ,

where P (about 200k in our experiment) is the number of

the face pairs. After Min-Max normalizing each mi
j , we

calculate the element-wise mean value of these mi
js and get

a mean mask m̄j . It’s possible to directly use this m̄j as

the FDM when the jth block is occluded (referred to as

soft weight schema). But this will reserve feature elements

with very low mask values, which is inappropriate since the

facial components inside this block have been totally lost.

Therefore we believe setting those feature elements to zero

to completely remove the noise is critical. We’ll validate

this in Sec. 4.2. The binarized FDM Mj ∈ R
C×W×H for

this mask generator is derived by setting the feature loca-
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Figure 5. Examples of the feature discarding masks of two occlu-

sion types combined from our mask dictionary.

tions with the smallest top τ ∗K mean values to zero:

Mj [k] =

{

0 if m̄j [k] ∈ {m̃j [1], . . . , m̃j [τ ∗K]},

1 else.
(7)

where k = 1, 2, . . . ,K, K = C × W × H , k denotes

the feature index, and {m̃j [1], . . . , m̃j [τ ∗K]} is the sorted

smallest τ ∗ K values of m̄j . τ is the discarding thresh-

old and it will be discussed later in Sec. 4.2. By this way,

we construct a mask dictionary that every item is a binary

mask which indicates whether to discard each feature ele-

ment when one certain block of the aligned face is occluded.

3.3. Stage III: Occlusion Robust Recognition

With this mask dictionary, the FDM of a face with ar-

bitrary partial occlusions could be derived by combining

relevant dictionary items. By relevant we mean that if the

occlusion area in a probe face has at least 0.5 IoU with a

predefined facial block from the dictionary, we count this

block as an occluded one for this face. For example, for the

face (a) wearing sunglasses in Figure 1, its occlusion region

covers block {bj}
14

j=12
, therefore its FDM is calculated by

M = M12∧M13∧M14, where ∧ denotes the element-wise

logical “AND” and the result M is still a binary mask. Fig-

ure 5 shows 8 channels of the FDM composited from the

dictionary for sunglasses and scarf occlusions respectively.

4. Experiments

4.1. Implementation Details

Preprocessing. The standard MTCNN [41] is used to de-

tect 5 face landmarks for all the images. After performing

similarity transformation accordingly, we obtain the aligned

face images and resize them to be 112× 96 pixels.

Occlusion Detection. We train an FCN-8s [14] segmen-

tation network to detect the occlusion location. The train-

ing data includes the synthetic occluded CASIA-WebFace

dataset and images of 26 subjects (outside the test subjects)

from the AR dataset. The vgg16 backbone is firstly trained

with sufficient face images to provide a good initialization.

Finally, our occlusion detection model works pretty well

with a mean IU of 98.51 on our synthetic occluded Face-

scrub dataset [19]. Figure 6 shows some detection results.

Figure 6. Occlusion detection results of our FCN-8s segmentation

network on the occluded Facesrub and AR test images.

Network Structure. We employ the refined ResNet50

model proposed in recently published ArcFace [2] as our

trunk CNN model. The mask generator is simply imple-

mented as a CONV-PReLU-BN structure with a sigmoid

function to map the output into [0, 1].
Training. The training procedure includes three stages.

Stage 1: Train the trunk CNN on the CASIA-WebFace [40]

dataset with the large margin cosine loss [31]. Stage 2:

Fixing the model parameters of the trunk CNN, and train

the mask generator modules with specifically designed face

pairs as shown in Figure 4. We discovered that occlusions

on the peripheral blocks of the faces barely affect the recog-

nition accuracy(less than 0.1% drop), therefore we narrow

down the number of needed mask generators from 25 to

9, which correspond to the central 3 × 3 blocks that cover

the main facial components. Stage 3: After establishing

our mask dictionary, we generate face samples with various

random partial occlusions and calculate their correspond-

ing FDMs using this dictionary. Then finetune the trunk

CNN using these (face, mask) pairs with a small learning

rate. This stage is designed for relieving the inconsistency

between the real-value mask output by the mask generator

and the final binarized version, so a few epochs are enough.

Testing. In the testing stage, the similarity score is com-

puted by the cosine distance of the fc features of two faces.

The nearest neighbor classifier and thresholding are used

for face identification and verification respectively. Consid-

ering the fact that, when recognizing an occluded face, we

have lost the information from the occluded part of this face.

Therefore it is necessary to also exclude this portion from

the other faces comparing with it, to ensure that the similar-

ity scores are computed based on equivalent information.

Baseline Models. Two baseline models are considered.

The first one is the state-of-the-art face recognition model

trained on CASIA-WebFace dataset. We will refer to it

as Trunk CNN. The second one has the same configura-

tion with the first one but finetuned with synthetic occluded

CASIA-WebFace dataset (average occluder area is 25% of

the face images), which will be referred to as Baseline.

4.2. Ablation Study

The Effect of τ . We conduct exploratory experiment to in-

vestigate the effect of τ used in binarization. By varying τ

from 0 to 0.45, we evaluate our method on the AR dataset.
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Figure 7. Illustration of the mean masks learned by our full PDSN

and only by classification loss. m̄i corresponds to occlusion on the

left eye block and m̄j corresponds to occlusion on the nose block.

τ 0 0.05 0.15 0.25 0.35 0.45

Acc. 95.84 97.29 97.36 98.26 97.98 97.92

Table 1. Rank-1 identification accuracy(%) comparison of differ-

ent τ on AR dataset with sunglasses and scarf occlusions.

The probe set contains faces with sunglasses and scarf oc-

clusions, and the gallery set contains 1 clean face for every

subject. The rank-1 identification accuracy is given in Ta-

ble 1. As τ being increased, the accuracy first rises up and

then moves down as τ approaching 0.45. The best accuracy

is achieved at τ = 0.25 and the performance is not highly

sensitive to this threshold.

Mask Type. To further explore the importance of bina-

rization, we performed additional experiments with results

shown in Table 2. First, by comparing the “Binary” and

“Soft weight”, we see that “Soft weight” noticeably de-

creases performance. We speculate that it’s due to the ex-

cessive participation of features with very low mask val-

ues. Then we performed another experiment “Soft+Binary”

to remove those features with mask values lower than the

threshold (setting these mask values to 0) while keeping

mask values above threshold unchanged (rather than setting

them as 1). This version achieved comparable performance

to the Binary version. Obviously, the importance of bina-

rization is to completely eliminate the noise by setting a

feature element with a very low mask value to zero. At

the same time, the binary mask is highly efficient in terms

of both calculation and storage.

The Differential Supervision. To investigate the impor-

tance of the differential input and pairwise loss. We set λ

in the loss function in Eq. (5) to zero, and learn mask gen-

erators only from occluded face features. The mask dictio-

nary is established with the same data and threshold τ . The

performance comparison is shown in Table 3. The model

trained with the pairwise supervision consistently outper-

forms the model that only trained with classification loss. In

Figure 7 we visualize several channels of the mean masks

of the left eye and nose blocks respectively under these two

conditions. With our full PDSN, the mask elements with

Mask type Binary Soft weight Soft+Binary

Sunglasses 98.19 96.67 98.19

Scarf 98.33 97.22 99.03

Table 2. The rank-1 identification accuracy (%) in AR dataset Pro-

tocol 2. The results in the Protocol 1 have a similar conclusion.

Differential AR sunglass AR scarf MF1 occ

No 95.97 97.92 54.80

Yes 98.19 98.33 56.34

Table 3. Rank-1 identification accuracy(%) of our method with and

without differential supervision information. “MF1occ” refers to

the occluded Facescrub probe set we synthesized.

much lower weights (highlighted part in Figure 7) could re-

flect the occlusion location in image space to some extent,

which is reasonable since the top conv layer still preserves

spatial information. While the mean masks generated by

classification loss only are in chaos. As discussed above,

the differential input and contrastive loss help the model

concentrate on the feature elements that have been altered a

lot by partial occlusions, while the classification loss alone

is likely to also diminish feature elements that are affected

by some other factors unrelated to occlusion.

4.3. Performance on LFW Benchmark

LFW [7] is a standard face verification benchmark

dataset under unconstrained conditions. We evaluate our

models strictly following the standard protocol of unre-

stricted with labeled outside data and report the mean ac-

curacy on the 6,000 testing image pairs.

As shown in Table 4, the baseline model actually de-

creases the accuracy of the original trunk CNN by 0.52%
when it is trained to gain more robustness to partial occlu-

sions because most of the face images in the LFW dataset

are not occluded. This phenomenon is consistent with [21],

where performance encountered a drop when they tested

a model that functions well for occluded objects on non-

occluded objects. While our method can keep the perfor-

mance of the trunk CNN since our design principle is just

discarding those corrupted feature elements from compari-

son under partial occlusion condition, instead of forcing the

trunk CNN to specifically accustom to partial occlusions.

4.4. Performance on MegaFace Challenge1

MegaFace Challenge [8] is a testing benchmark to eval-

uate the performance of face recognition algorithms at the

million scale distractors. It contains a gallery set with more

than 1 million face images. And the probe set consists of

two datasets: Facescrub [19] and FGNet. In this study, we

use the Facescrub dataset as our probe set. The training set

is viewed as small if it is less than 0.5M. We evaluate the
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Method Training Data #Models Acc.

FaceNet [24] 200M 1 99.63

DeepID2+ [26] 2.6M 3 98.95

CenterFace [33] 0.7M 1 99.28

Baidu [11] 1.3M 1 99.13

SphereFace [13] 0.49M 1 99.42

CosFace [31] 5M 1 99.73

ArcFace [2] 0.49M 1 99.53

Trunk CNN 0.49M 1 99.20

Baseline 0.49M 1 98.68

Ours. 0.49M 1 99.20

Table 4. Face verification(%) on the LFW benchmark. “#Models”

is the number of models used in the method for evaluation.

basic trunk CNN, baseline model and our method under the

small training set protocol on Challenge 1. The results are

given in the “MF1” column of Table 5.

In order to test our method under partial occlusions, we

synthesize the occluded Facescrub dataset. The occluding

objects include sunglasses, mask, hand, eye mask, scarf,

book, phone, cup, hat, fruit, microphone, hair, etc., all of

which are common objects in real-life that may appear on

the face, and each type of occluding objects has several dif-

ferent images that are distinct from those used in training

phase. The left four images in Figure 6 show some exam-

ples. The results on this synthesized occluded Facescrub

dataset are given in the “MF1occ” column of Table 5. Not

surprisingly, a similar performance dropping on the origi-

nal Facescrub probe set is observed for the baseline model.

Compared to the baseline model, our method is superior on

the occluded probe set without compromising the perfor-

mance on the original probe set.

4.5. Performance on AR Dataset

We further evaluate our method through face identifica-

tion experiments on the AR face database [15] with real-

life occlusions. The AR database contains 4,000 face im-

ages with different facial expressions, illumination condi-

tions and occlusions from 126 subjects. There are mainly

two kinds of testing protocols in the existing literature. Pro-

tocol 1 refers to use more than 1 image per subject to form

the gallery set (or training set). Protocol 2 refers to use

only 1 image per subject to form the gallery set. Images

of sunglasses and scarf occlusions are used for testing. We

evaluate our method under both protocols and the results are

given in Table 6. It is worth noting that the mask dictionary

and the model are not finetuned with any AR face data at

all, while other algorithms usually train with this dataset.

Table 6 shows that our method can significantly improve

the performance of the trunk CNN model on faces with real-

life sunglasses and scarf occlusions. The superior perfor-

mance of our method than the baseline model indicates that

Methods Protocol MF1 MF1occ

SIAT MMLAB small 65.23 -

CenterFace [33] small 65.49 -

DeepSense small 70.98 -

SphereFace [13] small 72.73 -

CosFace [31] small 77.11 -

ArcFace [2] small 77.50 -

FUDAN-CS SDS small 77.98 -

Trunk CNN small 74.40 51.86

Baseline small 68.81 53.03

Ours. small 74.40 56.34

Table 5. Face identification accuracy(%) on MegaFace Challenge

1. “MF1occ” refers to the occluded Facescrub probe set.

Methods Protocol Sunglass Scarf

SRC[36] 1 87.00 59.50

NMR[37] 1 96.90 73.50

MLERPM[34] 1 98.00 97.00

SCF-PKR[38] 1 95.65 98.00

RPSM[35] 1 96.00 97.66

MaskNet [29] 1 90.90 96.70

Trunk CNN 1 98.19 99.72

Baseline 1 99.58 99.86

Ours. 1 99.72 100.0

RPSM[35] 2 84.84 90.16

Stringface[1] 2 82.00 92.00

LMA[16] 2 96.30 93.70

Trunk CNN 2 95.14 96.53

Baseline 2 96.67 96.39

Ours. 2 98.19 98.33

Table 6. Rank-1 face identification accuracy(%) on the AR dataset

with natural occlusions.

simply shrink the range affected by occlusion is definitely

not enough, it is essential to eliminate the corrupted por-

tion from the comparison because it brings information in-

consistency. And our mask dictionary captures the intrinsic

feature structure of the trunk CNN model, which general-

izes well to other face samples.

5. Conclusions

In this paper, we propose an occlusion robust face recog-

nition method based on the pairwise differential siamese

network (PDSN) that explicitly builds correspondence be-

tween occluded facial blocks and corrupted feature ele-

ments. Competitive results on synthesized and realistic oc-

cluded face datasets demonstrate the superiority of the pro-

posed method, especially the great generalization ability on

general face recognition tasks.
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