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Abstract

Establishing correspondences between 3D shapes is a

fundamental task in 3D Computer Vision, typically ad-

dressed by matching local descriptors. Recently, a few at-

tempts at applying the deep learning paradigm to the task

have shown promising results. Yet, the only explored way to

learn rotation invariant descriptors has been to feed neural

networks with highly engineered and invariant representa-

tions provided by existing hand-crafted descriptors, a path

that goes in the opposite direction of end-to-end learning

from raw data so successfully deployed for 2D images.

In this paper, we explore the benefits of taking a step

back in the direction of end-to-end learning of 3D descrip-

tors by disentangling the creation of a robust and distinctive

rotation equivariant representation, which can be learned

from unoriented input data, and the definition of a good

canonical orientation, required only at test time to obtain

an invariant descriptor. To this end, we leverage two re-

cent innovations: spherical convolutional neural networks

to learn an equivariant descriptor and plane folding de-

coders to learn without supervision. The effectiveness of

the proposed approach is experimentally validated by out-

performing hand-crafted and learned descriptors on a stan-

dard benchmark.

1. Introduction

Surface matching is a challenging problem in 3D Com-

puter Vision. It has a large number of applications such

as 3D Object Recognition, 3D Object Retrieval, 3D Regis-

tration and Reconstruction. The definition of compact and

effective representations of the local geometry of a surface,

usually referred to as descriptors, plays a key role in sur-

face matching. Indeed, performance of the algorithms pro-

posed to tackle the above mentioned applications is often

largely determined by the effectiveness of the chosen de-

scriptor. This has fostered intensive research in the area of

local 3D descriptors in the last decades [29, 25, 13, 10, 24].

The success of deep neural networks in image recogni-

tion has motivated a recent paradigm shift from handcrafted

algorithms to data-driven approaches also in the design of

local 3D descriptors [36, 14, 3, 4]. However, state-of-the

art proposals do not actually learn new local 3D descrip-

tors from the input data but from existing handcrafted 3D

descriptors, which are already rotation-invariant by design:

e.g., CGF [14] starts from a high-dimensional input param-

eterization which closely resembles the Unique Shape Con-

text (USC) descriptor [29], while PPF-FoldNet [3] relies

on the well-known Point Pair Features (PPF) [6]. In other

words, due to the difficulty of feeding neural networks with

unorganized input data [14], these approaches create new

descriptors by actually learning how to robustly compress a

specific invariant handcrafted descriptor.

We argue that the drawbacks of relying on invariant

handcrafted descriptors as input data to feed neural net-

works are twofold. On one hand, there not exist an optimal

handcrafted descriptor across applications and datasets, as

vouched by recent evaluations [9]. Therefore, for instance,

performance of PPF-FoldNet are limited on some scenar-

ios and datasets by the handcrafted design decision of using

PPF as input representation. On the other hand, to achieve

rotation invariance, existing handcrafted descriptors used in

deep learning pipelines rely either on the normal at the point

as a reference axis [3] or on a local reference frame (LRF)

[14] to express point coordinates and angles with respect

to a canonically oriented reference frame. Repeatability of

the axis or the LRF directly affects the invariance and ro-

bustness of the input descriptor [20, 19] and, in turn, of the

descriptor learned from such representations. However, pa-

rameters used to obtain such canonical orientation (e.g. the

number of neighbours to estimate the normals, how to es-

tablish a reference direction on the tangent plane in a LRF,

etc.) are again handcrafted design decisions and are not op-

timized during training.

Reliance on rotation-invariant handcrafted descriptors as

input representations deviates significantly from the end-to-

end learning paradigm so successfully applied to images.

Therefore, in this paper we investigate on whether leaving

the model free to learn an optimal descriptor from a non-
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canonically oriented input representation may unleash the

untapped potential of deep learning also in this scenario. To

this end, we exploit the paradigm recently proposed in Fold-

ingNet [34] and AtlasNet [8] to realize unsupervised learn-

ing of an embedding space from 3D data, which learns to

deform, according to the latent representation, points sam-

pled from a plane so as to reconstruct the input surface. This

concept has already been deployed to obtain an invariant 3D

descriptor by reconstructing the Point Pair Features of the

input data [3]. In our proposal, however, the learned latent

space has to encode pose information in order to be able

to reconstruct the input under arbitrary poses, as it will be

shown later (Sec. 3.3). We argue that the ability to learn an

embedding equivariant with respect to rotations of the in-

put is the most sound approach to include pose information

in the latent space. To this end, we leverage recent work

on Spherical CNNs [2, 7], which have enhanced the deep

learning machinery by enabling it to learn also rotation-

equivariant representations from 3D spherical signals by

means of correlations defined for the SO(3) group of rota-

tions. Hence, in our architecture, a Spherical CNN encoder

learns to summarize the geometry around a feature point

into a rotation-equivariant embedding and a decoder warps

a 2D grid in order to reconstruct the raw input data. This

enables learning of an equivariant embedding without using

noisy and arbitrary canonical orientations at training time.

To perform pose invariant descriptor matching at test

time, we have investigated two alternative ways to orient

our equivariant descriptor: we can again exploit the pecu-

liar nature of the Spherical CNN output, which is a signal

living in SO(3), to define a canonical orientation directly

from the computed embedding; or we can orient the de-

scriptor according to a canonical orientation provided by an

external local reference frame computed on the input data.

While the first approach enables end-to-end learning of the

descriptor and the LRF, we have so far obtained better re-

sults with the second one. In particular, we have validated

our claim on the superiority of learning a local descriptor

from raw unoriented input data by comparing the two vari-

ants against handcrafted and learned methods on the pop-

ular 3DMatch benchmark data set [36]. Our proposal im-

proves the state-of-the art by a remarkable margin, outper-

forming the method based on the same unsupervised learn-

ing framework, but applied to an invariant descriptor, by

more than 0.23 points of fragments registation recall (31%

increase).

2. Related Work

This section provides a review of the main proposals

in the field of local descriptors, starting from early hand-

crafted methods up to novel approaches based on deep

learning.

Hand-crafted 3D Local Descriptors A local 3D de-

scriptor creates a compact representation of a 3D surface

by collecting geometric or topological measurements into

histograms. Approaches such as Spin Images [13], Unique

Shape Context [29] and RoPs [10] rely on the spatial distri-

bution of the points on the surface, while others like FPFH

[24] and SHOT [25] exploit geometric properties of the sur-

face such as normals or curvatures. Rotation invariance is

achieved using either a Local Reference Frame or a Refer-

ence Axis.

Learned 3D Local Descriptors The impressive

progress in image recognition yielded by deep learning

has inspired similar approaches to learn descriptor from

3D data. However, the unorganized nature of point clouds

makes this extension not straightforward. As a conse-

quence, several parallel tracks regarding the representation

of the input data have emerged. Early works represent a

3D object as a collection of 2D views [27, 31]. Another

approach concerns dense 3D voxel grids, with voxels

containing either a binary occupancy grid [18, 32] or an

alternative representation of the surface [36]. To limit the

memory occupancy of voxel grids, researchers either rely

on coarse spatial resolutions, which, however, introduce

artifacts and hinder the ability to learn fine geometric

structures, or on space partition methods like k-d trees

or octrees [16, 28]. Other methods, differently, deploy

high-dimensional hand-crafted features to parameterize the

input point cloud and then use deep learning to project it

into lower dimensional spaces [14, 3].

Learning from Raw 3D Data PointNet [21] and Point-

Net++ [22] are pioneering works presenting a general

framework to learn features directly from raw point clouds

data. Although yielding excellent performance in point

cloud segmentation and classification tasks, these architec-

tures have not been used yet to perform local surface de-

scription, likely due to the inability of providing rotation in-

variance. Nonetheless, PointNet is the core building block

of PPFNet [4], which relies on raw point coordinates, nor-

mals and Point-Pair Features in order to learn a local feature

descriptor. Indeed, due to the reliance on the PointNet ar-

chitecture, PPFNet is not rotation invariant.

3. Proposed Method

In this section we present the whole pipeline of our

method, graphically illustrated in Figure 1. Please note

that our encoder only contains correlation layers, i.e. it does

not include a max pooling layer at the end to learn a pose-

invariant descriptor, which is instead present in the architec-

tures proposed in [2].

3.1. Background

As we rely on Spherical CNNs, to make the paper self-

contained we provide a brief overview of the mathematical

model behind it. For more details, please refer to [2].
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Figure 1: Architecture of the proposed method. The points within the local support of a given feature point p are converted

into a spherical signal representation, and then sent through the spherical encoder to get an equivariant descriptor. The

numbers below the spherical signal indicate the number of cells along α, β and d. The decoder reconstructs the original

point cloud deforming sampled 2D points according to the descriptor. Operations in the encoder are implemented through

the Generalized Fourier Transform with signals discretized according to a bandwidth parameter [2]. The triplets below the

encoder layers indicate input bandwidth, output bandwidth and number of channels. As for the decoder, the pairs indicate

the number of input and output channels, respectively.

The basic intuition behind Spherical CNNs can be

grasped by analogy with the classical planar correlation

used by traditional CNNs. As explained in [2], the value

of the output feature map at x ∈ Z
2 in a planar correlation

can be understood as the inner product between the input

feature map and the learned filter shifted by x. By anal-

ogy, the value of the output feature map at R ∈ SO(3) in a

spherical correlation can be understood as the inner product

between the input feature map and the learned filter, rotated

by R.

A source of confusion when switching from traditional

to spherical CNNs is that the space where input signals, for

instance point clouds, and feature maps live is different: the

former live in R
3, while the latter live in SO(3). Therefore,

when we read the value of a feature map, we are getting

the response of the filter for a specific rotation, not for a

location in the input cloud. This is not the case with tra-

ditional correlations, where both the input images and the

feature maps live in Z
2, and the concept of receptive field

of a feature map is more intuitive.

Some useful definitions to understand spherical CNNs

also from a formal point of view are given below.

The Unit Sphere S2 can be defined as the set of points x ∈
R

3 with norm 1. It is a two-dimensional manifold, which

can be parameterized by spherical coordinates α ∈ [0, 2π]
(azimuth) and β ∈ [0, π] (inclination).

Spherical Signals the kernels of our Spherical encoder are

designed as continuousK-valued functions: f : S2 → R
K ,

where K is the number of channels.

Rotations A rotation in three dimensions lives in a three-

dimensional manifold called SO(3), the “special orthogonal

group“. As in [2] the rotation group SO(3) can be param-

eterized by ZYZ-Euler angles α ∈ [0, 2π], β ∈ [0, π], and

γ ∈ [0, 2π]. Rotations can be represented by 3× 3 matrices

that preserve distance (i.e. ‖Rx‖ = ‖x‖) and orientation

(det(R) = +1). If we represent points on the sphere as

3D unit vectors x, a rotation can be performed by using the

matrix-vector product Rx.

Rotations of Spherical Signals The spherical correlation

operator needs to rotate the filters on the sphere. For this

purpose, [2] introduces the operatorLR that takes a function

f and produces a rotated function LRf by composing f
with the rotation R−1:

[LRf ](x) = f(R−1x) (1)

Spherical Correlation Denoting with 〈ψ, f〉 the inner

product on the vector space of spherical signals defined as

in [2], the correlation between a K-valued spherical signal

f and a filter ψ, f, ψ : S2 → R
K can be formalized as:

[ψ ⋆ f ](R) = 〈LRψ, f〉 =

∫
S2

K∑
k=1

ψk(R
−1x)fk(x)dx.

(2)

This is the operation performed by the first layer of our

encoder (Figure 1). Unlike the standard definition of spher-

ical convolution [5], which gives as output a function on

the sphere S2, the spherical correlation yield a signal on

SO(3). The use of a conventional convolution definition

would limit the expressive capacity of the network due to

the symmetry along the Z axis of the learned filters.
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Rotation of SO(3) Signals Similarly to what has been de-

fined for spherical correlation in Eq. (2), to define a corre-

lation in SO(3) the operator in Eq. (1) must be generalized

so that it can act on SO(3). For a signal h : SO(3) → R
K ,

and R,Q ∈ SO(3):

[LRh](Q) = h(R−1Q). (3)

The term R−1Q in Eq. (3) denotes the composition of rota-

tions.

Rotation Group Correlation Likewise in Eq. (2), we can

define the correlation between a signal and a filter on the

rotation group, h, ψ : SO(3) → R
K , as follows:

[ψ∗h](R) = 〈LRψ, f〉 =

∫
SO(3)

K∑
k=1

ψk(R
−1Q)hk(Q)dQ.

(4)

This is the operation performed by the all the layers of our

encoder but the first one (Figure 1). The integration mea-

sure dQ is the invariant measure on SO(3), which may be

expressed in ZYZ-Euler angles as dα sin(β)dβdγ/(8π2).
Please note that unlike in [2] for better clarity we denote

as ⋆ the spherical correlation (2) while with ∗ the rotation

group correlation (4).

3.2. Learning from Spherical Signals

Our feature encoder operates on signals defined in a

spherical domain. Hence, the local geometry surrounding

a feature point needs to be converted into a spherical repre-

sentation. A common strategy adopted by [2, 7] is to project

a 3D mesh onto an enclosing discretized sphere using a ray-

casting scheme. Since our input data is not a regular water-

tight mesh, but a point cloud corresponding to the neighbor-

hood of the point we wish to describe, we first convert 3D

points into a spherical coordinate system and then construct

a quantization grid in this new coordinate system, similarly

to [35]. The i-th cell in the quantization is identified with

three spherical coordinates (α[i], β[i], d[i]) ∈ S2×D where

α[i] and β[i] represent the azimuth and inclination angles of

its center and d[i] is the distance from the sphere center. The

K-valued spherical signal f : S2 → R
K is then composed

by K concentric spheres corresponding to the number of

subdivisions along the distance axis, each sphere encoding

the density of the points within each cell (α[i], β[i]) at a

given distance d[k]. To take into account the non-uniform

spacing in the spherical space, cells near the south or north

pole are wider in spherical coordinates, as discussed in [35].

A spherical signal is computed on the local neighbor-

hood of every input point we wish to describe (i.e., every

keypoint). The signal then goes through our architecture

to learn an equivariant bottleneck layer, which can then be

used as a descriptor of the local geometry around the key-

point.
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Figure 2: Comparison between PointNet and Spherical

CNN used as encoders in our framework.

3.3. Rotation­Equivariant Descriptor

The main novelty of our approach is the use of Spherical

CNNs as encoder to learn an equivariant bottleneck layer.

Learning an equivariant bottleneck removes the require-

ment to have invariant representations as input to the net-

work at training time as the only way to achieve rota-

tion invariance, the standard approach in existing propos-

als [3, 14]. In our framework, instead, we can delay the

choice on how to canonically orient the descriptor at test

time, which brings in two important benefits. On one hand,

we do not have to choose a specific way to orient the input,

e.g. a specific LRF, at training time, which means that we

can train the network to learn the descriptor from less pre-

processed input data than existing proposals, moving a step

closer toward end-to-end descriptor learning. On the other

hand, not using a LRF at training time frees our method

from unavoidable errors of the LRF itself, which in turn in-

ject noise in the training process. We expect both benefits to

concur to increase the effectiveness of the learned descrip-

tor.

Moreover, from a practical point of view, being able to

train our descriptor without tying it to a specific LRF en-

ables us to choose the best way to define a canonical rep-

resentation at test time without training the network from

scratch. Finally, it also opens up the possibility to use dif-

ferent LRFs for different test data, although we have not

explored this property in the experimental results reported

in this paper.

Please note that a truly rotation-equivariant CNN like

Spherical CNNs is mandatory in our framework, as antic-

ipated in the introduction. Indeed, only a descriptor that

lives in SO(3) can be rotated after having been computed,

i.e. only the output of a Spherical CNN to date. All the other

standard representations, e.g. the output of a Multi Layer
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Perceptron (MLP) as used in PointNet, cannot be rotated

after having been computed. Therefore, if we want to use

them in our framework where the input is not canonically

oriented for the reasons discussed above, we can only hope

the network learns to obtain directly a rotation-invariant de-

scriptor by observing rotated versions of the same neighbor-

hood during training without explicit supervision, which is

however a harder task in our setup than learning an equiv-

ariant descriptor.

We have validated how harder this is experimentally, by

using a standard PointNet encoder instead of the spherical

one to learn an invariant descriptor. Results of the compar-

ison are shown in Figure 2. Please note that equivariance

is a theoretical property of a Spherical CNN, regardless of

whether it is trained or not. Indeed, in the results in Figure 2,

the Spherical encoder has not been trained, while the Point-

Net encoder has been trained on the 3DMatch Benchmark

presented in Section 4.1. Given a neighborhood, we rotate

it around a random axis by a growing angle, whose value

is reported along the horizontal axis of the chart. For every

rotation, we pass the rotated neighborhood through a Spher-

ical CNN encoder and a PointNet encoder. The output of

the Spherical CNN is then rotated by the inverse of the ap-

plied rotation (simulating the availability of a perfect LRF)

and the distance between the descriptor obtained from the

rotated neighborhood and the descriptor obtained from the

un-rotated neighborhood is plotted. We can clearly see that

PointNet fails to learn an invariant descriptor in our setup,

while the equivariant representation provided by a Spherical

CNN can achieve almost perfect invariance when properly

rotated.

Input Equivariant Invariant

Figure 3: Comparison between the reconstructions obtained

when using the Spherical CNN encoder to learn an equivari-

ant versus an invariant bottleneck. Results after 10K train-

ing iterations.

Moreover, even if PointNet were able to learn a per-

fectly invariant bottleneck, we have found experimentally

that this would result in low quality reconstructions. The

reason is that it is not possible for frameworks like Fold-

ingNet/AtlasNet to converge to sensible reconstructions if

the learned bottleneck does not contain any pose informa-

tion, i.e. it is almost perfectly invariant. This is shown in

Figure 3. where we compare the quality of the reconstruc-

tions produced by our framework when using an equivariant

bottleneck layer versus an invariant one. The invariant one

in this case is obtained by removing the last SO(3) corre-

lation layer from our encoder, which produces the equivari-

ant descriptor in our architecture, and adding a max pooling

layer selecting the maximum of each one of the now top-

level 40 feature maps, followed by a fully connected layer

to expand the codeword dimensionality to 512. As shown

in the figure, if the encoder produces an invariant descrip-

tor, the decoder doesn’t have enough information to know in

which pose it should reconstruct the input so as to minimize

the loss. The best it can do is to produce reconstructions

trying to account for all possible rotations of the input, e.g.

the atom-like structures depicted in the last column, almost

ignoring the invariant bottleneck layer.

3.4. Invariant Feature Descriptor

To obtain an invariant descriptor at test time, which can

be matched across poses, we have to compute a canonical

orientation for the equivariant descriptor. We have investi-

gated two ways of doing it.

The first is the most intellectually satisfying, and lever-

ages again the peculiar properties of Spherical CNNs. In-

deed, every bin of a feature map in a Spherical CNN rep-

resents an element of SO(3), i.e. a potential LRF. This has

been already exploited to align full shapes in [7], by finding

the argmax of the correlation between two feature maps.

Note that we cannot use the same approach in the context of

invariant descriptor matching, as this would require a costly

computation to compute the distance between every pair of

source and target descriptors.

However, because of the equivariance property, we can

recover an aligning pose by processing the two descriptors

separately. Let [ψ ∗ h](R) be the descriptor, i.e. a feature

map, obtained when processing the input signal f , and let

[ψ ∗m](R) the one obtained when we process a rotated ver-

sion of f , g(x) = [LQf ](x) = f(Q−1x). Due to equivari-

ance, the same rotation exists between inner feature maps

h and m, i.e. m(R) = [LQh](R) = h(Q−1R), and recur-

sively between descriptors, i.e.

[ψ ∗m](Rm) = [ψ ∗ [LQh]](Rm)

= 〈LRm
ψ,LQh〉

= 〈LQ−1Rm
ψ, h〉

= [ψ ∗ h](Q−1Rm) := [ψ ∗ h](Rh) (5)
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Figure 4: Self-orienting property of the learned equivariant

descriptor. Every bin of our bottleneck layer corresponds to

three Euler angles which define a rotation. If the descrip-

tor is computed starting from a rotated input (second row),

the values shifts in the feature maps. By finding two corre-

sponding bins in the two descriptors and rotating them by

the inverse of the corresponding rotations, the descriptors

can be aligned, i.e. become pose invariant.

In other words, chosen an entry in a descriptor [ψ ∗ h]
obtained when processing f , e.g. Rh, if, when the input

is rotated by Q, we are able to find the same entry inde-

pendently in the rotated descriptor [ψ ∗m], we will find it

at rotation Rm = QRh. Therefore, given the two descrip-

tors, we can align them to a common pose by applying the

inverse of such rotations

[LR
−1

m
[ψ ∗m]](R) = [ψ ∗m](RmR)

= [ψ ∗ [LQh]](RmR)

= [ψ ∗ h](Q−1RmR) (6)

[LR
−1

h

[ψ ∗ h]](R) = [ψ ∗ h](RhR)

= [ψ ∗ h](Q−1RmR) (7)

as shown by last terms of the transformations being equal

(and graphically in Figure 4). Please note that all trans-

formations are applied to the descriptor (which is a feature

map) obtained from the unrotated input and not to the in-

put itself, i.e. we can rotate the descriptor computed from

an unoriented input to achieve rotation invariance. The di-

mensionality of ours descriptor does not change under ro-

tations, as it is rotated by remodulating the spherical har-

monics functions resulting from its Fourier transform. A

through treatment of this topic can be found in [23].

The problem of defining a repeatable LRF then trans-

lates into that of finding the same bin under rotations given

a feature map. A simple choice could be the maximum of

the feature map. Under perfect equivariance, the maximum

would provide a repeatable anchor point across rotations,

and therefore a repeatable rotation to obtain invariant de-

scriptors. However, the network is not perfectly equivariant,

due to numerical approximations and the use of non linear-

ities (ReLUs) between layers, and also the feature map of

the same keypoint seen in two different views changes due

to other nuisances (occlusions, clutter, sampling). We have

verified experimentally that the maximum of a feature map

alone is not robust enough to define a repeatable LRF.

We have investigated several strategies to identify the

same location of the feature map under rotations. The one

that has given the best results so far starts by analyzing only

the k bins corresponding to the top k values of the feature

map, including the maximum. We then compute the density

of top values in a 3×3×3 neighborhood of every such bin.

The bin with the maximum density is used to compute the

required rotation. In the case of ties, we select the neighbor-

hood with the largest value within it. Once we have selected

a neighborhood, we average all the bins corresponding to

the top values within it to get the final rotation. By means

of the proposed algorithm, we have been able to define a

self-orienting descriptor, an original trait of our proposal.

As our tests indicate the repeatability of the above de-

fined LRF to be far from the optimal performance attainable

with the equivariant descriptor, we have also assessed its

performance when we make it invariant at test time by com-

puting the canonicalizing rotation with the help of an exter-

nal local reference frame extracted from the input cloud. We

stress here that, although we compute an LRF on the input

data, we again rotate the computed descriptor and not the

input data. Moreover, even in this case, we perform LRF

extraction only at test-time, as discussed above, so the cho-

sen LRF algorithm does not affect the quality of the training

data.

3.5. Decoder and Loss

Differently from [4], our goal is to reconstruct the whole

set of points representing the local neighborhood of a given

feature point p. Inspired by [8] and [34], our decoder will

try to deform points in R
2 to surface points in R

3 accord-

ing to the learned descriptor. Given a feature representa-

tion d for a 3D surface, let A be a set of points sampled in

the unit square [0, 1]2, the descriptor d is concatenated with

the sampled point coordinates (ax, ay) ∈ A and then for-

warded through a stack of MLP layers as shown in Figure

1. We then minimize the Chamfer loss between the set of

generated 3D points and the input points.

In particular, let S be the set of 3D input points belong-

ing to the neighbohood of p and S⋆ the set of points recon-

structed by the decoder. During training, we minimize the
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following loss

L(S,S⋆)θ =
1

|S|

∑
x∈S

min
x
⋆∈S⋆

‖x− x⋆‖2+

1

|S⋆|

∑
x
⋆∈S⋆

min
x∈S

‖x⋆ − x‖2.

(8)

The term minx⋆∈S⋆ ‖x−x⋆‖2 enforces that any 3D point x

in the original point cloud has a matching 3D point x⋆ in the

reconstructed point cloud, and the term minx∈S ‖x⋆ − x‖2
enforces the matching viceversa. The overall loss is the sum

of the two terms to enforce that the distance from S to S⋆

and the distance viceversa have to be small simultaneously.

3.6. Network and training parameters

To learn our descriptor, we use one S2 convolution lay-

ers and three SO(3) convolution layers with constant num-

ber of channels, 40, while the bandwidths is set to 24 for

the first three layer and 4 for the last one, which results in

a descriptor with 512 entries. The architecture of our de-

coder is made of 4 fully-connected layers, with ReLU non-

linearities on the first three layers and tanh on the final out-

put layer. The network is trained with mini-bacthes of size

32 by using ADAM [15]. The starting learning rate is set

to 0.001 and is decayed every 4000 iterations. We train the

network for 14 epochs.

4. Experimental Results

4.1. Experimental setup

To test our proposal, we use the standard benchmark

for the evaluation of learned 3D descriptors, the 3DMatch

benchmark [36]. This benchmark addresses registration of

unordered 3D views and the dataset has been put together

by merging a large part of the publicly available datasets

such as Analysis-by-Synthesis [30], 7-Scenes [26], SUN3D

[33], RGB-D Scenes v.2 [17] and Halberand Funkhouser

[11]. It contains 62 scenes in total, and, following [3], we

use 54 for training and validation, while 8 scenes are used

only at test time to run comparisons. The dataset already

provides so-called fragments, i.e. the point clouds resulting

from the fusion of 50 consecutive depth frames, for the test

scenes, and we obtained the training fragments generated by

the same methodology as the authors of [3]. We also pro-

cure the rotated version of the 3D Match benchmark, gen-

erated by the same authors by rotating all the fragments in

the 3DMatch benchmark with randomly sampled axes and

angles over the whole rotation space.

We use the same setup proposed in [3]: we downsam-

ple the fused fragments with a voxel grid filter of size 2

cm and compute surface normals using [12] in a 17-point

neighborhood; we consider a radius of 30 cm to define the

neighborhood of a keypoint.

4.2. Evaluation methodology

As for metrics, following the evaluation methodology

proposed by [3], we consider the recall of pairs of frag-

ments correctly registered among those with at least 30%
overlap. A pair of fragments is considered correctly regis-

tered if the number of correctly matched keypoints is greater

than the inlier ratio threshold τ2, set to 5% of the extracted

keypoints. Two keypoints are correctly matched if their l2
distance is below a threshold τ1 = 10 cm. For each frag-

ment, the descriptors are computed on 5000 uniformly sam-

pled points, provided with the benchmark [36]. For hand-

crafted descriptors we used the implementation in PCL [1],

while for learned descriptors results were taken from [3].

4.3. Quantitative results

Results of the tests on the 3D Match benchmark in terms

of recall are reported in Table 1. With Ours SO we refer to

the self orienting descriptor introduced in section 3.4, while

with Ours LRF we refer to the descriptor oriented with an

external local reference frame. In particular for this exper-

iments we have used the LRF algorithm proposed in [20],

which we will denote as FLARE according to the acronym

used in its PCL implementation [1].

The first outcome of our experiments is that the use of

an external LRF outperforms the self-orienting variant of

our algorithm. Note that the two columns describe exactly

the same equivariant descriptor under two different ways to

compute a canonical orientation. Hence, the highest one

is indicative of the quality of the learned descriptor itself.

Although the performance of the self-orienting variant of

our method is inferior to our descriptor oriented by an ex-

ternal LRF, it is remarkable that it delivers the second best

recall on the dataset, i.e. it would provide state-of-the-art

performance if we were not to orient our equivariant de-

scriptor also with an external LRF. Our self-orienting vari-

ant is closely followed by SHOT and USC, i.e. two hand-

crafted descriptors, while the other tested methods deliver

significantly lower recalls. The best learned approach is

PPFFoldNet. The better performance of SHOT and USC

with respect to PPFFoldNet offers support to the inspiring

ideas behind this work: deep learning alone, if constrained

to learn from highly engineered representations, cannot be

a guarantee of superior performance. It is also interesting to

analyze these results in light of our main claim: to learn an

equivariant descriptor and then orient it to achieve invari-

ance instead of learning directly an invariant one boosts its

quality. If we compare the performance of our method when

oriented with both tested variants against methods learning

from invariant representations, like PPFFoldNet and CGF,

we can interpret the large gap in performance (0.23 and

0.47 points of recall from the external LRF variant, respec-

tively), as a validation of the drawbacks of existing learned

descriptors discussed in the introduction. In Figure 5, we
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Table 1: Results on the 3DMatch benchmark. Test data are from SUN3D [33], except for Red Kitchen data which is from

7-scenes [26]. Best result on each row is in bold.

FPFH [24] Spin Image [13] SHOT [25] USC [29] 3DMatch [36] CGF [14] PPFNet [4] PPFFoldNet [3] Ours SO Ours LRF

Kitchen 0.7391 0.6561 0.8893 0.9308 0.5810 0.4605 0.8972 0.7866 0.8854 0.9763

Home 1 0.7885 0.7564 0.8974 0.9103 0.7244 0.6154 0.5577 0.7628 0.9487 0.9615

Home 2 0.6442 0.6731 0.8221 0.7788 0.6154 0.5625 0.5913 0.6154 0.8654 0.8942

Hotel 1 0.8142 0.6770 0.9336 0.9204 0.5442 0.4469 0.5796 0.6814 0.9204 0.9823

Hotel 2 0.7115 0.6346 0.8750 0.8462 0.4808 0.3846 0.5796 0.7115 0.8462 0.9519

Hotel 3 0.8889 0.7407 0.8889 0.8889 0.6111 0.5926 0.6111 0.9444 0.9630 0.9815

Study 0.7432 0.4692 0.8630 0.8664 0.5171 0.4075 0.5342 0.6199 0.8870 0.9178

MIT Lab 0.7013 0.4545 0.8312 0.8052 0.5065 0.3506 0.6364 0.6234 0.8182 0.8701

Average 0.7539 0.6327 0.8751 0.8684 0.5726 0.4776 0.6231 0.7182 0.8918 0.9420

Table 2: Results on the rotated 3DMatch benchmark. Test data are from SUN3D [33], except for Red Kitchen data which is

from 7-scenes [26]. Best result on each row is in bold.

FPFH [24] Spin Image [13] SHOT [25] USC [29] 3DMatch [36] CGF [14] PPFNet [4] PPFFoldNet [3] Ours SO Ours LRF

Kitchen 0.7451 0.6502 0.8794 0.9170 0.004 0.4466 0.002 0.7885 0.8893 0.9783

Home 1 0.7949 0.7628 0.8910 0.9103 0.0128 0.6667 0.0000 0.7821 0.9423 0.9679

Home 2 0.6587 0.6635 0.8317 0.7548 0.0337 0.5288 0.0144 0.6442 0.8413 0.8894

Hotel 1 0.8142 0.6903 0.9425 0.9292 0.0044 0.4425 0.0044 0.6770 0.9204 0.9779

Hotel 2 0.7212 0.6635 0.8654 0.8558 0.0000 0.4423 0.0000 0.6923 0.8558 0.9615

Hotel 3 0.9259 0.7222 0.9074 0.9074 0.0096 0.6269 0.0000 0.9630 0.9074 0.9815

Study 0.7260 0.4692 0.8493 0.8836 0.0000 0.4178 0.0000 0.6267 0.8733 0.9110

MIT Lab 0.7532 0.4935 0.8312 0.8571 0.0026 0.4156 0.0000 0.6753 0.7922 0.8442

Average 0.7674 0.6394 0.8747 0.8769 0.0113 0.4776 0.0026 0.7311 0.8778 0.9387
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Figure 5: Results under varying inlier ratio threshold τ2.

report results when varying the threshold τ2 on the percent-

age of correct matches to consider a pair as correctly regis-

tered, as done in [3]. Our proposal oriented with an external

LRF outperforms the others for all thresholds, and our self-

orienting variant attains again recall values similar to SHOT,

and slightly inferior to USC for the largest thresholds.

Finally, results of the tests on the rotated 3D Match

benchmark are reported in Table 2. The dataset was pro-

posed in [3] to test robustness against large rotations, not

present in the original benchmark. As expected, all rotation-

invariant methods obtain performance similar to the results

reported in Table 1, and our equivariant descriptor oriented

with the external LRF still delivers by far the best perfor-

mance.

5. Conclusions

In this study, we have shown how the problem of learn-

ing an effective descriptor can be separated into the orthog-

onal problems of learning a robust equivariant representa-

tion and defining a good canonical orientation to make it

invariant at test time. Our proposal to learn an equivariant

representation in an unsupervised way leverages as encoder

the recently proposed Spherical CNNs and turns out highly

effective in tackling the first problem. When coupled with

a robust algorithm to compute a local reference frame from

the input cloud, it significantly advances the state of the art

on a challenging benchmark.

We have also shown how the very same framework could

be used to define a canonical orientation by exploiting the

peculiar nature of the feature maps computed by the Spheri-

cal CNNs. Although this approach delivers performance on

par with the state of the art, it is so far inferior to the use

of an external LRF. Yet, we believe the elegance and poten-

tial implications of this technique were valid reasons to also

communicate it and call for further studies along this line

of research, with the aim of defining an end-to-end learned

solution to the problem of invariant 3D description.
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