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Abstract

We describe an end-to-end method for recovering 3D hu-

man body mesh from single images and monocular videos.

Different from the existing methods try to obtain all the com-

plex 3D pose, shape, and camera parameters from one cou-

pling feature, we propose a skeleton-disentangling based

framework, which divides this task into multi-level spatial

and temporal granularity in a decoupling manner. In spa-

tial, we propose an effective and pluggable “disentangling

the skeleton from the details” (DSD) module. It reduces the

complexity and decouples the skeleton, which lays a good

foundation for temporal modeling. In temporal, the self-

attention based temporal convolution network is proposed

to efficiently exploit the short and long-term temporal cues.

Furthermore, an unsupervised adversarial training strat-

egy, temporal shuffles and order recovery, is designed to

promote the learning of motion dynamics. The proposed

method outperforms the state-of-the-art 3D human mesh re-

covery methods by 15.4% MPJPE and 23.8% PA-MPJPE

on Human3.6M. State-of-the-art results are also achieved

on the 3D pose in the wild (3DPW) dataset without any

fine-tuning. Especially, ablation studies demonstrate that

skeleton-disentangled representation is crucial for better

temporal modeling and generalization.

1. Introduction

Different from traditional 3D pose estimation that usu-

ally predicts the location of 14/17 skeleton joints [5, 24],

3D human body mesh recovery from the monocular images

is a more complex task, which tries to estimate the more

detailed 3D shape and joint angles. In detail, it needs to es-

timate more than 85 parameters, which controls 6890 ver-

∗This work is done when Yu Sun is an intern at JD AI Research.
†Corresponding author: Wu Liu. ⋆ Equal contribution.

Figure 1. Human 3D mesh recovery from monocular video based

on skeleton disentangling and temporal coherence.

tices [22] that form the surface of 3D body mesh. More-

over, the information loss from the 3D scene to a 2D im-

age, inherent ambiguity, and complex changes in human

body shape and pose further increase the complexity of

this task. Therefore, although the 3D body mesh recov-

ery is important in computer vision, motion/event analy-

sis [10, 11, 20, 23, 19], and virtual try-on [7, 6], it is

still a frontier challenge. In this paper, we try to solve

this problem via a skeleton-disentangled representation in

multi-level spatial and temporal granularity.

Most of the existing methods try to recover the human

3D mesh from single images. Previous multi-stage ap-

proaches [17, 26, 27] first extract human body information

(e.g. 2D pose and segmentation) and then estimate the 3D

model parameters from them, which is typically not opti-

mal. Recently, HMR [15] provides an end-to-end solution

to learn a mapping from image pixels directly to model pa-

rameters, which shows a significant performance advantage

over the two-stage methods. However, as shown in Fig-

ure 1, severe coupling problem makes the prediction unsta-

ble. In HMR, 3D pose, body shape, and camera parameters

are derived directly from the same feature vector using the

fully connected layers. Without any decoupling measure-

ments, high complexity makes features of different targets
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tightly coupled. Moreover, existing datasets with 3D an-

notations are collected in a constrained environment with

limited motion and shape patterns. Therefore, many previ-

ous methods have employed 2D in-the-wild pose datasets,

like MPII [2], to learn richer poses. It may be sufficient

for 3D pose estimation. While, for 3D mesh recovery, 2D

pose is far from enough for recovering the complex human

3D shape and pose details. Lacking supervision makes the

predictions of the details vulnerable, which further exacer-

bates the coupling problem. The coupling strategy makes

the model trained on these datasets cannot well generalize

to the complex environments and various human states.

To solve this problem, we propose a lightweight and

pluggable DSD module to decouple different factors in an

end-to-end manner. The main idea of DSD module is to dis-

entangle the skeleton from the 3D mesh details with bilin-

ear transformation. Firstly, information of the pose skeleton

and the rest details (e.g., body shape, detailed pose informa-

tion) are extracted independently. Furthermore, the bilinear

transformation is employed to aggregate two pieces of in-

formation while keeping their decoupling in the new feature

space. Finally, the network is trained end-to-end to keep the

global optimal. In the evaluations, we demonstrate that the

DSD module outperforms the state-of-the-art methods [16]

by 13% PA-MPJPE on Human3.6M dataset. Moreover,

the evaluations also demonstrate that the proposed portable

DSD module can be easily plugged into other 2D/3D pose

estimation network for recovering 3D human mesh.

Recovering human 3D mesh from single images may

suffer from the inherent ambiguity as multiple 3D poses

and shapes can be mapped to the same situation in a 2D

image. To tackle this problem, we propose a self-attention

temporal network (SATN) for efficiently optimizing the co-

herence between predictions of adjacent frames. SATN is

the combination of self-attention module and TCN. TCN is

employed for its efficient parallel computation and excel-

lent short-term modeling ability. However, the inherently

hierarchical structure of convolution layers limits the repre-

sentation learning of the long-term sequence. More specif-

ically, if the distance of two frames is larger than the ker-

nel size of a single convolution layer, the model requires

a stack of convolution layers to construct a long-term con-

nection to relate them. As a result, the associations of the

entire sequence cannot be established until the upper layer,

which is inefficient. Therefore, we need a more efficient

network to establish associations as early as possible. Based

on this thought, self-attention is employed to associate the

temporal features before TCN. Valuable connections among

all frames can be established within just one self-attention

layer. In this manner, associations can be efficiently estab-

lished at the bottom of the temporal network, which greatly

helps TCN efficiently learning the short and long-term tem-

poral coherence.

Given a video clip centered at frame t, SATN is devel-

oped to estimate human 3D mesh of frame t. Correspond-

ingly, the supervision is only for the frame t. It is hard to de-

termine whether SATN has learned the long-term temporal

correlation. In other words, we lack supervision for guiding

the temporal representation learning. Therefore, we pro-

pose an unsupervised adversarial training strategy for learn-

ing the temporal correlation from the order of video frames.

In detail, frames of a video clip are first shuffled and then re-

sorted using the self-attention and sequence sorting module.

By recovering the correct temporal order of the motion se-

quence in the video, a strong supervision signal is generated

for learning the motion dynamics. Besides, considering that

the motion orders are reversible and the adjacent poses are

similar, the target of sequence sorting is well designed to

meet these properties.

Compared with the DSD network, we report an addi-

tional 4.2%/7.3% improvements brought by our temporal

model, in terms of PA-MPJPE on Human3.6M and 3DPW

respectively. The proposed approach outperform the state-

of-the-art methods [16, 37] that predict 3D mesh by 15.4%

MPJPE and 23.8% PA-MPJPE on Human3.6M. Besides,

state-of-the-art results are also achieved on 3DPW with-

out any fine-tuning. Especially, using features reorganized

by DSD module for temporal modeling relatively improves

11.1% and 27.5% PA-MPJPE on 3DPW and Human3.6M

respectively. It demonstrates that skeleton-disentangled

representation is critical for better temporal motion mod-

eling and generalization.

In summary, the following contributions are made:

1. An effective and portable DSD module is proposed to

disentangle the skeleton from the rest part of the hu-

man 3D mesh. It reduces the complexity and lays a

good foundation for temporal modeling.

2. Self-attention temporal network is proposed to learn

the short and long-term temporal coherence of 3D hu-

man body efficiently.

3. An unsupervised adversarial training strategy is pro-

posed to guide the representation learning of motion

dynamics in the video.

4. Our entire framework is trained in an end-to-end man-

ner. We outperform previous approaches that output

3D meshes [15, 16, 27, 37] in terms of 3D joint error.

2. Related Work

Recovering 3D human mesh from single images. Most

of the existing approaches formulated this problem as re-

covering the parameters of a statistical human body model,

SMPL [22]. Recently proposed ConvNet-based meth-

ods [15, 26, 32, 27, 37, 17, 39, 36] have shown impressive
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Figure 2. Overview of the proposed skeleton-disentangling based self-attention temporal network.

performance. They can be split into two categories: two

stages, direct estimation.

The two-stage methods [26, 27, 17] first predict interme-

diate results, like human parsing [26], and then predict the

SMPL parameters from them. For instance, Pavlakos et al.

[27] developed two individual networks to infer pose and

shape from silhouettes and keypoint locations separately.

The two-stage methods are robust to the domain shift, but

throw away the important details of human body.

Some other methods [15, 32] directly estimate SMPL

parameters from images in an end-to-end manner. In par-

ticular, HMR [15] designed a discriminator to distinguish

the authenticity of predicted SMPL parameters. In this

generative adversarial manner, HMR could be trained with

only 2D pose annotations. HMR greatly outperformed all

two-stage methods. It may suggest that the end-to-end and

non-disruptive feature extraction process is important in this

task. Besides, Tung et al. [32] developed various supervi-

sion approaches, like 2D re-projection of joints and segmen-

tation, to better utilize all available annotations. However,

as we introduced before, these methods suffer from severe

coupling problem.

To tackle the coupling problem, we propose a DSD mod-

ule to disentangle the skeleton from the rest details. It re-

duces network complexity and improves the accuracy of 3D

pose recovery. In this process, the detailed information of

2D images is well preserved. The proposed DSD module

based single-frame network outperforms all these methods.

Recovering 3D pose from monocular video. We focus

on 3D pose estimation from monocular video using deep

networks, which is the most similar to ours. Various net-

works are developed to exploit temporal information. For

example, TP-Net [5] and Martinez et al. [24] trained a

fully connected (FC) network to exploit the temporal co-

herence from the 3D/2D pose sequence. Similarly, Hossain

et al. [13] employed LSTM to predict 3D poses from 2D

poses in a sequence-to-sequence manner. Considering the

computation efficiency of RNN-based methods is limited,

temporal convolution network (TCN) [3] is proposed and

widely used for temporal modeling. For example, Pavllo

et al. [28] employed the TCN to predict 3D pose from a

consecutive 2D pose sequence. They also conduct back-

projection of estimated poses from 3D to 2D for supervision

using the labels generated by the state-of-the-art 2D pose

detector. Currently, as we state before, TCN-based methods

still lack temporal supervision. We propose an adversarial

training strategy to use the temporal order as supervision.

Recovering 3D mesh from monocular video. Few

methods are proposed to recover human 3D mesh from

monocular video. Generally, we can split the existing

methods into two categories: optimization-based and CNN-

based. For example, SFV [29] first predicts human 3D

meshes of each frame by CNN and then smooths the

single-frame results via traditional optimization-based post-

processing. However, compared with CNN, the efficiency

of optimization-based methods is limited. Most recently,
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HMR-video [16] employed the TCN to exploit the tempo-

ral information. They proposed to learn the motion dynamic

by predicting the actions before and after the current frame.

The proposed method outperforms their methods on both

3DPW and Human3.6M.

3. Method

The proposed method is to estimate the 3D human mesh

parameters Θ from single images and monocular videos.

As shown in Figure 2, the proposed framework has two

parts: a) spatially, extracting features of each frame using

the proposed DSD module (red) and b) temporally, learn-

ing the short and long-term temporal coherence of adjacent

frames.

For single images, the most straightforward method is to

estimate Θ directly from features extracted using Resnet-

50 [12]. We follow this simple pipeline and insert a DSD

module before the final fully connected layer. The proposed

DSD module can re-organize the coupled features and dis-

entangle skeleton from the rest details in feature space.

For monocular videos, we propose a temporal network

(SATN) to estimate Θ from a tuple of features (light green)

re-organized by DSD module. More specifically, from n
(n = 5 in Figure 2) frame features centered at frame t,
SATN is built to predict the Θt. SATN consists of self-

attention module (blue) and TCN (gray).

Besides, an adversarial training strategy (gold) is de-

signed to help the self-attention module learning motion

dynamics in the video. In the middle of Figure 2), fea-

tures of adjacent frames are shuffled. Self-attention module

along with the sequence sorting module is trained to recover

the correct temporal order. This strategy is performed in a

multi-task learning manner. The correct order of frame fea-

tures is recovered after the self-attention module. Features

in correct temporal order are sent to TCN for predicting the

human 3D mesh Θt as usual.

3.1. 3D Human Body Representation

A parametric statistical 3D human body model, SMPL,

is employed to encode the 3D mesh into low-dimensional

parameters. SMPL disentangles the shape and pose of a hu-

man body. It establishes an efficient mapping M(β,θ; Φ) :
R

|θ|×|β| 7→ R
3×6890 from shape β and pose θ to a triangu-

lated mesh with 6890 vertices, where Φ represents the sta-

tistical prior of human body. The shape parameter β ∈ R
10

is the linear combination weights of 10 basic shape. The

pose parameter θ ∈ R
3×23 represents relative 3D rotation

of 23 joints in axis-angle representation. To unify the pose

formats of different datasets, 14 common joints of LSP [14]

are selected. A linear regressor P3d is developed to derive

these 14 joints from 6890 vertices of human body mesh.

The linear combination operation of this regressor guar-

antees that joints location is differentiable with respect to

shape β and pose θ parameters.

A weak-perspective camera model is employed in this

task to establish the mapping from 3D space to 2D im-

age plane, in convenience of supervising 3D mesh with

2D pose labels. Finally, a 85 dimensional vector Θ =
{θ,β,R, t, s} is adopted to represent a 3D human body

in camera coordinate, where R ∈ R
3 is the global rotation

in axis-angle representation, t ∈ R
2 and s ∈ R represents

translation and scale in image plane, respectively. The pro-

jection of M(β,θ; Φ) is

x = sΠ(RM(β,θ; Φ)) + t, (1)

where Π is an orthographic projection.

3.2. DSD Module

First of all, we need to extract the 3D mesh informa-

tion from each frame. As we introduced before, the existing

single-frame methods suffer from severe coupling problem.

To overcome this problem, we propose the DSD module to

disentangle the skeleton from the rest part of the human 3D

mesh, including body 3D shape and the detailed poses like

the orientation of head, hands, and feet. The DSD mod-

ule brings two main advantages: a) decoupling reduces the

complexity by meticulously task dividing; and b) skeleton-

disentangled representation is a better foundation for ex-

ploring the temporal motion dynamics.

As shown in the red part of Figure 2, a two-branch struc-

ture is designed to extract the skeleton and the rest detailed

features separately. We follow [31] to estimate joint co-

ordinates of the 2D/3D skeleton with minor modifications.

Three de-convolution layers are stacked on top of the back-

bone and followed by DIR (differential integral regression)

to convert the normalized heatmaps H into 2D/3D joint co-

ordinates. The DIR(H) is the integration of all location

indices p in the heatmaps, weighted by their probabilities.

For instance, the 3D coordinate values of the k-th joint Jk
could be derived from the k-th 3D heatmap Hk by

Jk =

D∑

pz=1

H∑

py=1

W∑

px=1

pHk(p), (2)

where D, H , and W are depth, height and width of the k-th

heatmap Hk respectively. For 2D heatmaps, D = 1.

After independent feature extraction, we need to find a

proper way to aggregate them. For the two-factor problems,

bilinear transformation is well-known for its strong ability

of decoupling the style-content factors [9], such as the iden-

tity and head orientation in face recognition; or accent and

word class in speech recognition. Therefore, we employ it

to disentangle the skeleton from the rest details. Given the

2D skeleton coordinates xs ∈ R
N×28 and corresponding

detailed features xd ∈ R
N×512 , their bilinear transforma-
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tion y ∈ R
N×512 is

y = xsAxd
T , (3)

where A ∈ R
512×28×512 is the learnable weights.

Moreover, with high modularity and the simple design, it

is convenient to transplant DSD module to other networks.

For instance, DSD module could be easily plugged into the

existing 2D/3D pose estimation network for predicting 3D

human body meshes. As shown in Figure 2, two fully con-

nected layers, and a bilinear transformation layer are all we

need for this conversion.

3.3. Self­attention Temporal Network

Secondly, we propose a self-attention temporal network

(SATN) for learning long and short-term temporal coher-

ence in the video. Given skeleton-disentangled features

from DSD module, SATN predicts smoother Θ in tempo-

ral. TCN performs well in modeling the short-term pat-

terns and efficient parallel computation. But due to its in-

herent hierarchical structure, it is inefficient to model the

long-term correlation in the video. To solve this problem,

we propose to build the TCN on top of the self-attention

module. As illustrated in Figure 2, given a tuple of frame

features xf ∈ R
N×512 centered at t , self-attention mod-

ule is employed to relate different frames and establish the

long-term sequence representations. Then, the outputs of

the self-attention module are fed into the TCN for predict-

ing the human 3D mesh Θt.

In particular, the positional encoding is added to each in-

put feature vector for injecting information about their abso-

lute position in sequence. Multi-head attention (MHA) [33]

is adopted to accomplish the self-attention mechanism,

which is a variance of typical scaled dot-product attention

(SDPA) [33]. In this work, we employ 8 heads for MHA. In

detail, xf is first linearly projected to {xi
f ∈ R

N×64, i =
1, ..., 8} via 8 fully connected (FC) layers. Then SDPA is

performed on each {xi
f} in parallel. The outputs are con-

catenated and linearly projected to yf ∈ R
N×512 using a

FC layer. The SDPA is derived as

SDPA(xf ) = softmax(
xfxf

T

√
d

)xf , (4)

where d=512 is the dimension of inputs and serves as the

scaling factor. In Equation 4, the output is the weight sum of

xf . The weight matrix represents the relation between each

two frames. The paths length between different frames is re-

duced to constants. With the assistance of the self-attention

module, the bottom layers of TCN could reach to the infor-

mation of entire sequence. The receptive field is relatively

expanded. Short and long-term temporal coherence can be

learned more efficiently.

Although we predict from multi-frame features in tem-

poral, the supervision is still in single-frame level. We lack

the temporal supervision for the long-term representation

learning. To tackle this problem, we propose an unsuper-

vised adversarial training strategy. Similar to recent meth-

ods [25, 30, 8, 18], we also use the temporal order of frames

as the supervision for the representation learning. However,

there are some differences in the formulation of the prob-

lem. Most of the previous methods [25, 30, 8] formulated

the problem as the binary classification that verifies the cor-

rect/incorrect temporal order. Lee et al. [18] developed it

to predict n!/2 combinations for each n-tuple of frames. In

this work, we further develop it to directly estimate the orig-

inal position indices of the shuffled frames for richer super-

vision. Besides, two adaptive changes of loss function are

made to meet the special properties of the motion sequence.

As illustrated in the Figure 2, frame features are first

shuffled before input. As before, the input is added up with

the positional coding, which stays unchanged to avoid dis-

closure of the order information. After going through the

self-attention module, the outputs are sent to the TCN and

the sequence sorting module separately. Before fed into

TCN, the shuffled order is retrieved to avoid the interfer-

ence with the normal representation learning of the TCN.

The sequence sorting module predicts the position indices

of the correct order. Specifically, for each tuple of 9 shuffled

frames, we need to predict 9 indices, indicating their posi-

tions in the original sequence. Besides, two adaptive modi-

fications of sorting target are made. Firstly, considering the

reasonable orders of some actions (e.g., standing up/sitting

down) are reversible, the minor loss between the predicted

and the forward/backward ground truth orders will be cho-

sen. Secondly, sometimes, the differences between adjacent

frames are too small to be properly preserved after single-

frame convolution encoding. In this situation, the context

order of adjacent frames becomes ambiguous. But the typi-

cal one-hot label will make equal punishments on this kind

of failures without considering the adjacent ambiguity. To

tackle this problem, we replace the hard one-hot label with

the soft Gaussian-like label for proper supervision.

3.4. Loss Functions

As we mentioned in Section 1, full 3D annotations of

2D image available are limited to the experimental envi-

ronment. Models trained on these data cannot generalize

well to the in-the-wild images. To make full use of existing

2D/3D data, the estimated 3D human body parameters are

optimized with

LΘ = wpmLpm + w3dL3d + w2dL2d + wrLr (5)

where wpm, w3d, w2d, wr are weights of these loss items.

For images with motion capture, Lpm is employed to super-

vise the the body parameter θ, acquired by moshing [21],

with L2 loss directly. In particular, inspired by [15, 27],

angular pose θ ∈ Θ is converted from rotation vectors to
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Figure 3. Some qualitative results of DSD network.

3× 3 rotation matrices via the Rodrigues formula for stable

training. For images with 2D/3D pose annotations, L2d and

L3d are employed to supervise the skeleton pose J2d/J3d

of estimated body mesh using L1/L2 loss respectively. J3d

and J2d are derived from the predicted Θ = {θ,β,R, t, s}
by

J3d = P3d(M(β,θ; Φ)) (6)

and

J2d = sΠ(RJ3d) + t, (7)

where M represents a mapping from shape β and pose θ

to a 3D human body mesh, P3d represents a linear mapping

from a 3D mesh to 3D joints coordinates and Π is an ortho-

graphic projection, as we defined in Section 3.1.

Besides, it is important to establish rational constraints

of joint angles and body shape, especially for learning from

images with only 2D pose annotations. Therefore, we fol-

low [15] and employ a discriminator to provide rational-

ity loss Lr using Mocap data [1]. Besides, L2DJ is em-

ployed to supervise the 2D skeleton coordinates xs in the

DSD module using L1 loss. The sorting results of sequence

sorting module are supervised with L2 loss of Ls.

4. Experiments

4.1. Datasets

Human3.6M is the only dataset with 3D annotations we

used to train. It contains videos of multiple actors perform-

ing 17 activities, which are captured in a controlled environ-

ment. We downsample all videos from 50fps to 10fps for re-

moving the redundancy. The proposed method is evaluated

on common protocol following [15] for a more comprehen-

sive comparison. In details, we train on 5 subjects (S1, S5,

S6, S7, S8) and test on subject S9 and S11. We report both

the mean per joint position error (MPJPE) and Procrustes

Aligned MPJPE (PA-MPJPE), which is MPJPE after rigid

alignment of predicted pose with ground truth, in millime-

ters. Except for the common MPJPE and PA-MPJPE, mean

per joint velocity and acceleration error (MPJVE/MPJAE),

in mm/s and mm/s2 respectively, are adopted to evaluate

the smoothness and stability of predictions over time.

3DPW [34] is a recent challenge dataset that contains 60

video sequences (24 train, 24 test, 12 validation) of richer

activities, such as climbing, golfing, relaxing on the beach,

etc. They leverage video and IMU to obtain accurate 3D

pose despite the complexity of scenes. For a fair compari-

son, none of the approaches get trained on 3DPW. We report

PA-MPJPE on all splits (train/test/val) of this dataset.

2D in-the-wild datasets. We use MPII [2], LSP [14],

AICH [35], and Penn Action [38], which are 2D pose

datasets without 3D annotations, to train our single-frame

DSD network for better generalization. We follow [4, 17,

15] to use 14 LSP joints as the skeleton.

4.2. Implement Details

Architecture: The framework has spatial and tempo-

ral parts. In spatial, features are extracted using ResNet-

50, pre-trained on MPII, and further decoupled using DSD

module. In temporal, features of video clips are gathered

and put into SATN, which compose of self-attention mod-

ule and TCN. The self-attention module contains 2 Trans-

former [33] blocks. TCN follows the design of [28, 3] but

only contains 2 convolution blocks. Since the Human3.6M

is down-sampled, we take a receptive filed of 9 frames for

the TCN, equivalent to 45 frames in the original video. The

sequence sorting module consists of 3 convolution blocks

followed by 3 FC layers.

Training details: We train both single-frame DSD net-

work and SATN for 40 epochs. Considering the efficiency

of training, we pre-compute the single-frame features and

train SATN with them directly. The SGD is adopted as the

optimizer with momentum=0.9. The learning rate and batch

size are set to 1e-4 and 16 respectively. The weights of loss

items are set as wpm = 20, wr = 0.6, w2d = 10, w3d = 60.

Besides, considering the domain gap between the train and

the test set, we discard the hyper-parameters of the batch

normalization layers during the evaluation. Besides, to en-

hance the stability of occlusion, we enlarge the scale aug-

mentation to generate some samples with half body.

4.3. Comparisons to State­of­the­art Approaches

The results in Table 1 shows that the proposed meth-

ods achieve the state-of-the-art results on 3DPW. Again,

all approaches are directly tested without any fine-tuning

and Human3.6M is the only 3D train set. It demonstrates

that the proposed methods perform well in generalization.

The most similar method to ours is HMR-video [16], which

also learns motion dynamic with TCN for temporal op-
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Method Train Test val

Simple-baseline [24] - 157.0 -

SMPLify [4] - 106.8 -

TP-Net [5] - 92.2 -

HMR-video [16] - 80.1 -

HMR-video-L [16] 75.9 72.6 76.7

DSD 75.0 75.0 78.0

DSD+SATN 68.3 69.5 71.8

Table 1. Comparisons to state-of-the-art methods on entire 3DPW

in terms of PA-MPJPE without any fine-tuning.

Method MPJPE↓ PA-MPJPE↓
HMR [15] 87.9 58.1

STN [37] 69.9 61.4

HMR-video - 57.8

HMR-video-L - 55.7

Direct 110.0 62.8

Concat 91.8 63.1

DSD 60.1 44.3

DSD+SATN 59.1 42.4

Table 2. Comparisons to state-of-the-art methods that predict 3D

meshes on Human3.6M.

Method MPJPE↓ PA-MPJPE↓
Backbone+TCN 87.8 58.5

Backbone+SATN 80.6 58.6

DSD+TCN 82.3 52.0

DSD+TCN+Self-attention 59.6 43.4

DSD+SATN 59.1 42.4

Table 3. Ablation study of the components in SATN.

timization. We compared with their two evaluation set-

tings, HMR-video and HMR-video-L. The main difference

between two settings is that HMR-video is trained with

datasets of similar scale with ours, while HMR-video-L is

trained with their internet dataset which is nearly 20x larger

than ours. Our approach outperforms HMR-video in terms

of PA-MPJPE by 13.2% on 3DPW test set. On all splits of

3DPW, we evaluate HMR-video-L model they released. As

shown in Table 1, the proposed method superior to HMR-

video-L on all splits.

State-of-the-art results are also achieved on Hu-

man3.6M. In Table 2, the proposed method outperforms

the HMR-video and HMR-video-L by 26.6% and 23.8%

in terms of PA-MPJPE respectively. Note that, in Table 1,

TP-Net and Simple-baseline, also trained on Human3.6M,

perform extremely well on Human3.6M, while showing

poor generalization ability on 3DPW. Besides, the proposed

method greatly outperforms SMPLify on 3DPW, which in-

dicates that the improvements are not brought by the differ-

ent 3D pose representation.

Figure 4. Decoupling effectiveness comparison between DSD

module (the two rows upper) and Concat(the two rows lower) by

replacing the skeleton (shown in the left part) or the detailed fea-

tures (shown in the right part).

4.4. Evaluation of the DSD module

1) The ablation study of the DSD module. Two base-

line methods are compared in Table 2 for evaluating the

DSD module. Direct is to directly estimate the Θ without

DSD module. Concat is to replace the bilinear transforma-

tion layer of DSD module with the concatenation operation.

Compared with Direct, Table 2 shows that Concat performs

even worse in PA-MPJPE, but adding DSD module brings

significant improvement (by 45.3% MPJPE and 29.4% PA-

MPJPE). The results demonstrate that decoupling skeleton

improves the accuracy of 3D pose recovery. Next, we will

validate that the skeleton is sufficiently disentangled from

the rest details by the DSD module.

2) Decoupling effectiveness. We set up a visual ex-

periment to compare the decoupling effectiveness of DSD

module and Concat. For verifying whether the skeleton

is sufficiently decoupled, we deliberately replace the esti-

mated skeleton with the randomly selected one. The left

part of Figure 4 with gray human mesh shows the different

responses from DSD module (the upper two rows) and Con-

cat (the lower two rows) to this replacement. As we can see,

the body postures of 3D mesh predicted by the DSD module

are correctly changed together with the replaced skeleton,

while the outputs from Concat are completely messed up.

The experimental results show that the skeleton is success-

fully disentangled from the rest details. Likewise, a similar

conclusion can also be drawn from the right part of Figure 4

with blue human mesh, which is the results when we replace

the detailed features and keep skeleton unchanged.

3) Stabilily. In addition, Table 4 and 5 show their

MPJVE and MPJAE. Note that Concat has much larger

MPJVE and MPJAE than the rest, even including Direct. It

indicates that the predictions derived from the concatenated

features are more unstable. By contrast, the DSD module
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Method Dir. Disc. Eat Greet Phone Pose Purch. Sit SitD. Smoke Photo Wait Walk WalkD. WalkT. Avg.↓
Direct 14.5 15.6 14.9 15.6 15.4 15.0 15.9 15.4 16.1 15.6 15.7 15.7 15.8 16.0 16.1 16.1

Concat 20.0 20.9 19.4 19.7 19.2 18.8 19.5 19.1 20.1 19.4 19.7 19.6 19.7 20.4 20.4 20.5

DSD 12.3 12.8 12.2 12.6 12.4 12.1 12.1 11.8 12.3 12.0 12.0 12.0 12.2 12.4 12.5 12.5

DSD+SATN 8.8 9.1 8.5 8.9 8.7 8.6 8.7 8.3 8.4 8.3 8.3 8.3 8.4 8.6 8.7 8.7

Table 4. MPJVE(mm/s): Velocity error over the poses of the predicted 3D human meshes.

Method Dir. Disc. Eat Greet Phone Pose Purch. Sit SitD. Smoke Photo Wait Walk WalkD. WalkT. Avg.↓
Direct 13.1 14.2 13.5 14.3 14.0 13.7 14.7 14.0 14.3 14.0 14.0 14.0 14.3 14.6 14.8 14.8

Concat 17.1 18.0 16.6 17.1 16.5 16.2 16.8 16.2 16.7 16.1 16.4 16.4 16.7 17.3 17.4 17.4

DSD 11.5 12.0 11.3 11.8 11.5 11.2 11.3 10.8 11.0 10.8 10.8 10.8 11.1 11.3 11.5 11.5

DSD+SATN 7.0 7.4 6.8 7.2 6.9 6.8 6.9 6.5 6.5 6.3 6.4 6.3 6.5 6.7 6.8 6.8

Table 5. MPJAE(mm/s2): Acceleration error over the poses of the predicted 3D human meshes.

improves stability with smoother predictions.

4) Comparisons to the state-of-the-art single-frame

methods. In Table 2, we compare proposed DSD module

with HMR and STN. We tightly follow the same evaluation

protocol and use the same backbone, ResNet-50, as stated

in their articles. Compared with HMR, adding DSD module

reduces the error by 31.6% MPJPE and 23.7% PA-MPJPE,

which further proves the effectiveness of DSD module. We

also compare to STN [37], which is the most recent pro-

posed method that also predicts angular pose and outputs

3D meshes. In Table 2, DSD network outperforms the STN

by 14% MPJPE and 27.9% PA-MPJPE. Some qualitative

results of DSD module are illustrated in Figure 3.

4.5. Evaluation of SATN

1) The ablation study of SATN. Table 2 shows that

compared with the single-frame DSD network, adding

SATN brings an additional 4.2%/7.3% improvement in

terms of MPJPE/PA-MPJPE on Human3.6M. In addition,

Table 1 shows that adding SATN brings a higher improve-

ment (7.3% PA-MPJPE) on 3DPW. Besides, except for re-

ducing the error of 3D pose recovery, as shown in Table 4

and 5, SATN significantly improves the smoothness of the

predictions.

2) The ablation study of components in SATN. Table 3

shows that performance gets steadily improved by adding

the proposed components, including the self-attention mod-

ule and the adversarial training strategy. Note that mak-

ing temporal modeling simply with the TCN is not enough.

Compared with the results of the single-frame DSD net-

work in Table 2, Table 3 shows that DSD+TCN leads to

the degradation of performance. Similar conclusions can

also be drawn from HMR-video [16]. As shown in Table 3,

involving self-attention module greatly improves the per-

formance of the temporal network and reverses the degra-

dation. This phenomenon demonstrates that it is vital for

TCN to establish associations of the entire input sequence

as early as possible and self-attention module performs well

in this task.

4.6. Role of the DSD Module for SATN

The results in Table 3 shows that skeleton-disentangled

representation is of great importance for effective tempo-

ral modeling. Backbone+TCN in Table 3 is to train the

TCN with features from the backbone directly without

DSD module. As shown in Table 2, the results of Back-

bone+TCN are comparative to the HMR-video [16], which

has similar architecture. By contrast, involving DSD mod-

ule (DSD+TCN in Table 3) brings a 11.1% improvement

in terms of PA-MPJPE. Besides, when we replace TCN

with SATN, the performances get further improvement. Es-

pecially, in Table 3, the combination of DSD and SATN

(DSD+TCN+Self-attention+adversarial training) causes a

magic reaction and outperforms all backbone-based meth-

ods by 26.6% MPJPE and 27.5% PA-MPJPE. However, PA-

MPJPE of Backbone+TCN and Backbone+SATN in Table 3

are nearly equal, which indicates that skeleton-disentangled

representation is essential for motion modeling.

5. Conclusion

We propose an end-to-end framework for recovering 3D

human mesh from single images and monocular videos via a

skeleton-disentangled representation. Decoupling skeleton

reduces the complexity and the 3D pose error. The proposed

DSD module could be regarded as an efficient bridge be-

tween 2D/3D pose estimation and 3D mesh recovery. More-

over, SATN is well designed to explore long and short-term

temporal coherence. Massive evaluations demonstrate that

we provide an attractive and efficient baseline method for

related problems, including human motion analysis, 3D vir-

tual try-on and multi-person 3D meshes recovery.
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