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Figure 1: Our method segments a set of events produced by an event-based camera (Left, with color image of the scene for

illustration) into the different moving objects causing them (Right: pedestrian, cyclist and camera’s ego-motion, in color).

We propose an iterative clustering algorithm (Middle block) that jointly estimates the motion parameters θ and event-cluster

membership probabilities P to best explain the scene, yielding motion-compensated event images on all clusters (Right).

Abstract

In contrast to traditional cameras, whose pixels have

a common exposure time, event-based cameras are novel

bio-inspired sensors whose pixels work independently and

asynchronously output intensity changes (called “events”),

with microsecond resolution. Since events are caused by

the apparent motion of objects, event-based cameras sam-

ple visual information based on the scene dynamics and are,

therefore, a more natural fit than traditional cameras to ac-

quire motion, especially at high speeds, where traditional

cameras suffer from motion blur. However, distinguishing

between events caused by different moving objects and by

the camera’s ego-motion is a challenging task. We present

the first per-event segmentation method for splitting a scene

into independently moving objects. Our method jointly esti-

mates the event-object associations (i.e., segmentation) and

the motion parameters of the objects (or the background) by

maximization of an objective function, which builds upon

recent results on event-based motion-compensation. We

provide a thorough evaluation of our method on a pub-

lic dataset, outperforming the state-of-the-art by as much

as 10%. We also show the first quantitative evaluation of a

segmentation algorithm for event cameras, yielding around

90% accuracy at 4 pixels relative displacement.

Supplementary Material

Accompanying video: https://youtu.be/0q6ap OSBAk.

We encourage the reader to view the added experiments and

theory in the supplement.

1. Introduction

Event-based cameras, such as the Dynamic Vision Sen-

sor (DVS) [1, 2], are novel, bio-inspired visual sensors. In

contrast to conventional cameras that produce images at a

fixed rate, the pixels in an event-based camera operate in-

dependently and asynchronously, responding to intensity

changes by producing events. Events are represented by

the x, y pixel location and timestamp t (in microseconds) of

an intensity change as well as its polarity (i.e., whether the

pixel became darker or brighter). Since event-based cam-

eras essentially sample the scene at the same rate as the

scene dynamics, they offer several advantages over conven-

tional cameras: very high temporal resolution, low latency,

very high dynamic range (HDR, 140 dB) and low power

and bandwidth requirements - traits which make them well

suited to capturing motion. Hence, event-based cameras

open the door to tackle challenging scenarios that are in-

accessible to traditional cameras, such as high-speed and/or

HDR tracking [3–6], control [7–9] and Simultaneous Local-

ization and Mapping (SLAM) [10–13]. Due to their princi-

ple of operation and unconventional output, these cameras
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represent a paradigm shift in computer vision, and so, new

algorithms are needed to unlock their capabilities. A survey

paper on event-based cameras, algorithms, and applications,

has been recently published in [2].

We consider the problem of segmenting a scene viewed

by an event-based camera into independently-moving ob-

jects. In the context of traditional cameras, this problem is

known as motion segmentation [14], and it is an essential

pre-processing step for several applications in computer vi-

sion, such as surveillance, tracking, and recognition [15].

Its solution consists of analyzing two or more consecutive

images from a video camera to infer the motion of objects

and their occlusions. In spite of progress in this field, con-

ventional cameras are not ideally suited to acquiring and

analyzing motion; since exposure time is globally applied

to all pixels, they suffer from motion blur in fast moving

scenes. Event-based cameras are a better choice since they

sample at exactly the rate of scene dynamics, but conven-

tional techniques cannot be applied to the event data.

Motion segmentation in the case of a static event-based

camera is simple, because in this scenario events are solely

due to moving objects (assuming there are no changes in il-

lumination) [16–18]. The challenges arise in the case of a

moving camera, since in this scenario events are triggered

everywhere on the image plane, produced by both the mov-

ing objects as well as the apparent motion of the static scene

induced by the camera’s ego-motion. Hence, event-based

motion segmentation consists of classifying each event into

a different object, including the background. However, each

event carries very little information, and therefore it is chal-

lenging to perform the mentioned per-event classification.

We propose a method to tackle the event-based motion

segmentation problem in its most general case, with a pos-

sibly moving camera. Inspired by classical layered mod-

els [19], our method classifies the events of a space-time

window into separate clusters (i.e., “layers”), where each

cluster represents a coherent moving object (or background)

(see Fig. 1). The method jointly estimates the motion pa-

rameters of the clusters and the event-cluster associations

(i.e., likelihood of an event belonging to a cluster) in an iter-

ative, alternating fashion, using an objective function based

on motion compensation [20, 21] (basically, the better the

estimated unknowns, the sharper the motion-compensated

event image of each cluster). Our method is flexible, allow-

ing for different types of parametric motions of the objects

and the scene (translation, rotation, zooming, etc.).

Contributions. In summary, our contributions are:

• A novel, iterative method for segmenting multiple ob-

jects based on their apparent motion on the image

plane, producing a per-event classification into space-

time clusters described by parametric motion models.

• The detection of independently moving objects with-

out having to compute optical flow explicitly. Thus,

we circumvent this difficult and error-prone step to-

ward reaching the goal of motion-based segmentation.

• A thorough evaluation in challenging, real-world sce-

narios, such as high-speed and difficult illumination

conditions, which are inaccessible to traditional cam-

eras (due to severe motion blur and HDR), outperform-

ing the state-of-the-art by as much as 10%, and show-

ing that accuracy in resolving small motion differences

between objects is a central property of our method.

As a by-product, our method produces sharp, motion-

compensated images of warped events, which represent the

appearance (i.e., shape or edge-map) of the segmented ob-

jects (or background) in the scene (Fig. 1, Right).

The rest of the paper is organized as follows: Section 2

reviews related work on event-based motion segmentation,

Section 3 describes the proposed solution, which is then

evaluated in Section 4. Conclusions are drawn in Section 5.

2. Related Work

Event-based motion segmentation in its non-trivial form

(i.e., in the presence of event-clutter caused by camera ego-

motion, or a scene with many independently moving, over-

lapping objects) has been addressed before [22–26].

In [22], a method is presented for detection and track-

ing of a circle in the presence of event clutter. It is based

on the Hough transform using optical flow information ex-

tracted from temporal windows of events. Segmentation of

a moving object in clutter was also addressed in [23]. It con-

sidered more generic object types than [22] by using event

corners as primitives, and it adopted a learning technique

to separate events caused by camera motion from those due

to the object. However, the method required the additional

knowledge of the robot joints controlling the camera.

Segmentation has been recently addressed by [24,25] us-

ing the idea of motion-compensated event images [20, 21,

27–30]. For example, [24] first fitted a motion compensa-

tion model to the dominant events, then removed these and

fitted another motion model to the remaining events, greed-

ily. Similarly, [25] detected moving objects in clutter by fit-

ting a motion-compensation model to the dominant events

(i.e., the background) and detecting inconsistencies with re-

spect to that motion (i.e., the objects). The objects were then

“segmented” via morphological operations on the warped

image, and were used for tracking. The method could han-

dle occlusions during tracking, but not during detection.

Our method differs from [22] in that we demonstrate seg-

mentation on objects with arbitrary shapes, and from [23] in

that we do not require additional inputs (e.g., robot joints).

Our work is most related to [24, 25]; however, it has the

following novelties: (i) it actually performs per-event seg-

mentation, rather than just providing bounding boxes for

detected object regions, (ii) it allows for general paramet-

ric motion models (as those in [20]) to describe each clus-
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(a) Cluster 1 (b) Cluster 2

(c) Cluster 3 (d) All clusters (merged IWEs)

Figure 2: Our method splits the events into clusters (one per

moving object), producing motion-compensated images of

warped events (IWEs), as shown in (a)-(c) for the three ob-

jects in the scene of Fig. 1. The likelihood of each event

is represented by the darkness of the pixel. Since the like-

lihoods are nonzero, “ghosts” can be seen in the individ-

ual clusters. IWEs in (a)-(c) are merged into a single im-

age (d), using a different color for each cluster. Segmented

events in upcoming experiments are shown using this col-

ored motion-compensated image representation.

ter, (iii) it performs optimization based on a single objective

function (as opposed to two sequential optimization crite-

ria in [25]), (iv) it is able to handle occlusions between

objects at any point in time. The proposed method, is, to

our knowledge, the first one that jointly estimates the ap-

parent motion parameters of all objects in the scene and

the event-object associations (i.e., segmentation). It does

so by leveraging the idea of motion-compensated event im-

ages within an iterative, alternating optimization approach,

in an expectation-maximization (EM) fashion.

3. Methodology

Our method is inspired by the combination of classi-

cal layered models [19] and event-based motion compensa-

tion [20]. In the following, we review the working principle

of event-based cameras, describe the motion segmentation

problem addressed and present our proposed solution.

Event-Based Camera Working Principle. Event-based

cameras, such as the DVS [1], have independent pixels that

output “events” in response to intensity changes. Specifi-

cally, if L(x, t)
.
= log I(x, t) is the logarithmic intensity at

pixel x
.
= (x, y)⊤ on the image plane, the DVS generates

an event ek
.
= (xk, tk, sk) if the change in intensity at pixel

xk reaches a threshold C (e.g., 10-15% relative change):

∆L(xk, tk)
.
= L(xk, tk)− L(xk, tk −∆tk) = sk C, (1)

where tk is the timestamp of the event, ∆tk is the time since

the previous event at the same pixel xk and sk ∈ {+1,−1}
is the polarity of the event (the sign of the intensity change).

3.1. Problem Statement

Since each event carries little information and we do not

assume prior knowledge of the scene, we process events

in packets (or groups) to aggregate sufficient information

for estimation. Specifically, given a packet of events E
.
=

{ek}
Ne

k=1 in a space-time volume of the image plane V
.
=

Ω× T , we address the problem of classifying them into Nℓ

clusters (also called “layers”), with each cluster represent-

ing a coherent motion, of parameters θj . We assume that T
is small enough so that the motion parameters of the clusters

θ
.
= {θj}

Nℓ

j=1 are constant.

The images on both sides of the algorithm block in Fig. 1

illustrate the above-mentioned problem and its solution, re-

spectively. Notice that, (i) since events have space-time co-

ordinates, clusters are three-dimensional, contained in V ,

and (ii) since corresponding events (caused by the same

point of a moving edge) describe point trajectories in V , op-

timal clusters should contain them, therefore, clusters have

a “tubular” shape (Fig. 1, segmented events). Implicit in

motion segmentation, if two objects share the same motion,

they are segmented together, regardless of their location.

3.2. Summary of Proposed Solution

Leveraging the idea of motion compensation [20], we

seek to separate the events E into clusters by maximizing

event alignment, i.e., maximizing the sharpness of motion-

compensated images (one per cluster) of warped events.

More specifically, the idea of motion compensation [20]

is that, as an edge moves on the image plane, it triggers

events on the pixels it traverses. The motion of the edge can

be estimated by warping the events to a reference time and

maximizing their alignment, producing a sharp Image of

Warped Events (IWE) [20]. In the case of multiple objects

with different motions, maximal event alignment cannot be

achieved using a single warp, and so, several warps (i.e.,

motion models or “clusters”) are required, as well as iden-

tifying which events belong to which object (i.e., “event-

cluster associations”). This is the essence of our approach,

which is illustrated in Figs. 1 and 2. Fig. 1 shows the events

produced by three objects in a scene: a pedestrian, a cyclist

and a the building facade (camera motion). Each object has

a different motion and triggers events on the image plane

as it moves. When events are warped to a reference time

(e.g., tref = 0) according to a candidate motion model, they

produce an IWE. If the candidate motion coincides with the

true motion of the object causing the events, the warped

events align, producing a sharp motion-compensated IWE,

as shown in Fig. 2 using three different motion models
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(one per object). Otherwise, they do not align, producing

a blurred IWE. We use the sharpness of such IWE as the

main cue to segment the events. Our method jointly identi-

fies the events corresponding to each independently moving

object as well as the object’s motion parameters.

3.3. Mathematical Formulation

In contrast to previous methods [24, 25], we ex-

plicitly model event-cluster associations in the motion-

compensation framework, i.e., pkj = P (ek ∈ ℓj) is the

probability of the k-th event belonging to the j-th cluster.

Let P ≡ (pkj) be an Ne ×Nℓ matrix with all event-cluster

associations. The entries of P must be non-negative, and

each row must add up to one. Using these associations, we

define the weighted IWE of the j-th cluster as

Ij(x)
.
=

∑Ne

k=1 pkj δ(x− x
′

kj), (2)

with x
′

kj = W(xk, tk;θj) the warped event location, and δ
the Dirac delta. Equation (2) states that events are warped,

ek
.
= (xk, tk, sk) 7→ e′k

.
= (x′

k, tref, sk), (3)

and the values pkj ≥ 0 (i.e., weights) are accumulated at the

warped locations x′

k. Event alignment within the j-th clus-

ter is measured using image contrast [31], which is defined

by a sharpness/dispersion metric, such as the variance [20]:

Var(Ij)
.
=

1

|Ω|

∫

Ω

(Ij(x)− µIj )
2dx, (4)

where µIj is the mean of the IWE over the image plane Ω.

We propose to find the associations P and cluster param-

eters θ that maximize the sum of contrasts of all clusters:

(θ∗,P∗) = argmax
(θ,P)

Nℓ
∑

j=1

Var(Ij). (5)

Since the problem addressed does not admit a closed-form

solution, we devise an iterative, alternating optimization ap-

proach, which we describe in the next section.

The pseudo-code of our method is given in Algorithm 1.

From the output of Algorithm 1, it is easy to compute

motion-compensated images of events corresponding to

each cluster, i.e., the weighted IWEs (2) shown in Fig. 2.

Each IWE shows the sharp, recovered edge patterns (i.e,

and appearance model) of the objects causing the events.

3.4. Alternating Optimization

Each iteration of Algorithm 1 has two steps (lines 6

and 7), as in a coordinate ascent algorithm. If the associ-

ations P are fixed, we may update the motion parameters

θ ← θ + µ∇θ

(

∑Nℓ

j=1 Var(Ij)
)

(6)

by taking a step (µ ≥ 0) in an ascent direction of the ob-

jective function (5) with respect to the motion parameters.

Algorithm 1 Event-based Motion Segmentation

1: Input: events E = {ek}
Ne

k=1 in a space-time volume V
of the image plane, and number of clusters Nℓ.

2: Output: cluster parameters θ = {θj}
Nℓ

j=1 and event-

cluster assignments P ≡ pkj
.
= P (ek ∈ ℓj).

3: Procedure:

4: Initialize the unknowns (θ,P) (see Section 3.5).

5: Iterate until convergence:

6: • Compute the event-cluster assignments pkj using (7).

7: • Update the motion parameters of all clusters (6).

Motion-compensation methods [20,25] typically use gradi-

ent ascent or line search to solve for the motion parameters

that maximize some objective function of the IWE. In our

case, because the IWE (2) depends on both θ and P and we

seek to jointly estimate them, we do not wastefully search

for the best θ given the current estimate of P. Instead, we

update θ using (6), proceed to refine P (see (7)), and iterate.

Fixing the motion parameters θ, we may refine the asso-

ciations P using a closed-form probability partitioning law:

pkj =
cj(x

′

k(θj))
∑Nℓ

i=1 ci(x
′

k(θi))
, (7)

where cj(x) 6= 0 is the local contrast (i.e., sharpness) of

the j-th cluster at pixel x, and it is given by the value of

the weighted IWE, cj(x)
.
= Ij(x). Thus, each event is

softly assigned to each cluster based on how it contributes to

the sharpness of all Nℓ IWEs. The alternating optimization

approach in Algorithm 1 resembles the EM algorithm, with

the E-step given by (7) and the M-step given by (6).

3.5. Initialization

The proposed alternating method converges locally (i.e.,

there is no guarantee of convergence to a global solution),

and it requires initialization of θ,P to start the iteration.

Several initialization schemes are possible, depending on

the motion models. For example, if the warps of all clusters

are of optical flow type, one could first extract optical flow

from the events (e.g., using [32,33]) and then cluster the op-

tical flow vectors (e.g., using the k-means algorithm). The

resulting cluster centers in velocity space would provide an

initialization for the motion parameters of the clusters θ.

We follow a greedy approach, similar to that in [24], that

works well in practice, providing cluster parameters close to

the desired ones. It is valid regardless of the motion models

used. We initialize events to have equal association proba-

bilities, and then maximize the contrast of the first cluster

with respect to its motion parameters. We then find the gra-

dient of the local contrast for each event with respect to the

motion parameters. Those events that belong to the cluster

under consideration become less “in focus” when we move

away from the optimized parameters, so those events that
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have a negative gradient are given a high association proba-

bility for that cluster and a low one for clusters subsequent.

The process is repeated for the remaining clusters until all

motion parameters θ and associations P have been filled.

3.6. Discussion of the Segmentation Approach

The proposed approach is versatile, since it allows us to

consider diverse parametric motion/warping models, such

as linear motion (optic flow) [4, 20, 24], rotational mo-

tion [21], 4-DOF (degrees-of-freedom) motion [25], 8-DOF

homographic motion [20], etc. Moreover, each cluster may

have a different motion model, {Wj}
Nℓ

j=1, as opposed to

having a single model for all events, and therefore, all clus-

ters. This characteristic is unique of our method.

It is also worth noting that the proposed method classi-

fies events according to motion without having to explic-

itly compute optical flow, which is a widespread motion de-

scriptor. Thus, our method is not simply optical flow clus-

tering. Instead, our method encapsulates motion informa-

tion in the warps of each cluster, thus by-passing the error-

prone step of optical flow estimation in favor of achieving

the desired goal of motion segmentation of the events.

The edge-like motion-compensated IWEs corresponding

to each cluster are, upon convergence, a description of the

intensity patterns (entangled with the motion) that caused

the events. Thus our method recovers fine details of the ap-

pearance (e.g., shape) of the objects causing the events with-

out having to estimate a (computationally expensive) 3D

scene representation. In [25] fine details were only avail-

able for the dominant motion cluster.

Finally, the number of clusters Nℓ is a hyper-parameter

that may be tuned by a meta-algorithm (in the experiments,

we set Nℓ manually). This is a well-known topic in cluster-

ing [34]. While automatically determining the optimal Nℓ

depending on the scene is outside the scope of this paper, it

should be noted that as we show in Section 4.3, our method

is not sensitive to excess clusters Nℓ.

3.7. Sequence Processing

The above method segments the events E from a short

time interval T . To process an entire stream of events, a

sliding window approach is used, splitting the stream into

packets of events {En}
Ng

n=1. We process the n-th packet and

then slide the window, thus selecting more recent events.

The motions estimated by clustering En can be propagated

in time to predict an initialization for the clusters of the next

packet, En+1. We use a fixed number of events Ne per win-

dow, and slide by half of it, Ne/2.

4. Experiments

Overview. In this section we first provide a quantitative

evaluation of our method on a publicly available, real-world

dataset [25], showing that we significantly outperform two

baseline methods [24, 25]. We provide further quantitative

results on the accuracy of our method with regard to rel-

ative motion differences and we demonstrate the efficacy

of our method on additional, challenging real-world data.

Throughout the experiments, we demonstrate several fea-

tures of our method, namely that (i) it allows arbitrary mo-

tion models for different clusters, (ii) it allows us to perform

motion segmentation on difficult scenes (high speed and/or

HDR), where conventional cameras would fail, (iii) it is ro-

bust to the number of clusters used (Nℓ), and (iv) that it is

able to perform motion segmentation on non-rigid scenes.

The sequences considered cover a broad range of motion

speeds, from 12 pixel/s to several hundred pixel/s.

We strongly recommend looking at the accompanying

video and supplementary material, where we present further

experiments, including a comparison to “naive” k-means

clustering, mixture density models and fuzzy-k-means.

The following experiments were carried out with data

from a DAVIS240C camera [35], which provide both events

and grayscale frames. The frames are not used in the exper-

iments; they serve only an illustrative purpose.

4.1. Quantitative Evaluation

Results on Dataset from [25]. We ran our segmentation

method on the Extreme Event Dataset (EED) from [25]

and compared against the results from [25] and [24].

The sequences in the EED dataset showcase a range of

scenes (Fig. 3 and Table 1) which are very challenging

for conventional cameras. In particular, they comprise

fast moving objects (around 600 pixel/s) in Fast Moving

Drone and Multiple Objects, which are almost indis-

cernible on the frames provided by the DAVIS camera,

as well as scenes with extreme lighting variations, such

as Lightning variation (in which a drone is tracked

despite a strobe light pointing at the camera), and object

occlusions. Having object segmentation rather per-event

segmentation in mind, the EED dataset provides times-

tamped bounding boxes around the moving objects in the

scene and proposes to measure object segmentation suc-

cess whenever the estimated bounding box overlaps at least

50% with the hand-labeled one and it has more area within

the hand-labeled bounding box than outside. To compare

against [25], we perform motion segmentation on the events

that occur around the timestamp of the bounding-box and

count success if for a given cluster the above criterion is true

for the segmented events. For a fair comparison, we used

the same type of motion models (4-DOF warps) as in [25].

Table 1 reports the results of the comparison of our

method against [24] and [25]. Our method outperforms [24]

in all sequences by a large margin (from 7.41% to 84.52%),

and improves over [25] in all but one sequence, where it

has comparable performance. In four out of five sequences

we achieve accuracy above 92%, and in one of them, a

7248



(a) (b) (c)

Figure 3: Several scenes from the Extreme Event Dataset

(EED) [25]: (a) Multiple Objects, (b) Occluded

Sequence and (c) What is Background? Moving ob-

jects (drones, balls, etc.) are within hand-labeled bounding

boxes. Images have been brightened for visualization.

EED Sequence Name SOFAS [24] Mitrokhin [25] Ours (Alg. 1)

Fast moving drone 88.89 92.78 96.30

Multiple objects 46.15 87.32 96.77

Lighting variation 0.00 84.52 80.51

What is Background? 22.08 89.21 100.00

Occluded sequence 80.00 90.83 92.31

Table 1: Comparison with state-of-the-art using the success

rate proposed by [25] of detection of moving objects (in %).

perfect score, 100%. Some results of the segmentation

are displayed on the first columns of Fig. 4. In the What

is Background? scene (1st column of Fig. 4), a ball is

thrown from right to left behind a net while the camera is

panning, following the ball. Our method clearly segments

the scene into two clusters: the ball and the net, correctly

handling occlusions. In the Lightning variation (2nd

column of Fig. 4), a quadrotor flies through a poorly lit room

with strobe lightning in the background, and our method is

able to segment the events due to the camera motion (green

and blue) and due to the quadrotor (purple).

Accuracy vs Displacement. While the dataset from [25]

provides a benchmark for comparison against the state-of-

the-art, it does not allow us to assess the per-event accu-

racy of our method. Here we measure segmentation success

directly as a percentage of correctly classified events, thus

much more fine-grained than with bounding boxes. Since

real data contains a significant proportion of noise events,

we perform the quantitative analysis on event data from

a state-of-the-art photorealistic simulator [36]. Knowing

which objects generated which events, allows us to finely

resolve the accuracy of our method.

However, segmentation accuracy is closely coupled with

the observation window over which events are collected. In-

tuitively, this makes sense; observing two objects with a

relative velocity of 1 pixel/s for only 1 s means that the ob-

jects have moved only 0.1 pixels relative to each other, a

difference that is difficult to measure. Observing these two

objects for 10 s means a relative displacement of 10 pixels,

which is easier to distinguish.

Fig 5 evaluates the above effect on a sequence consisting

of textured pebbles moving with different relative velocities

(Fig. 5a, with events colored in red and blue, according to

polarity). The plot on Fig 5b shows that as the relative dis-

placement increases, the proportion of correctly classified

events, and therefore, the segmentation accuracy, increases.

Our method requires that roughly 4 pixels of relative dis-

placement have occurred in order to achieve 90% accuracy.

This holds true for any relative velocity.

Computational Performance. The complexity of Algo-

rithm 1 is linear in the number of clusters, events, pixels of

the IWE and the number of optimization iterations, in to-

tal, O((Ne +Np)NℓNit). Our method generally converges

in less than ten iterations of the algorithm, although this

clearly depends on several parameters, such as the data pro-

cessed. Further details are given in the supplementary ma-

terial. Here, we provide a ballpark figure for the processing

speed. We ran our method on a single core, 2.4GHz CPU

where we got a throughput of 240 000 events/s for optical-

flow–type warps (Table 2). Almost 99% of the time was

spent in warping events, which is parallelizable. Using a

GeForce 1080 GPU, we achieved a 10× speed-up factor, as

reported in Table 2. The bottleneck is not in computation

but rather in memory transfer to and from the GPU.

Throughput decreases as Nℓ increases, since all of the

events need to be warped for every extra cluster in order to

generate motion compensated images. Further, extra clus-

ters add to the dimensionality of the optimization problem

that is solved during the motion-compensation step.

Nℓ CPU [kevents/s] GPU [kevents/s]

2 239.86 3963.20
5 178.19 1434.66

10 80.93 645.02
20 32.43 331.50
50 12.62 113.78

Table 2: Throughput in kilo-events per second (optical-flow

type [24]) of Algorithm 1 running on a single CPU core vs

GPU for varying Nℓ (using the test sequence in Fig. 7).

Regardless of throughput, our method allows exploiting

key features of event cameras, such as its very high tem-

poral resolution and its HDR, as shown in experiments on

the EED dataset (Table 1) and on some sequences in Fig. 4

(Vehicle facing the sun, Fan and coin).

4.2. Further Real­World Sequences

We test our method on additional sequences in a vari-

ety of real-world scenes, as shown in Fig. 4. The third col-

umn shows the results of segmenting a traffic scene, with the

camera placed parallel to a street and tilting upwards while

vehicles pass by in front of it. The algorithm segmented the
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Ball behind net [25] Drone, low light [25] Traffic scene Buildings and car Street, facing the sun Fan and coin

Figure 4: From top to bottom: snapshots (motion-compensated images, as in Fig.2) of events segmented into clusters on

multiple sequences (one per column). Events colored by cluster membership. Best viewed in the accompanying video.

(a) Events (red and blue).
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Figure 5: Per-event Success Evaluation. Segmentation ac-

curacy vs relative object displacement (5b) on pebbles se-

quence (5a) at various relative velocities of objects vrel =
{30, 60, 120}pixel/s).

scene into four clusters: three corresponding to the vehicles

(blue, red, yellow) and another one corresponding to the

background buildings (ego-motion, in green). Even the cars

going in the same direction are separated (red and yellow),

since they travel at different speeds.

The fourth column of Fig. 4 shows the results of seg-

menting a scene with a car and some buildings while the

camera is panning. We ran the algorithm to segment the

scene into three clusters using optical flow warps. One clus-

ter segments the car, and the other two clusters are assigned

to the buildings. Note that the algorithm detects the differ-

ences in optical flow due to the perspective projection of the

panning camera: it separates the higher speed in the periph-

ery (blue) from the slower speed in the image center (red).

An HDR scene is shown on the fifth column of Fig. 4.

The camera is mounted on a moving vehicle facing the sun

(central in field of view) while a pedestrian and a skate-

boarder cross in front of it. The camera’s forward motion

causes fewer events from the background than in previous

(panning) examples. We run the segmentation algorithm

with six clusters, allowing the method to adapt to the scene.

Segmented events are colored according to cluster member-

ship. The algorithm correctly segments the pedestrian and

the skateboarder, producing motion-compensated images of

their silhouettes despite being non-rigidly moving objects.

Finally, the last column of Fig. 4 shows the versatility

of our method to accommodate different motion models for

each cluster. To this end, we recorded a coin dropping in

front of the blades of a ventilator spinning at 1800 rpm. In

this case the fan is represented by a rotational motion model

and the coin by a linear velocity motion model. Our method

converges to the expected, optimal solution, as can be seen

in the motion compensated images, and it can handle the

occlusions on the blades caused by the coin.

Fig. 6 shows that our method also works with a higher

resolution (640 × 480 pixels) event-based camera [37].

More experiments are provided in the Appendix.

4.3. Sensitivity to the Number of Clusters

The following experiment shows that our method is not

sensitive to the number of clusters chosen Nℓ. We found

that Nℓ is not a particularly important parameter; if it cho-
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(a) Scene (b) Segmentation into clusters

Figure 6: A 640×480 pixel DVS [37] panning over a slanted

plane. Segmentation with 10 optical flow clusters (colored).

sen to be too large, the unnecessary clusters end up not hav-

ing any events allocated to them and thus “die”. This is

a nice feature, since it means that in practice Nℓ can sim-

ply be chosen to be large and then not be worried about. We

demonstrate this on the slider depth sequence from [38];

where there are multiple objects at different depths (depth

continuum), with the camera sliding past them. Because of

parallax, this results in a continuum of image plane veloc-

ities and thus infinitely many clusters would in theory be

needed to segment the scene with an optical flow motion-

model. Thus the sequence can only be resolved by adding

many clusters which discretize the continuum of velocities.

Fig. 7 demonstrates that our method is robust with re-

gard to the number of clusters chosen (in Figs. 7b–7d); too

few clusters and the method will simply discretize the event

cluster continuum, too many clusters and some clusters will

“collapse”, i.e., no events will be assigned to them. By seg-

menting with enough clusters and preventing cluster col-

lapse, our method can be used to detect depth variations;

nevertheless, tailored methods for depth estimation [39] are

more suitable for such a task. The experiment also shows

that our method deals with object occlusions.

Similarly, Fig. 7 shows that our method is not sensitive

to the mixture of motion models either. Fig. 7e shows the

result with five clusters of optical flow type and five clus-

ters of rotation type. As can be seen, our method essen-

tially allocates no event likelihoods to these rotation models

clusters, which clearly do not suit any of the events in this

sequence. Fig. 7f shows the result of using only rotation

motion models, resulting in failure, as expected. As future

work, a meta-algorithm could be used to select which mo-

tion models are most relevant depending on the scene.

5. Conclusion

In this work we presented the first method for per-event

segmentation of a scene into multiple objects based on their

apparent motion on the image plane. We jointly segmented

a given set of events and recovered the motion parame-

ters of the different objects (clusters) causing them. Ad-

ditionally, as a by-product, our method produced motion-

compensated images with the sharp edge-like appearance of

the objects in the scene, which may be used for further anal-

(a) Scene (b) Nℓ = 5×Optical Flow

(c) Nℓ = 10×Optical Flow (d) Nℓ = 20×Optical Flow

(e) Nℓ = 5×OF+5×Rotation (f) Nℓ = 10×Rotation

Figure 7: Experiment on slider depth sequence of [38].

Motion-compensated images in 7b to 7f show events col-

ored by cluster. Using optical flow (OF) warps (in 7b–7d),

event clusters correspond to depth planes with respect to

the camera. Using as few as five clusters, the events are

discretized and approximately spread over the depth con-

tinuum. Using 5, 10 or 20 clusters in 7b, 7c, 7d gives very

similar results, showing that our method is fairly insensi-

tive to the value of Nℓ chosen. Adding clusters with mo-

tion models that do not suit the motion, as in 7e, where five

clusters are pure rotational warps, does not much disturb the

output either.

ysis (e.g., recognition). We showed that our method outper-

forms two recent methods on a publicly available dataset

(with as much as 10% improvement over the state-of-the-

art [25]), and showed it can resolve small relative motion

differences between clusters. Our method achieves this us-

ing a versatile cluster model and avoiding explicit estima-

tion of optical flow for motion segmentation, which is error

prone. All this allowed us to perform motion segmentation

on challenging scenes, such as high speed and/or HDR, un-

locking the outstanding properties of event-based cameras.

Acknowledgments. This work was supported by the

Swiss National Center of Competence in Research

Robotics, through the Swiss National Science Foundation

and the SNSF-ERC Starting Grant as well as the ARC Cen-

tre of Excellence for Robot Vision, project #CE140100016.

7251



References

[1] Patrick Lichtsteiner, Christoph Posch, and Tobi Delbruck,

“A 128×128 120 dB 15 µs latency asynchronous temporal

contrast vision sensor,” IEEE J. Solid-State Circuits, vol. 43,

no. 2, pp. 566–576, 2008. 1, 3

[2] Guillermo Gallego, Tobi Delbruck, Garrick Orchard, Chiara

Bartolozzi, Brian Taba, Andrea Censi, Stefan Leuteneg-

ger, Andrew Davison, Jörg Conradt, Kostas Daniilidis,

and Davide Scaramuzza, “Event-based vision: A survey,”

arXiv:1904.08405, 2019. 1, 2

[3] Elias Mueggler, Basil Huber, and Davide Scaramuzza,

“Event-based, 6-DOF pose tracking for high-speed maneu-

vers,” in IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS),

pp. 2761–2768, 2014. 1

[4] Alex Zihao Zhu, Nikolay Atanasov, and Kostas Daniilidis,

“Event-based feature tracking with probabilistic data associ-

ation,” in IEEE Int. Conf. Robot. Autom. (ICRA), pp. 4465–

4470, 2017. 1, 5

[5] Guillermo Gallego, Jon E. A. Lund, Elias Mueggler, Henri

Rebecq, Tobi Delbruck, and Davide Scaramuzza, “Event-

based, 6-DOF camera tracking from photometric depth

maps,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40,

pp. 2402–2412, Oct. 2018. 1

[6] Daniel Gehrig, Henri Rebecq, Guillermo Gallego, and Da-

vide Scaramuzza, “EKLT: Asynchronous photometric fea-

ture tracking using events and frames,” Int. J. Comput. Vis.,

2019. 1

[7] Jörg Conradt, Matthew Cook, Raphael Berner, Patrick Licht-

steiner, Rodney J. Douglas, and Tobi Delbruck, “A pencil

balancing robot using a pair of AER dynamic vision sen-

sors,” in IEEE Int. Symp. Circuits Syst. (ISCAS), pp. 781–

784, 2009. 1

[8] Tobi Delbruck and Manuel Lang, “Robotic goalie with 3ms

reaction time at 4% CPU load using event-based dynamic

vision sensor,” Front. Neurosci., vol. 7, p. 223, 2013. 1

[9] Erich Mueller, Andrea Censi, and Emilio Frazzoli, “Low-

latency heading feedback control with neuromorphic vision

sensors using efficient approximated incremental inference,”

in IEEE Conf. Decision Control (CDC), 2015. 1

[10] Hanme Kim, Stefan Leutenegger, and Andrew J. Davison,

“Real-time 3D reconstruction and 6-DoF tracking with an

event camera,” in Eur. Conf. Comput. Vis. (ECCV), pp. 349–

364, 2016. 1

[11] Henri Rebecq, Timo Horstschäfer, Guillermo Gallego, and
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