
Many Task Learning With Task Routing

Gjorgji Strezoski, Nanne van Noord and Marcel Worring

University of Amsterdam

{g.strezoski, n.j.e.vannoord, m.worring}@uva.nl

Abstract

Typical multi-task learning (MTL) methods rely on ar-

chitectural adjustments and a large trainable parameter set

to jointly optimize over several tasks. However, when the

number of tasks increases so do the complexity of the ar-

chitectural adjustments and resource requirements. In this

paper, we introduce a method which applies a conditional

feature-wise transformation over the convolutional activa-

tions that enables a model to successfully perform a large

number of tasks. To distinguish from regular MTL, we intro-

duce Many Task Learning (MaTL) as a special case of MTL

where more than 20 tasks are performed by a single model.

Our method dubbed Task Routing (TR) is encapsulated in a

layer we call the Task Routing Layer (TRL), which applied

in an MaTL scenario successfully fits hundreds of classifica-

tion tasks in one model. We evaluate on 5 datasets and the

Visual Decathlon (VD) challenge against strong baselines

and state-of-the-art approaches.

1. Introduction

Multi-tasking is ubiquitous. In everyday life, as well as

in computer science, performing multiple tasks at the same

time improves efficiency and resource utilization [32, 39].

By definition, MTL is a learning paradigm that seeks to

improve the generalization performance of machine learn-

ing models by optimizing for more than one task simulta-

neously [4]. Its counterpart, Single Task Learning (STL)

occurs when a model is optimized for performing a single

task only. STL models usually have an abundance of pa-

rameters that have the capacity to fit to more than one task

[14]. In MTL the aim is to make use of this extra capacity.

The simultaneously performed tasks can either help or hurt

each others execution by sharing the expertise the model de-

velops for each of them during training. For example, in a

dataset of bird images, training a model to recognize white

head feathers and white underbelly can help in classifying a

MULTI-TASK DEEP NEURAL NETWORK

WITH 3 CONVOLUTIONAL LAYERS

SHARED UNIT IN

A CONVOLUTIONAL LAYER

TASK SPECIFIC

OUTPUTS
DATA FLOW

INPUT

OUTPUT

Figure 1: Routing map and specialized subnets through a

three layer multi-task deep convolutional neural network

with 50% of the units being shared per task routing layer.

Seagull bird. However, we cannot expect a bird size detec-

tor to help with Seagull classification as this bird appears in

many sizes in nature, so size is not relevant to its species.

As with any combinatorial problem, in MTL there ex-

ists an optimal combination of tasks and shared resources

which is unknown. Searching the space to find this combi-

nation is becoming increasingly inefficient, as modern mod-

els [6, 7, 28, 24] grow in depth, complexity and capacity.

This search duration grows proportionally with the num-

ber of tasks and parameters present in the model’s structure.

Previous works in both MTL and STL rely on evolutionary

algorithms [15] or factorization techniques [41] to discover

their optimal way of learning, however this takes time and

prolongs the training process. In our work, inspired by the

efficiency of Random Search [3] we enforce a structured

random solution to this problem by regulating the per-task

1375

data-flow in our models. As depicted in Figure 1, by as-

signing each unit to a subset of tasks that can use it we cre-

ate specialized sub-networks for each task. In addition, we

show that providing tasks with alternate routes through the

parameter space, increases feature robustness and improves

scalability while boosting predictive performance.

Creating and keeping alternate task routes throughout

training, accounts for more than just learning a robust

shared and task-specific feature representation. Distribut-

ing the per task knowledge regularizes the influence the

tasks might have on each other, both positive and negative.

Research in MTL has been implicitly attempting to solve

the negative influence between jointly learned tasks. For

example, statistically analyzing task relationships [1] and

infusing the findings as prior knowledge helps combining

tasks that benefit from each others learning process. In the

same way, design choices for a complete multilevel output

architecture with structured sharing such as Ubernet [10]

can rest on firm domain experience. This allows [10] to cre-

ate shared features between low, mid and high level tasks at

the correct levels within the model. Prior knowledge can be

utilized in the final branch-output of a branched MTL archi-

tecture as well, where carefully designing the task-specific

branches improves the model’s performance [23]. How-

ever, the above statistical analyses and architecture design

choices rely on prior knowledge, which is often unavailable

or expensive to obtain. We mitigate the issue of obtaining

prior knowledge, by introducing a task-routing mechanism

allowing tasks to have separate in-model data flows. In this

way, by enforcing a structured random solution we allow

tasks to forge their own beneficial way of sharing.

We empirically verify our routing mechanism’s positive

influence on the task number scalability capacity through

gradually increasing the number of tasks performed by a

single model in our experiments. Starting from a small

number of tasks namely four in the Zappos-50K dataset,

we scale up to 312 tasks in the UCSD-Birds dataset [36].

To distinguish this setup from regular MTL, we introduce

Many Task Learning (MaTL) as a special case of MTL

where more than 20 tasks are performed. For MTL we show

competitive performance with a small task count, and fur-

ther proceed beyond the capabilities of existing methods to

achieve state-of-the-art performance on the complete set of

possible tasks in the UCSD-Birds dataset in an MaTL con-

text.

In this paper, we identify the following primary contri-

butions:

• We present a scalable MTL technique for exploiting

cross-task knowledge transferability without requiring

prior domain knowledge.

• We enable structured deterministic sampling of multi-

ple sub-architectures within a single MTL model.

• We define task relationships in an intuitive non-

parametric manner during training without requiring

prior domain knowledge or statistical analysis.

• We apply our method to a total of 15 datasets demon-

strating its effectiveness and performance gains over

strong baselines and state-of-the-art approaches.

2. Related Work

As our method draws inspiration from feature-wise

transformation, architecture search and regularization

works, this section is structured to cover those domains. As

such, first we explain the ideas behind MTL and its possi-

ble variations. After that we link to related ideas in modu-

lation and feature-wise transformations in an MTL context,

and we complete the related work discussion by distinguish-

ing our method from existing regularization and architec-

ture search methods.

Multi-task learning (MTL) [2, 4, 34] is a learning

paradigm which seeks to improve the generalization per-

formance of machine learning models optimizing for more

than one task. Caruana [4] further describes MTL as

a mechanism for improving generalization properties by

leveraging the domain-specific information contained in the

training signals of related tasks. As such, in MTL the goal

is to jointly perform experiments over multiple tasks and

improve the learning process for each of them. Whether

these experiments are optimized for simultaneously or in an

incremental fashion, categorizes MTL approaches in either

symmetric or asymmetric [39].

Asymmetric MTL relies on using knowledge from solv-

ing auxiliary tasks in order to improve the performance on

one main target task. This formulation bears a resemblance

to transfer learning [22]. One key distinction between them

is that in asymmetric MTL the auxiliary tasks are learned si-

multaneously with the main task, while in transfer learning

they are learned independently [45]. In our work we focus

on symmetric MTL.

Symmetric MTL, unlike Asymmetric MTL, aims to im-

prove the performance of all tasks simultaneously. It lever-

ages the fact that some tasks are correlated (co-dependent)

and by learning their estimators jointly under a unified rep-

resentation, the transferability of expertise between tasks

is exploited to the maximal benefit of all [39]. Zhang et

al. introduced such a symmetric approach named Multi-

task Relationship Learning (MTRL) [46] which regularizes

the parallel learning of multiple tasks and models their re-

lationships in a non-parametric manner as a task covari-

ance matrix. Many other symmetric approaches [21, 44, 16,

13, 47, 43] have been developed in recent years. Combi-

nations of utilizing different regularization strategies [13],

multi-level sharing [43], cross-layer parameter combina-

tions [21] or meshes of all options [26] have been exten-

1376

ROUTING MODULE

1

2

3

IN
P
U

T
 C

H
A
N

N
E
L
 A

C
T
IV

A
T
IO

N
 M

A
P
S

TASK SPECIFIC MASK
TASK ROUTES (MASKS)

IN OUT O
U

T
P
U

T
 C

H
A
N

N
E
L
 A

C
T
IV

A
T
IO

N
 M

A
P
S

ACTIVE TASK

Figure 2: Operation of the TRL over the output from a convolutional layer (white channels). The current active task is used

to select the mask (bright green are 1, and dark green are 0). After the element-wise multiplication across channels, the ones

that remain are colored bright green and the nullified channels are brown and transparent.

sively tested. However, they are vulnerable to noisy and

outlier tasks which when introduced dramatically deterio-

rate performance. This occurs due to the low grade feature

robustness and the initial assumption that all tasks positively

influence each other’s learning process [45]. In our work

we address the feature robustness issue by randomizing the

sharing structure from the start of the training process and

enforcing tasks to use alternate routes for their data-flow

through the model.

Both symmetric and asymmetric MTL approaches often

rely on prior knowledge to help with architecture design,

sharing options and task grouping [23, 33, 9, 1]. If such

knowledge is present, it is a helpful resource for designing

an MTL model. However, often times such knowledge is

unavailable and requires domain expert analysis (e.g. hand-

crafting an MTL model for the Omniglot [12] dataset needs

knowledge of ancient alphabets). For this reason develop-

ing MTL models without prior domain knowledge is crucial

to real-world applications. A recent step in this direction

is made by Liu et al.[18] who propose an adaptive MTL

model that structurally groups tasks together. Evolutionary

algorithms have also been shown to capture task relatedness

and create sharing structures [15]. A less architectural so-

lution is proposed by Yang et al. [41] who use a factorized

space representation to learn inter-task sharing structures at

each layer in an MTL model. Most of these methods have

firm constraints in terms of how a model should be defined,

structured, or initialized. We propose an approach applica-

ble to any deep MTL model with no structural adjustments,

as we encapsulate the layer-wise parameter space. By con-

trolling the data-flow instead of the structure, we do not af-

fect the underlying model behavior and this broadens the

usability scope of our method.

Resource consumption is becoming predominantly im-

portant in MTL models as it usually increases with the num-

ber of performed tasks. As our approach is not structure

dependent, it has a very small computational footprint. A

recent scalable approach to MTL using modulation for im-

age retrieval was proposed in [48] where they successfully

scale to performing 40 tasks. The trade-off between speed

and memory size in [48] shows only 15% overhead. In our

work we build on this approach and demonstrate competi-

tive performance on 300+ tasks in a single model with min-

imal costs to the computational budget, which with current

methods is either inefficient or impossible.

PackNet [20] presents an idea related to our work in the

sense that Mallya et al. use the fixed weights of an exist-

ing network to learn a new task with the same model. This

is an intuitive and simple method for re-usability of back-

bone networks for performing additional tasks, however as

the authors indicate it has the downside of not allowing the

tasks to share and benefit from each other’s learning pro-

cess. In cases such as this, Adaptive Instance Normaliza-

tion [8] is an approach that is able to adapt the channel-wise

mean and variances between two inputs with no learnable

parameters. This offers a similar feature-wise transforma-

tion and does not suffer from the same issue as [20], but has

not been tested in an MTL scenario where the inputs are

task specific representations.

Convolutional neural fabrics [27] is related to our work

in terms of architecture search. Saxena et al. define 3D

trellis that connect response maps from different layers and

create a smaller, thinner specialized architecture. On the

other hand, TR works in the MTL realm and allows us to

pool from an exponentially large pool of subnetworks.

Similarly, Dropout [31] relates to our work as a form

of regularization and co-adaptation prevention technique.

In Dropout, the dropped-out units change each time the

Bernoulli vector is sampled, which adds a stochastic

component to this technique further inhibiting unit co-

adaptation. The same regularization building block is

present in related approaches [30, 37, 5, 40] in a STL sce-

nario. TR allows for a more deterministic form of inter-task

regularization in a symmetric MTL paradigm. Furthermore,

Dropout can be applied and prove beneficial in combination

with our method, as it can provide general regularization

and additional co-adaptation prevention during training.

1377

3. Task Routing

Most MTL methods involve task specific and shared

units as part of the MTL training procedure. Our method

enables the units within the model’s convolutional layers to

have a consistent shared or task-specific role in both train-

ing and testing regimes. Figure 1 provides the intuition be-

hind how the individual units are utilized throughout the set

of tasks performed by the model. We achieve this behavior

by applying a channel-wise task-specific binary mask over

the convolutional activations, restricting the input to the fol-

lowing layer to contain only activations assigned to the task.

Figure 2 illustrates the masking process over the activations.

Because the flow of activations does not follow its conven-

tional route, i.e. it has been rerouted to an alternate one, we

have named our method Task Routing (TR) and its corre-

sponding layer the Task Routing Layer (TRL). By applying

the TRL to the network we are able to reuse units between

tasks and scale up the number of tasks that can be performed

with a single model.

The masks that enable task routing are generated ran-

domly at the moment the model is instantiated and kept con-

stant through the training process. These masks are created

using a sharing ratio hyper-parameter σ defined beforehand.

The sharing ratio defines how many units are task specific,

and how many are shared between tasks. The inverse of this

ratio determines how many of the units are nullified. As

such, the sharing ratio enables us to explore the complete

space of sharing possibilities with a simple adjustment of

one hyper-parameter. A sharing ratio of 0 would indicate

that no sharing occurs within the network and each train-

able unit is specific to a single task only, resulting in distinct

networks per task. On the opposite side of the spectrum, a

sharing ratio of 1 would make every unit shared between

each of the tasks, resulting in a classical fully shared MTL

architecture.

3.1. Task Routing Mask Creation

Task routing is performed by means of a feature-wise

transformation of the unit activations in a convolutional

layer with a conditional binary mask. As our system does

not have any prior knowledge for the problem at hand, the

masks are created randomly at the moment our model is

instantiated. The resulting random structure is persistent

through the training and testing periods as the masks are

not trainable.

Having immutable masks is particularly useful for

MaTL, in which the space of possible sharing strategies is

very large. By enforcing a fixed sharing strategy from the

start of the training process, the model can focus on training

robust task-specific and shared units, as opposed to training

units over an ever changing combination of tasks.

3.2. Task Routing Layer

We propose a new layer dubbed Task Routing Layer

(TRL) which contains a task specific binary mask mA ∈ Z
C
2

for the active task A applied over the input X ∈ RC×H×W

of a convolutional layer with dimensionality [B×C×H ×
W] where B is the batch size, C is the number of units,

H the height and W the width of the unit. For simplic-

ity of notation we drop the H and W dimensions, as the

mask is applied to an entire channel uniformly across the

spatial dimensions. Applying this mask (see equation 1) is

akin to performing a conditional feature-wise transforma-

tion and generates a masked output which is then propa-

gated to the next convolutional block. Figure 3 shows the

TRL placement within a convolutional block. Because the

feature-wise transform applied to the convolutional output

can affect the local running mean and variance, the TRL is

placed right after the batch normalization layer (if present).

CONVOLUTION

BATCH NORMALIZATION

ACTIVATION (RELU)

CONVOLUTION

BATCH NORMALIZATION

ACTIVATION (RELU)

TASK ROUTING LAYER (TRL)

A B

Figure 3: TRL placement (blue block) within a convolu-

tional block. Section A (on the left) shows the convolutional

block before adding the TRL, and Section B after.

TRLA(X) = mA ⊙X (1)

During a forward pass a single specialized subnet is

active, namely the subnet for the active task A. This is

achieved by setting the active task for the TRLs. During

our forward propagation we randomly sample one task from

the pool of tasks. As the number of iterations required to

traverse the dataset is usually much higher than the num-

ber of tasks, there exists a very small chance that a task is

not optimized for within an epoch. This chance diminishes

drastically with the training process spanning over multiple

epochs. Even if we consider that a task has not been opti-

mized for in an epoch, this is easily compensated for by the

optimization of the other tasks that partly share the same

group of units. At test time, a separate per task evaluation

is required as the input has to propagate distinct subnets for

each task.

The training operational flow of our method is illustrated

in algorithm 1. As we iterate through the training set, with

each sampled mini-batch we change the currently active

1378

Algorithm 1 Training epoch for TRL

1: procedure TRAIN(X)

2: for X in XTrain do ⊲ Training loop

3: A← sample(task set)
4: set active task(A)

5: forward(X)

task. Setting the currently active task is a global change in

the framework, so the TR work-flow does not affect exist-

ing ways of propagation and training. This property makes

TR simple to integrate in existing projects. As a global vari-

able, the active task affects the applied mask in all TRLs in

the model and navigates the routed activations to the task

specific classifier.

In the forward pass of the input, the TRL applies the se-

lected mask for the active task uniformly across the spatial

dimensions of the entire input batch. As demonstrated in al-

gorithm 2 we perform the feature-wise transformation in the

forward pass of the TRL over the convolutional layer’s out-

put. Figure 2 illustrates how the task routing is performed

and how the channels are nullified by the active mask.

Algorithm 2 Forward pass for TRL

1: procedure FORWARD(X)

2: mA ←M [A] ⊲ M ← setofmasks

3: out← mA ⊙X ⊲ Across all channels

4: return out ⊲ The masked output

3.3. Complexity

Our model only adds a minimal number of additional pa-

rameters compared to the hard shared MTL approaches [4]

or cross-stitch networks [21], and has a significantly lower

parameter count compared to similar architecture search ap-

proaches [27]. The models we define in our experimen-

tal setup contain the task routing layers after each convolu-

tional layer. This way, the number of additional parameters

of the TRL is directly linked and proportional to the number

of convolutional layers, units and channels.

Increasing the number of tasks, without appending a dis-

tinct embedding per task results in an negligible parameter

count increase. However, heuristically we determined that

having a separate embedding space per task increases stan-

dalone task performance. Because of this, the majority of

the additional parameters in our models come from the wide

task specific branches, rather than the TRLs.

4. Experimental Design

Our experiments are designed to test and validate the

contributions presented in this work. We evaluate our

approach on multiple classification tasks, comparing to

strong baselines and state of the art approaches. For

this we consider a variety of datasets ranging from gray-

scale proof of concept datasets (FashionMNIST), to at-

tribute rich real world problems (UCSD-Birds), cross-

dataset MTL benchmarks (VD) and a multi-attribute based

face dataset (CelebA). In addition, through the CelebA and

UT-Zappos50K dataset we compare to the state of the art

performance presented in [48].

4.1. Datasets

UCSD Birds [36] is a dataset that provides 11.788 bird

images over 200 bird species with 312 binary attribute an-

notations. For state of the art comparison, we compare on

ten target attributes obtained with spectral clustering using

the FSIC as the similarity measure [1]. As we incrementally

increase the selected number of attributes we define sets of

50, 100, 200, and 312 binary classification tasks for each

of them. For this dataset the training and testing set have

equal sizes and distributions. The attributes are sampled ac-

cording to the ten attribute selection in [1] for the 10 task

experiment and in order of the original annotation file for

the rest of the experiments.

Visual Decathlon (VD) [25] is a benchmark that evalu-

ates the ability of representations to capture simultaneously

ten very different visual domains and measures their ability

to perform well uniformly. While the images of this task are

of a lower resolution (72x72 px.), they contain a wide va-

riety of tasks such as pedestrian, digit, aircraft, and action

classification, making it perfect for testing the generaliza-

tion abilities of our method. We evaluate our performance

with per-task accuracies, and assign a cumulative score with

a maximum value of 10,000 (1,000 per task) based on the

per-task accuracies using the official challenge metric [19].

FashionMNIST [38] and CIFAR-10 [11] constitute the

proof of concept part of our experimental design as they are

well established benchmarks and provide indication of how

different hyper-parameter setups tend to affect the method.

For both datasets we define ten binary classification tasks

and evaluate the accuracy, precision, and recall scores.

CelebA [17] consists of more than 200,000 face images

with binary annotations on 40 facial attributes. The first

10 (out of 40) attributes from [48] are selected for the 10

task experiment as more related to face appearance. We

additionally report the results on 40 attributes to compare

our approach to [48] in a classification setting.

UT-Zappos50K [42] is a large shoe dataset consisting

of more than 50,000 catalog images collected from the web.

This dataset contains four attributes of interest for our ex-

periment, namely shoe type, suggested gender, height of the

heel, and the shoe closing mechanism. As defined in [48],

we define 4 classification tasks for a small scale test of our

approach over a real world dataset using the identical train,

validation, and test splits from [35, 48].

1379

Ours - 0

Ours - 0.2

Ours - 0.4 (best)

Ours - 0.6

Ours - 0.8

Figure 4: Accuracy comparison on the UCSD-Birds dataset on 10, 50, 100, 200, 312 task between our method (in red) with

σ = [0, 1], cross-stitch networks [21] (in green) and modulation for MTL [48] (in blue). Cross-stitch networks scale up to

12 tasks, where as modulation for MTL and our approach fit to the full number of tasks. The best performing sharing ratio

σ = 0.4 is set in strong red, and the other σ values in light red.

Table 1: Average scores on the VD challenge. Best overall approach is highlighted in gray.

Run VD Score Aircraft Cifar-100 Daimler DTD GTSRB ImageNet-12 Omniglot SVHN UCF-101 VGG-Flowers

ResAdapt [25] (σ = 0) 2851.31 299.88 195.96 155.41 261.51 472.6 224.15 337.05 282.8 231.69 390.26

Ours σ = 0.2 2873.84 302.1 200.01 162.79 267.22 472.2 210.2 344.12 265.4 250.02 399.78

Ours σ = 0.4 2919.26 305.2 204.12 165.89 273.28 469.2 228.39 345.08 272.77 252.12 403.21

Ours σ = 0.6 2870.26 287.2 206.12 148.89 256.28 474.2 223.39 350.08 260.77 261.12 402.21

Ours σ = 0.8 2806.26 285.2 208.12 139.89 253.28 455.2 222.39 338.08 249.77 263.12 391.21

Ours σ = 1 2768.26 282.2 214.12 132.89 256.28 445.2 207.39 339.08 239.77 261.12 390.21

4.2. Multi­task Setup

FashionMNIST and CIFAR10 power a toy problem ex-

periment where we develop an intuition of how our method

functions. We choose these datasets as they are well estab-

lished and balanced benchmarks, for which little domain

knowledge is necessary to interpret the results and draw

conclusions. For each dataset we perform 10 binary clas-

sification tasks using the model presented by Xiao et al.

[38] for FashionMNIST and a VGG-16 network for CIFAR-

10. In a similar manner, the Zappos50K dataset provides

a highly related balanced dataset with four well described

tasks on which we evaluate our method’s performance in a

small scale MTL context.

To evaluate our method in an MaTL context, we per-

form experiments on the CelebA and UCSD-Birds datasets.

For the CelebA experiment we ran experiments with an in-

creasing number of tasks, starting from 10 and ending with

40 tasks. The purpose of these experiments is to observe

the difference in performance with [48] and explore how

adding additional tasks affects the learning process and per-

formance. This CelebA experiment uses the VGG-16 model

trained from scratch with batch normalization as a feature

extraction platform and branches out to as many classifica-

tion branches as there are tasks. Each classification branch

is task specific and has an independent embedding space.

With 312 possible attributes related to bird appearance, the

UCSD-Birds dataset presents a unique opportunity to ex-

plore the task-wise scalability properties of our method. To

ensure a fair comparison with cross-stitch networks [21]

we evaluate this method in a pre-trained and trained from

scratch setting where applicable.

For the VD challenge we compare to the best approach

from the leader-board [25] and use their Residual Adapters

model fitted with TRLs over the complete range of σ =
[0, 1]. The initialization and hyperparameter setup is the

same as in the original paper [25].

4.3. Implementation Details

In all classification settings we perform binary classifi-

cation tasks over the attributes. Each attribute is consid-

ered a binary classification task and has its own equal-sized

embedding space. We append the TRL after each con-

volutional layer in our models and randomly initialize the

routing maps as the model is instantiated. For all our ex-

periments we use existing model architectures (VGG-11,

VGG-16 [29] and Resnet50 [6]) with their default settings.

For all datasets we use a batch size of 64 images with nor-

malization by the dataset mean. We perform the VD chal-

lenge with the same settings and hyper-parameters from

[25]. For the UCSD-Birds dataset we explore both trained

from scratch and pretrained VGG-11 models with horizon-

tal flipping because of the small size of the training set. We

use Stochastic Gradient Descent with a learning rate of 0.01

and momentum of 0.5 with which our method usually con-

verges after 35 epochs 1.

1Code available at: https://github.com/gstrezoski/TaskRouting

1380

Table 2: Average scores over 5 runs on the on FashionMNIST, CIFAR-10, Zappos50K and CelebA (10 and 40 Tasks) on the

complete dataset with the complete sharing ratio scope σ = [0, 1]. Because for σ = 0 no sharing occurs and for σ = 1 our

approach reverts to hard shared MTL, we group them separately. The overall best performing approach across all datasets is

highlighted in gray and the best approaches per dataset are in bold. Fields marked with n/a signify experiments for which the

method could not scale to the task count.

Dataset FashionMNIST CIFAR-10 Zappos50K CelebA CelebA (Full)

Number of Tasks 10 10 4 10 40

Approach Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

Cross-stitch 98.1±1.14 91.4±1.02 86.1±0.23 98.5±0.17 91.6±1.18 85.9±1.07 84.7±2.23 82.2±1.12 81.8±1.29 71.5±1.96 68.0±1.38 67.0±0.83 n/a n/a n/a

Modulation 96.9±2.04 91.0±1.14 80.1±0.54 63.2±1.13 57.4±2.14 53.2±3.10 63.7±2.76 60.4±1.94 59.8±2.02 71.9±1.66 70.2±2.18 69.4±2.63 64.1±1.43 61.0±1.81 60.4±1.45

Ours σ = Adapt 96.3±0.04 90.6±0.04 84.1±0.05 98.1±0.06 88.3±0.03 85.9±0.05 88.3±0.11 81.7±0.02 80.6±0.04 71.9±0.07 68.2±0.08 66.3±0.17 63.0±0.08 59.0±0.15 57.1±0.11

Ours σ = 0 97.8±0.25 91.9±0.44 85.5±0.32 96.5±0.42 89.1±0.98 87.8±0.24 88.3±0.31 83.1±0.54 83.2±0.42 70.1±0.08 68.0±0.22 67.4±0.78 63.1±0.33 60.8±0.05 60.0±0.21

Ours σ = 1 97.4±0.01 91.1±0.07 85.1±0.04 98.1±0.03 88.0±0.03 85.6±0.01 79.2±0.10 77.1±0.09 75.3±0.08 69.9±0.13 67.2±0.10 66.8±0.06 62.2±0.07 58.0±0.07 56.4±0.11

Ours σ = 0.2 97.8±0.06 92.2±0.11 85.7±0.03 99.0±0.03 92.1±0.08 85.2±0.06 89.5±0.03 85.2±0.04 83.4±0.12 73.2±0.15 71.4±0.11 70.8±0.13 63.1±0.12 60.8±0.12 60.0±0.13

Ours σ = 0.4 97.6±0.05 92.0±0.08 84.2±0.07 96.9±0.09 92.0±0.09 87.5±0.15 88.1±0.17 84.3±0.18 82.8±0.14 73.0±0.14 71.4±0.12 70.2±0.12 62.0±0.25 59.4±0.24 58.2±0.24

Ours σ = 0.6 97.1±0.10 91.1±0.08 80.4±0.08 96.0±0.06 90.3±0.05 84.3±0.07 87.4±0.11 82.2±0.17 82.0±0.13 72.7±0.05 71.0±0.04 69.6±0.09 65.3±0.22 62.4±0.18 61.8±0.17

Ours σ = 0.8 96.8±0.08 91.0±0.08 78.0±0.03 94.8±0.09 88.2±0.11 81.1±0.10 83.2±0.04 81.4±0.01 78.9±0.01 71.4±0.05 70.1±0.06 69.1±0.08 64.0±0.14 61.1±0.10 60.2±0.09

4.4. Evaluation criteria

For evaluating the performance of our method we track

the accuracy, precision and recall. We added precision to

our evaluation criteria because it is important to highlight

how precise the model is, i.e. how many of the positive

predictions are true positives. This gives insight into how

precise and how robust our specialized subnets are the task

specific representation is. Tracking recall gives a realistic

measure how well the model has adapted to each of the tasks

as it shows the coverage of actual positive samples.

0.2 0.4 0.6 0.8 1
75

80

85

90

95

100

0.2 0.4 0.6 0.8 1
75

80

85

90

95

100

0.2 0.4 0.6 0.8 1
55

57

60

62

65

67

70

0.2 0.4 0.6 0.8 1

Sharing ratio value

70

75

80

85

90

95

100

Accuracy (%) Precision (%) Recall (%)

CIFAR-10

Zappos50K

FashionMNIST

CelebA

0

0 0

0

Figure 5: Effects of the sharing ratio σ value on accuracy,

precision and recall in Fashion-MNIST (top left), CIFAR10

(top right), CelebA (bottom left) and Zappos50K (bottom

right). Partially sharing units between tasks is beneficial to

performance with sharing ratios σ = [0.2, 0.6] compared to

a fully shared network σ = 1 or many distinct subnetworks

without sharing σ = 0.

5. Results

We evaluate our method on five datasets with experi-

ments ranging from proof of concept (FashionMNIST, CI-

FAR10 and Zappos50K) to addressing the task count scala-

bility properties (UCSD-Birds and CelebA) and a complete

range of vision tasks (VD). We report performance for the

full scope of possible values for our method specific hyper-

parameter σ, as compared to modulation for MTL [48] and

cross-stitch networks [21]. With σ = [0, 1] and a varying

number of tasks per model we explore the complete space

of sharing capabilities our method has to offer ranging from

a distinct specialized subnet per task σ = 0, to a completely

shared structure when σ = 1.

The experimental results for this comparison are re-

ported in Tables 1, 2 and3. The results show that using

our method we are able to efficiently use the units in a sin-

gle model to fit and optimize for many tasks. Moreover, we

surpass the performance of the modulation for MTL method

[48], as well as the cross-stitch networks approach [21] over

five datasets in an MTL/MaTL setup (Figure 4). In the VD

challenge, by adding the TRL to [25] we report a boost in

performance on 9 out of 10 datasets (see Table 1).

An important feature of our method is its scalability re-

garding the number of tasks a single model can accommo-

date using the TRL. Table 3 shows the relationship between

the number of tasks, the sharing ratio coefficient σ and accu-

racy, precision and recall as evaluation metrics. For sharing

ratios σ = 0.2 and σ = 0.4 we can observe a consistent im-

provement on all three scores as the task count is increased

in Table 3. Performance significantly drops with a sharing

ratio of σ = 0.8 as the model is closing in on a hard shared

MTL architecture. In this case only 20% of the units remain

task specific after the routing. A sharing ratio of σ = 1
means that every unit is used by every task and the reported

performance is equal to that of a classical MTL hard shared

approach (see Table 2 and 3). Figure 5 shows the effects

of the sharing ratio parameter σ over the evaluation met-

1381

Table 3: Average scores using the routing module over an increasing number tasks for the UCSD-Birds dataset and a sharing

ratio of σ = [0, 1]. Because for σ = 0 no sharing occurs and for σ = 1 our approach reverts to hard shared MTL, we group

them separately. Fields marked with n/a signify experiments for which the method could not scale to the task count. The

pretrained cross-stitch networks experiment is marked with a star (*). The overall best performing method is highlighted in

gray and the best performing model per task setting is set in bold.

Dataset UCSD-Birds

Number of tasks 10 50 100 200 312

Approach Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

Cross-stitch [21] 58.3 55.6 54.2 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Cross-stitch [21] * 68.8 67.4 67.0 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Modulation [48] 65.4 59.8 55.2 63.2 57.4 53.2 63.7 60.4 59.8 61.2 58.6 57.3 56.7 51.8 50.2

Ours σ = 0 64.3 62.4 55.3 62.0 60.6 54.6 65.1 62.7 61.1 63.2 60.2 58.8 59.9 57.2 56.1

Ours σ = 1 62.3 57.4 51.8 58.6 56.8 54.2 60.7 58.1 57.8 60.0 58.6 56.8 59.6 53.9 52.2

Ours σ = 0.2 65.6 62.9 57.0 63.1 62.9 57.2 67.8 63.3 60.9 65.6 63.6 63.2 64.1 61.6 60.2

Ours σ = 0.4 65.1 62.7 55.9 63.5 63.0 59.9 66.2 63.8 61.2 66.2 64.2 63.7 66.5 62.3 61.8

Ours σ = 0.6 64.9 62.1 54.8 61.7 59.9 59.0 65.2 60.9 59.5 64.8 62.0 59.8 61.1 59.2 59.0

Ours σ = 0.8 60.1 55.0 50.2 57.2 52.2 50.0 62.7 60.4 59.8 62.3 59.2 58.0 59.9 55.1 54.2

rics. For σ = 0 the model converts to a hard shared solu-

tion, and for σ = 1 we have vanilla soft sharing. For sim-

ple problems, the discriminatory filters are often low level.

Sharing the complete layer, or not sharing at all is expected

to yield similar results. However, for the internal range

(σ = [0.1, 0.9]) where performance peaks the behavior is

different. Lower σ values allow for more task specific fil-

ters which benefits complex tasks where fine-grained details

are key (UCSD-Birds). The lower σ range proves beneficial

for cross-dataset scenarios as well (VD challenge) where we

obtain best performance with σ = 0.2 and σ = 0.4.

For the CelebA we performed an experiment with ten

tasks and 40 tasks (the complete attribute set). We consis-

tently witness a performance drop across all applicable ap-

proaches once the remaining 30 tasks are added to the task

pool. From these results, a plausible conclusion is that it

is more difficult to perform well on the additional 30 tasks.

We suspect that this is due to a smaller sample number of

positive instances in the training set for the additional tasks

when used in a classification setting.

Considering the task count scalability of our method

compared to competing approaches, Figure 4 illustrates the

task count to performance relation for cross-stitch networks

[27], modulation for MTL [48], a hard shared MTL base-

line (our approach with σ = 1) and our approach over the

complete sharing space (σ = [0, 0.8]). As cross-stitch net-

works require independent models per task between which

unit sharing occurs, every additional task requires a com-

plete model to be loaded into memory. Despite having good

performance even with using a small VGG-11 network, it

becomes impossible to fit this approach into memory with

more than 12 tasks. On the other hand, our approach and

[48] are more parameter savvy and can fit more tasks. How-

ever, when comparing the performance of our approach to

modulation for MTL we can observe a slight gain in per-

formance for our approach as task count increases, whereas

modulation for MTL drops in performance.

6. Conclusion

In this work, we have presented a method to efficiently

perform a large number of classification tasks with a sin-

gle model. The proposed method allows us to modify the

default behavior of an MTL model and apply a conditional

feature-wise transformation to the outputs of its convolu-

tional layers. A strong point of our approach is that it does

not require prior knowledge of the domain or the intertask

relationships to achieve good performance in both regular

MTL and MaTL settings.

At the core of our method is a layer dubbed the Task

Routing Layer, that can be inserted after any convolutional

layer within a model’s architecture with minimal effort and

computational overhead. This layer contains task specific

masks that allow for a single model to fit to many tasks

within its parameter space. By passing the input through the

mask we are training specialized subnetworks per task with

much lower dimensionality compared to the main model.

The dimensionality of the specialized subnets is dictated by

the sharing ratio hyper-parameter, and they can be extracted

and used in place of the complete model for a specific task.

Furthermore, the sharing ratio hyper-parameter σ gives

our method an additional degree of freedom when com-

pared to other state-of-the-art approaches and baseline

methods. The sharing ratio σ allows us to be flexible with

the task routing design without changing the underlying ar-

chitecture which proves beneficial in MTL and MaTL. As

an universal solution to most of the problems does not ex-

ist, we offer a simple way to explore all sharing possibilities

the model has to offer. Finally, our approach offers an intu-

itive and easy to implement mechanism to get more out of

existing models.

Acknowledgments The authors would like to thank Pas-

cal Mettes, William Thong and Devanshu Arya for their

feedback and discussions. This research is supported by the

VISTORY project NWO award number 628.007.004.

1382

References

[1] Youssef Alami Mejjati, Darren Cosker, and Kwang In Kim.

Multi-task learning by maximizing statistical dependence. In

Proceedings of CVPR, 2 2018.

[2] Bart Bakker and Tom Heskes. Task clustering and gating for

bayesian multitask learning. Journal of Machine Learning

Research, 4(May):83–99, 2003.

[3] James Bergstra and Yoshua Bengio. Random search for

hyper-parameter optimization. Journal of Machine Learn-

ing Research, 13(Feb):281–305, 2012.

[4] Rich Caruana. Multitask learning. Machine Learning,

28(1):41–75, Jul 1997.

[5] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock:

A regularization method for convolutional networks. In

Advances in Neural Information Processing Systems, pages

10750–10760, 2018.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[7] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4700–4708, 2017.

[8] Xun Huang and Serge Belongie. Arbitrary style transfer in

real-time with adaptive instance normalization. In Proceed-

ings of the IEEE International Conference on Computer Vi-

sion, pages 1501–1510, 2017.

[9] Brendan Jou and Shih-Fu Chang. Deep cross residual learn-

ing for multitask visual recognition. In Proceedings of the

2016 ACM on Multimedia Conference, pages 998–1007.

ACM, 2016.

[10] Iasonas Kokkinos. Ubernet: Training a universal convolu-

tional neural network for low-, mid-, and high-level vision

using diverse datasets and limited memory. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 6129–6138, 2017.

[11] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10

(canadian institute for advanced research).

[12] Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B.

Tenenbaum. Human-level concept learning through proba-

bilistic program induction. Science, 350(6266):1332–1338,

2015.

[13] Sijin Li, Zhi-Qiang Liu, and Antoni B Chan. Heteroge-

neous multi-task learning for human pose estimation with

deep convolutional neural network. In Proceedings of the

IEEE conference on computer vision and pattern recognition

workshops, pages 482–489, 2014.

[14] Yuanzhi Li and Yingyu Liang. Learning overparameterized

neural networks via stochastic gradient descent on structured

data. In Advances in Neural Information Processing Systems,

pages 8168–8177, 2018.

[15] Jason Liang, Elliot Meyerson, and Risto Miikkulainen. Evo-

lutionary architecture search for deep multitask networks. In

Proceedings of the Genetic and Evolutionary Computation

Conference, GECCO ’18, pages 466–473, New York, NY,

USA, 2018. ACM.

[16] Wu Liu, Tao Mei, Yongdong Zhang, Cherry Che, and Jiebo

Luo. Multi-task deep visual-semantic embedding for video

thumbnail selection. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 3707–

3715, 2015.

[17] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.

Large-scale celebfaces attributes (celeba) dataset.

[18] Yongxi Lu, Abhishek Kumar, Shuangfei Zhai, Yu Cheng,

Tara Javidi, and Rogerio Feris. Fully-adaptive feature shar-

ing in multi-task networks with applications in person at-

tribute classification. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2017.

[19] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggy-

back: Adapting a single network to multiple tasks by learn-

ing to mask weights. In Proceedings of the European Con-

ference on Computer Vision (ECCV), pages 67–82, 2018.

[20] Arun Mallya and Svetlana Lazebnik. Packnet: Adding mul-

tiple tasks to a single network by iterative pruning. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 7765–7773, 2018.

[21] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Mar-

tial Hebert. Cross-stitch networks for multi-task learning.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3994–4003, 2016.

[22] S. J. Pan and Q. Yang. A survey on transfer learning.

IEEE Transactions on Knowledge and Data Engineering,

22(10):1345–1359, Oct 2010.

[23] Rajeev Ranjan, Vishal M Patel, and Rama Chellappa. Hy-

perface: A deep multi-task learning framework for face de-

tection, landmark localization, pose estimation, and gender

recognition. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 41(1):121–135, 2019.

[24] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. arXiv preprint arXiv:1802.01548, 2018.

[25] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi.

Learning multiple visual domains with residual adapters. In

Advances in Neural Information Processing Systems, pages

506–516, 2017.

[26] Sebastian Ruder, Joachim Bingel, Isabelle Augenstein, and

Anders Søgaard. Latent Multi-task Architecture Learning.

arXiv e-prints, May 2017.

[27] Shreyas Saxena and Jakob Verbeek. Convolutional neural

fabrics. In Advances in Neural Information Processing Sys-

tems, pages 4053–4061, 2016.

[28] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy

Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Outra-

geously large neural networks: The sparsely-gated mixture-

of-experts layer. arXiv preprint arXiv:1701.06538, 2017.

[29] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[30] Saurabh Singh, Derek Hoiem, and David Forsyth. Swapout:

Learning an ensemble of deep architectures. In Advances in

neural information processing systems, pages 28–36, 2016.

[31] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way

1383

to prevent neural networks from overfitting. The Journal of

Machine Learning Research, 15(1):1929–1958, 2014.

[32] Ewa Szumowska, Małgorzata Kossowska, and Arne Roets.

Motivation to comply with task rules and multitasking per-

formance: The role of need for cognitive closure and goal

importance. Motivation and emotion, 42(3):360–376, 2018.

[33] Marvin Teichmann, Michael Weber, Marius Zoellner,

Roberto Cipolla, and Raquel Urtasun. Multinet: Real-time

joint semantic reasoning for autonomous driving. In 2018

IEEE Intelligent Vehicles Symposium (IV), pages 1013–1020.

IEEE, 2018.

[34] Sebastian Thrun. Is learning the n-th thing any easier than

learning the first? In Advances in neural information pro-

cessing systems, pages 640–646, 1996.

[35] Andreas Veit, Serge Belongie, and Theofanis Karaletsos.

Conditional similarity networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 830–838, 2017.

[36] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-

ona, and Serge Belongie. The caltech-ucsd birds-200-2011

dataset. 2011.

[37] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and

Rob Fergus. Regularization of neural networks using drop-

connect. In International Conference on Machine Learning,

pages 1058–1066, 2013.

[38] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-

mnist: a novel image dataset for benchmarking machine

learning algorithms, 2017.

[39] Ya Xue, Xuejun Liao, Lawrence Carin, and Balaji Krish-

napuram. Multi-task learning for classification with dirich-

let process priors. Journal of Machine Learning Research,

8(Jan):35–63, 2007.

[40] Yoshihiro Yamada, Masakazu Iwamura, and Koichi Kise.

Shakedrop regularization. arXiv preprint arXiv:1802.02375,

2018.

[41] Yongxin Yang and Timothy Hospedales. Deep multi-task

representation learning: A tensor factorisation approach. In

Proceedings of the 2017 International Conference on Learn-

ing Representations, 2017.

[42] A. Yu and K. Grauman. Semantic jitter: Dense supervision

for visual comparisons via synthetic images. In International

Conference on Computer Vision (ICCV), Oct 2017.

[43] Amir R Zamir, Alexander Sax, William Shen, Leonidas J

Guibas, Jitendra Malik, and Silvio Savarese. Taskonomy:

Disentangling task transfer learning. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 3712–3722, 2018.

[44] Wenlu Zhang, Rongjian Li, Tao Zeng, Qian Sun, Sudhir Ku-

mar, Jieping Ye, and Shuiwang Ji. Deep model based transfer

and multi-task learning for biological image analysis. IEEE

transactions on Big Data, 2016.

[45] Yu Zhang and Qiang Yang. A survey on multi-task learning.

arXiv preprint arXiv:1707.08114, 2017.

[46] Yu Zhang and Dit-Yan Yeung. A regularization approach

to learning task relationships in multitask learning. ACM

Transactions on Knowledge Discovery from Data (TKDD),

8(3):12, 2014.

[47] Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou

Tang. Facial landmark detection by deep multi-task learning.

In European Conference on Computer Vision, pages 94–108.

Springer, 2014.

[48] Xiangyun Zhao, Haoxiang Li, Xiaohui Shen, Xiaodan Liang,

and Ying Wu. A modulation module for multi-task learn-

ing with applications in image retrieval. In Vittorio Ferrari,

Martial Hebert, Cristian Sminchisescu, and Yair Weiss, edi-

tors, Computer Vision – ECCV 2018, pages 415–432, Cham,

2018. Springer International Publishing.

1384

