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Abstract

In this paper, we introduce the problem of K-best trans-

formation synchronization for the purpose of multiple scan

matching. Given noisy pair-wise transformations computed

between a subset of depth scan pairs, K-best transformation

synchronization seeks to output multiple consistent relative

transformations. This problem naturally arises in many ge-

ometry reconstruction applications, where the underlying

object possesses self-symmetry. For approximately symmet-

ric or even non-symmetric objects, K-best solutions offer

an intermediate presentation for recovering the underlying

single-best solution. We introduce a simple yet robust iter-

ative algorithm for K-best transformation synchronization,

which alternates between transformation propagation and

transformation clustering. We present theoretical guaran-

tees on the robust and exact recoveries of our algorithm.

Experimental results demonstrate the advantage of our ap-

proach against state-of-the-art transformation synchroniza-

tion techniques on both synthetic and real datasets.

1. Introduction

Computing consistent relative transformations across

multiple RGB or RGBD images (or transformation syn-

chronization), is a fundamental problem that enjoys

rich computer vision applications, including multi-view

structure-from-motion [20, 36, 18], scan registration for 3D

reconstruction [26], and assembly of fractured objects [23],

to name just a few. However, almost all existing approaches

stand on the assumption that there is a single plausible solu-

tion. This assumption becomes inappropriate if there exist

multiple potential solutions, e.g., when the underlying ob-

ject is symmetric.

In this paper, we introduce the problem of K-best trans-

formation synchronization. The same as the standard set-

ting of transformation synchronization (e.g.[41, 6, 13, 2, 33,

9]), K-best transformation synchronization takes as input a

collection of partial objects (e.g., an RGB image collection

or an RGBD image collection) and their relative transfor-
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mations computed using an off-the-shelf algorithm. The

difference in K-best transformation synchronization is that

besides noise and outliers, there are multiple modes in the

input relative transformations due to the underlying sym-

metries. In light of this, the output of K-best transformation

consists of, for each partial object, K transformations be-

tween its local coordinate system and a world coordinate

system. We expect that these transformations can describe

the different modes in the input relative transformations.

Note that we do not specify the value of K, and it is au-

tomatically inferred from the input relative transformations.

K-best transformation synchronization appears to be a

lot harder than single-best transformation synchronization

due to computational challenges in separating multiple-

modal correct input transformations and the incorrect input

transformations. For example, recent state-of-the-art trans-

formation synchronization techniques (e.g.[41, 4, 33]) as-

sume that when representing pairwise transformations us-

ing data matrices, the spectral-gap of the data matrix that

encodes correct input transformations shall be much bigger

than the spectral norm of the data matrix that encodes incor-

rect input transformations (c.f.[41]). However, this assump-

tion may not hold anymore when applying existing trans-

formation synchronization techniques to the K-best setting,

where the spectral behavior of the correct data matrix may

be close to a random matrix, and the desired spectral sepa-

ration is not available anymore.

In this paper, we propose a novel approach for K-

best transformation synchronization. Our approach alter-

nates between transformation propagation and transforma-

tion clustering. Transformation propagation is motivated

from the success of using the power method for spectral

transformation synchronization [35, 32, 31, 34, 3]. In con-

trast to the averaging operator used in the standard power

method, we perform transformation clustering to find dom-

inant modes of the propagated transformations, which re-

flect the underlying symmetry. We describe a simple pro-

cedure to determine the optimal value for K by analyzing

the transformation synchronization results under different

K. From the theoretical point of view, we establish strong

exact recovery conditions of our approach on the underly-

ing symmetry and relative transformations. For transforma-
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tion synchronization of approximately symmetric objects,

we present a post-processing step for K-best transforma-

tion synchronization that jointly picks the best pose for each

partial object among the candidate poses obtained through

transformation propagation and transformation clustering.

In this case, the K-best solutions serve as an intermediate

representation for standard transformation synchronization.

We have tested our approach on synthetic examples from

ShapeNetCore [11] and real examples from ScanNet [19].

The results show that our approach leads to considerable

improvements over state-of-the-art transformation synchro-

nization techniques. On subsets of instances that show

strong self-symmetries (which we denote as ShapeNet-

CoreSym and ScanNetSym for the rest of this paper), our

approach reduces the state-of-the-art mean angular rotation

error from 12.1◦ to 6.7◦ on ShapeNetCoreSym and from

31.6◦ to 19.6◦ on ScanNetSym, respectively. Our approach

also leads to considerable improvements on entire bench-

mark datasets. The mean angular rotation errors improve

from 13.7◦ to 9.7◦ on ShapeNetCore and from 36.3◦ to

21.3◦ on ScanNet. Our approach also shows competing per-

formance against state-of-the-art rotation synchronization

techniques on large RGB image collections (e.g., Cornell

Arts Quad [18] and San Francisco dataset [14]).

2. Related Works

Early works in map synchronization follow the general

methodology of applying the cycle-consistency criterion to

improve maps computed between pairs of shapes in isola-

tion [26, 23, 45, 30, 39]. Despite the empirical success, a

common limitation of these methods is their exact recov-

ery conditions, i.e., under what conditions can the under-

lying maps be recovered, are unknown. In addition, it is

difficult to apply them for K-best transformation synchro-

nization. For example, one straight-forward approach is to

apply these methods recursively by removing input relative

transformations that are compatible with the current solu-

tions. However, this simple extension does not work since a

single pair-wise map may be shared by multiple consistent

relative transformations.

Convex optimization techniques. Modern map synchro-

nization techniques leverage matrix formulations of object

maps. [24] establishes the equivalence between the cycle-

consistency constraint and the fact that the matrix that stores

pair-wise maps in blocks is positive semidefinite or low-

rank. Based on this fact, convex optimization techniques

formulate map synchronization as solving a constrained

low-rank matrix recovery problem [24, 42, 4, 15, 13, 8, 29,

33, 10], where the input matrix encodes the input maps, and

the recovered matrix describes the cycle-consistent maps.

The key advantage of such formulations is that they admit

tight exact recovery conditions, namely, under what condi-

tions of the input maps, the underlying maps can be exactly

recovered.

Despite the key theoretical advantage, convex optimiza-

tion formulations cannot be easily modified to output mul-

tiple synchronizations. The major bottleneck is that the ex-

act recovery conditions require spectral separation between

noise and the underlying synchronizations, which do not

hold any more in the presence of multiple solutions.

Spectral techniques. One family of map synchronization

techniques are based on spectral decomposition of data ma-

trices that encode maps in blocks [39, 32, 34, 6, 2]. Existing

techniques also assume the existence of the spectral gap,

making them not suitable for K-best transformation syn-

chronization. Our propagation-aggregation scheme is moti-

vated from the power method, yet we modify the scheme so

that it works for continuous transformations. The clustering

scheme is conceptually similar to the sparsification operator

in truncated power methods [27, 44]. However, the analy-

sis of our approach is more challenging because the spectral

gap of the data matrix is small for symmetric objects.

Non-convex optimization techniques. A recent line

of transformation synchronization techniques focuses on

non-convex optimizations, including alternating minimiza-

tion [48], reweighted least squares [21, 12, 25], reweighted

factorization [1], and continuous optimization [38, 28]. De-

spite the efficiency of non-convex techniques, their success

requires choosing good initial solutions. While such ini-

tial solutions are easy to obtain in the single-best setting

(e.g., random sampling or spectral initialization), they be-

come difficult to obtain in the K-best setting (e.g., spectral

initialization is not applicable anymore).

M-best MRF inference. In a relevant problem of comput-

ing M-best solutions for discrete MRF inference, [5] mod-

ifies the objective function to spin out multiple solutions in

a recursive manner. In contrast, we focus on the specific

application of rotation synchronization. We also propose a

specific algorithm and analyze exact recovery conditions.

Joint map and symmetry synchronization. In a recent

work [37], the authors proposed a method for optimizing

dense correspondences between objects that possess self

symmetries. The key idea is to leverage lifting to obtain

a map representation which provides lossless encoding of

symmetry groups. The method leverages low-rank matrix

recovery to estimate the underlying symmetry and pairwise

maps. In contrast, this paper focuses on synchronizing rigid

transformations, and we propose a novel method that com-

bines transformation propagation and clustering. Both the

problem setting and the proposed algorithm are different

from those of [37].

Bayesian pose graph optimization. Another recent

work[7] studied transformation synchronization from the

perspective of Bayesian inference. Under Bingham dis-

tributions of poses, it outputs a probability distribution

of synchronization results. The inference approach lever-

ages MCMC. However, due to the single-mode nature of

the Bingham distribution, this approach is mostly suitable

for modeling the uncertainties of single-best transformation

synchronization.
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3. Approach

In this section, we introduce the technical details of our

approach. We begin with the problem statement and an

overview of our approach in Section 3.1. We then elabo-

rate different components of our approach from Section 3.2

to Section 3.4.

3.1. Problem Statement and Approach Overview

Problem statement. We begin introducing a few notations.

In this paper, we represent a transformation T ∈ SE(3) us-

ing a 4× 4 matrix. Unless otherwise noticed, we denote the

rotation and translation components of T as R ∈ R
3×3 and

t ∈ R
3, respectively. Likewise, we denote the rotation and

translation components of Tij as Rij and tij , respectively.

K-best transformation synchronization considers the set-

ting where we have n partial objects (e.g., RGB-D images)

I = {I1, · · · , In} capturing an underlying symmetric ob-

ject. With Σi we denote the local coordinate system asso-

ciated with Ii. Let Σ be a world coordinate system, and we

assume Σ = Σ1 in this paper. The input is given by relative

rigid transformations computed along a connected graph

G = (I, E) using an off-the-shelf algorithm. Specifically,

we have a relative transformation T in
ij ∈ SE(3) : Σj → Σi

for each edge (i, j) ∈ E . Following the convention, we

assume E is symmetric, i.e., ∀(i, j) ∈ E , (j, i) ∈ E and

T in
ji = T in

ij

−1
. K-best transformation synchronization as-

sumes that ∀(i, j) ∈ E , ∃1 ≤ kij , kji ≤ K,

T in
ij = T ⋆

jkji
T ⋆
ikij

−1 + Eij ,

where T ⋆
i = {T ⋆

i1, · · · , T ⋆
iK}, 1 ≤ i ≤ n collects K under-

lying transformations from Σi to Σ associated with Ii, and

Eij is the measurement noise. For symmetric objects, it is

expected that T ⋆
i is consistent with the underlying symme-

try group.

The goal of K-best transformation is to determine the

size K and compute for each input object Ii a set of rigid

transformations Ti = {Tik, 1 ≤ k ≤ K} to recover T ⋆
i .

Approach overview. The key idea of our approach is mo-

tivated from the fact that when looking at composite trans-

formations between a pair of images along paths in G, the

correct ones (there may be multiple ones due to the under-

lying symmetry) shall be realized by multiple such paths

(c.f.[22]). In light of this, we propose to alternate be-

tween propagating transformations and clustering transfor-

mations. The propagation operation explores all potential

relative transformations from S1 to each Si, while the clus-

tering operation ensures that the number of propagated rel-

ative transformations does not explode. As highlighted be-

low, our approach consists of a pre-processing step, a core

propagation-and-clustering procedure, a procedure for de-

termining K, and a post-processing step.

The pre-processing step of our approach computes a

dense set of samples S ⊂ SE(3) for rigid transformations.

S allows us to convert a hard continuous optimization prob-

lem into a more manageable discrete optimization problem.

As we will see later, such a discretization also significantly

boosts the performance of transformation clustering. More-

over, our sampling strategy possesses an effective indexing

data structure, such that most samples are not visited during

the execution of our algorithm.

The core propagation-and-clustering procedure assumes

a given K and computes T ⋆
i , 1 ≤ i ≤ n in an iterative man-

ner. Given the current transformation sets T (l)
i , 1 ≤ i ≤ n

at iteration l. The propagation operation computes T (l+1)

i

by propagating signals from neighboring vertices of Ii. The

clustering step computes T (l+1)
i by picking K most repeat-

ing elements in T (l+1)

i . This propagation-and-clustering

procedure terminates when T (l)
i are fixed or the maximum

number of iterations is reached.

Our approach determines the optimal value of K by run-

ning the propagation-and-clustering procedure on different

values of K. We then introduce a scoring function that mea-

sures a description efficiency score of a solution and pick K
that maximizes this description efficiency.

The post processing step jointly picks the best so-

lution among the candidate poses computed during the

propagation-and-clustering procedure. We solve this prob-

lem by combing leading eigenspace computation and

rounding.

3.2. Preprocessing: Transformation Sampling

In this section, we introduce a sampling strategy for

SE(3). In particular, this sampling strategy can be indexed

using a sparse indexing data structure, and most of the sam-

ples are not revisited during each run of our algorithm. This

allows us to use very dense samples to marginalize the dis-

cretization error.

We perform sampling for rotations and translations sep-

arately. Specifically, we use a regular grid to sample the

space of translations. Let dmax be the maximal translation

along each axis, we use a grid of resolution N3 for possi-

ble translations, meaning the size of each cell is dmax

N
. We

expect that the sampling density is larger than the measure-

ment notice, and we set N = 128 in our experiments. In

addition, we set dmax = 2L, where L is the averaged size

of each input object. With St ⊂ R
3 we denote the result-

ing translation sample set. Sampling the space of rotations

SO(3) is a bit more involved, due to the complicated struc-

ture of SO(3). We propose to decompose SO(3) = (S2/
{1,−1} × S1), where Si denotes the unit sphere in R

i+1.

Using this decomposition, we simply concatenate samples

for S1 and S2/{1,−1} to obtain samples for SO(3). To

sample S1, we place uniform samples along S1. To sample

S2/{1,−1}, we employ the HEALPix grid [43]. In our ex-

periments, we set the grid resolutions to be 2◦ for both S1

and S2/{1,−1}. With SR we denote the resulting rotation

sample set. Finally, we define the entire sample set S for
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SE(3) by concatenating the rotation and translation sample

sets, i.e., S = SR × St.
Our approach frequently utilize a projection operator

PS : SE(3) → S that snaps any rigid transformation onto

the transformation sample set S:

PS(T ) = [RS,T |tS,T ] ,

where ∀T ∈ SE(3),

RS,T = argmin
R′∈SR

‖R−R′‖F , tS,T = argmin
t′∈St

‖t− t
′‖.

Both projection operators can be easily implemented using

the sparse indexing structure.

3.3. Transformation Propagation and Clustering

The core of the proposed K-best transformation synchro-

nization approach is an iterative procedure for transforma-

tion propagation and clustering. This procedure assumes a

given K and outputs a transformation set Ti ⊂ S, |Ti| = K
for each partial object Ii. The input to this procedure is

given by relative transformations T in
ij , (i, j) ∈ E computed

using an off-the-shelf pairwise matching technique. Let

T (l)
i , 1 ≤ i ≤ n denote the transformation sets at iteration

l. Initially, we set

T (0)
1 = {I4}, T (0)

i = ∅, 2 ≤ i ≤ n.

At each iteration l of the iterative procedure, we first propa-

gate T (l)
i to neighboring objects to generate candidate trans-

formation sets T (l+1)

i ⊂ S, 1 ≤ i ≤ n:

T (l+1)

i :=
⋃

j∈N (i)

{PS
(

T in
ji · Tj

)

|Tj ∈ T (l)
j }. (1)

where N (i) ⊂ {1, · · · , n} denotes the indices of adjacent

objects of Ii in G. Given each candidate transformation set

T (l+1)

i , we compute its corresponding transformation set

T (l+1)
i at iteration l + 1 by extracting K dominant modes:

T (l+1)
i ← K-Mode(T (l+1)

i ). (2)

As T (l+1)

i ⊂ S . We simply set T (l+1)
i as the K elements

that are most frequent in T (l+1)

i . Note that if |T (l+1)

i | < K,

then we simply set T (l+1)
i = T (l+1)

i .

The iterative procedure of propagation and clustering ter-

minates when

T (l+1)
i = T (l)

i , ∀1 ≤ i ≤ n,

or the maximum number of iterations is reached. With

T ⋆
i , 1 ≤ i ≤ n we denote the output of this iterative proce-

dure.

The iterative procedure described above is dependent on

the root object, which we set as I1. Our experiments show

that the final results are insensitive to the choice of the root

object.

3.4. Estimation of K

In this section, we define a scoring function to evalu-

ate the output of the propagation and clustering procedure

described above. To this end, we augment the notation of

the out as T out(K) := {T ⋆
i (K), 1 ≤ i ≤ n} for a fixed

K with respect to the set of input relative transformations

T in
pair := {T in

ij , (i, j) ∈ E}. We then define a consistency

score between one input rigid transformation T in
ij and two

corresponding transformation sets Ti and Tj :

s(Ti, Tj , T
in
ij ) =

{

1 PS(T
in
ij Ti) = Tj , ∃Ti ∈ Ti, Tj ∈ Tj

0 otherwise

(3)

We proceed to define a score of T out(K) with respect to

T in
pair as follows:

score(T out(K), T in
pair) :=

1

K

∑

(i,j)∈E
s(T ⋆

i (K), T ⋆
j (K), T in

ij ).

(4)

Intuitively, score(T out(K), T in
pair) measures a description

efficiency score, i.e., the ratio between the number of in-

put instances that are compatible with the solution set and

the size of the solution set. It is thus expected that we have a

drop in score(T out(K⋆+1), T in
pair) right after the underlying

ground-truth value K⋆, which is the size of the symmetry

group that the underlying object possesses. In light of this,

we set

K := argmin
1≤K≤Kmax−1

score(T out(K + 1), T in
pair)

score(T out(K), T in
pair)

(5)

for a sufficiently large Kmax.

3.5. Postprocessing: Infer the Best Solution

When the notion of the best solution makes sense, e.g.,

the underlying symmetry is only approximate, we perform

a post-processing step to jointly pick one candidate pose

T ⋆
i ∈ T ⋆

i , 1 ≤ i ≤ n as the optimal solution to transfor-

mation synchronization. We formulate this step as MRF

inference and adopt a spectral relaxation [17]. Specifically,

we form a data matrix X ∈ R
(n−1)K+1×(n−1)K+1, so that

∀2 ≤ i, j ≤ n, 1 ≤ k, k′ ≤ K,

X(i−2)K+k+1,(j−2)K+k′+1

=















δ(PS(T in
ij Tik) = Tjk′) (i, j) ∈ E

δ
(

PS(T in
i1 Tid) = Ti1 ∧ k′ = K

)

(i, 1) ∈ E
δ
(

PS(T in
1j ) = T1jTid ∧ k = K

)

(1, j) ∈ E
0 otherwise

To perform the spectral initialization, we first compute the

leading K eigen-vectors U ∈ R
((n−1)K+1)×K of X . We

then project the first canonical basis e1 inR(n−1)K+1 (i.e.,

the first element is 1 and the remaining elements are 0) into

the column space of U , obtaining v = UU
T
e1. We finally

set the single-best pose for Ii as

T ⋆
i = Tiki

, ki = argmax
1≤k≤K

|v(i−2)K+k|.
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4. Analysis

In this section, we present an analysis of our algorithm

by showing exact recovery conditions of K-best solutions

as well as the single-best solution. The technical proofs are

deferred to the supplemental material.

Noise model. The noise model we analyze is inspired from

the noise models introduced in the literature for analyz-

ing convex optimization techniques for map synchroniza-

tion (e.g.,[41, 15, 34]). The key advantage of our model is

that we do not assume the noisy input maps (i.e., those de-

viate from the underlying ground-truth and those induced

by the underlying symmetry group) are random. Instead,

we consider adversarial noise for these noisy input maps.

Moreover, we assume correct measurements take different

modes independently with approximately equal probability,

which is a viable assumption for pairwise matching that

outputs one solution among multiple competing solutions.

On the other hand, we assume each edge of the observation

graph G is added with probability pe, following the Erdos-

Renyi random graph model. This enables us to establish

simple exact recovery conditions. Please refer to the sup-

plemental material for an exact recovery condition where G
is fixed.

Specifically, we consider the following model for gen-

erating the input data. The model is parameterized by the

number of objects n, the edge probability pe, the good mea-

surement probability pg , and an offset δ for modeling ap-

proximate symmetries:

• Independently and identically for any object pair (i, j),
Pr [(i, j) ∈ E ] = pe. In other words, the expected the

number of neighboring vertices for each vertex of G is

npe.

• Independently and identically for any edge (i, j) ∈ E ,

with probability
pg

K⋆ + δ, PS(T in
ij T

gt
i1 ) = PS(T

gt
j1 ),

and with probability
pg

K⋆ − δ
K⋆−1 , PS(T in

ij T
gt
i1 ) =

PS(T
gt
jk), ∀2 ≤ k ≤ K⋆;

• Independently and identically for any edge (i, j) ∈ E ,

with probability 1 − pg , Tij can be an arbitrary trans-

formation in SE(3). In particular, we do not place any

assumption on the noise of the initial maps.

Intuitively, the above rules implies that, each of the K⋆

ground-truth transformations exist in the input with approx-

imately equal probability (controlled by δ), so that it is pos-

sible to recover them all.

Exact recovery conditions. We then present a recovery

condition on the parameters pe and pg of such graph fami-

lies as follows:

Theorem 4.1. (Main theorem) If the input data follows the

noisy model described above. Suppose pe = n
1

d−ǫ
−1 for

constants d > 3 and 0 < ǫ < 1, and moreover, pg satisfies

pg > c
1

d

for some absolute constant c > 0.75. Then with probability

at least 1−O( 1
n3 ), 1) our algorithm recovers the underlying

ground-truth K⋆, and 2) after l = O(d) iterations, T (l)
i re-

covers all the K⋆ underlying ground-truth transformations

of partial object Ii for every 2 ≤ i ≤ n.

Theorem 4.2. Under the assumption of Theorem 4.1, the

post processing step recovers the unique global optimal

solution with probability at least 1 − O( 1
n3 ), whenever

δ ≥ O(
√

log(n)√
npe

).

Besides the recovery condition for computing the K-

best solution, Theorem 4.1 and Theorem 4.2 also indi-

cate the advantage of using the K-best solution for com-

puting the single-best solution. Note that under adversar-

ial noise, exact recovery conditions of state-of-the-art tech-

niques (e.g. [42, 24]) can only handle≤ 50% incorrect pair-

wise input. Using the K-best representation, we can extend

the upper bound to
K⋆−O(1)

K⋆ −o(1), showing a clear advan-

tage when K⋆ is large.

5. Experimental Evaluation

5.1. Experimental Setup

Datasets. We consider three datasets for the evalua-

tion. The first dataset collects 100 models sampled from

ShapeNetCore [11]. Among these 100 models, 30 of them

have strong self-symmetries, and they comprise ShapeNet-

CoreSym. We place 30 simulated scans from each model.

To simulate scanning noise, we add i.i.d. Gaussian pertur-

bation along the viewing directions (c.f. [26]). The second

dataset is ScanNet [19], which collects range scans and their

3D reconstructions from 706 rooms. We uniformly sample

100 scenes and uniformly sample 30 scans per scene for ex-

perimental evaluation. The ground-truth is given by their

poses with the 3D reconstruction. Among these rooms, we

select 80 scenes that possess noticeable self-symmetries.

These rooms comprise ScanNetSym. Please refer to the

supplemental material for details about the selected mod-

els from ShapeNet and the subsets ShapeNetCoreSym and

ScanNetSym. The third dataset collects three large-scale

image collections Notre-Dame, Cornell ArtQuad, and San-

Francisco, which are widely used for the purpose of evalu-

ating multi-view structure from motion.

To generate the initial rigid transformations for

ShapeNetCore and ScanNet, we employed the Open3D im-

plementation [46] of fast global registration [47], which is a

state-of-the-art approach for pairwise alignment.

For all the results of our approach reported in this sec-

tion, we set Kmax = 10 and the maximum number of itera-

tions as 100.

Baseline comparison. We compare our approach to three

state-of-the-art techniques for transformation synchroniza-

tion: RobustAlign [16], MRF-SFM [18], and IRLS [12, 25].

10256



Ground Truth MRF-SFM IRLS RobustAlign Ours

Figure 1: Qualitative comparisons between our approach (single-best) and baseline approaches on randomly sampled ShapeNetCore

objects [11]. We use the rotation and translation computed by the algorithms to reconstruct the objects in point-cloud-form, and render the

point clouds. Our methods drastically outperform IRLS and MRF-SFM. If look at the edge of the laptop, the gully on the back of the chair

and the shadow of the hat, one can still tell that our approach is better than the RobustAlign method.

Specifically, RobustAlign applies robust global optimiza-

tion to perform transformation synchronization. MRF-SFM

performs rotation synchronization and translation synchro-

nization in order. Each synchronization problem is formu-

lated as solving an MRF by placing samples. Note that

unlike our approach, MRF-SFM only outputs a single-best

solution. IRLS combines a state-of-the-art rotation syn-

chronization technique [12] and a state-of-the-art transla-

tion synchronization technique [25]. Both of them are based

on reweighted least squares. Similar to the sequential pro-

cedure of MRF-SFM, we first apply [12] to estimate the

rotations. We then apply [25] to estimate the translations.

We also compare our approach to additional state-of-the-

art techniques, including Torsello et al. [40], Arrigoni et

al. [2] and Rosen et al. [33], which are based on spec-

tral and convex optimization, and Birdal et al. [7], which

is based on probability inference. We found that their per-

formance is at most similar to the top performing approach

among RobustAlign, MRF-SFM and IRLS. Thus, we defer

the technical details to the supplemental material.

Evaluation protocol. We perform experimental evaluation

under two settings: one for symmetric objects and another

for general objects. Both settings use a primitive evaluation

protocol, which evaluates a predicted relative transforma-

tion (R, t) with respect to its ground-truth relative trans-

formation (R⋆, t⋆) by measuring the angular rotation error

erra(R
⋆, R) := ‖ log(R⋆RT )‖/

√
2 [18] and the transla-

tion error errt(t, t
⋆) := ‖t − t

⋆‖. Note that errt(t, t
⋆)

is dependent on the coordinate system associated with each

scan. In this paper, we always place the origin of each coor-

dinate system at the center of each scan. We also normalize

each translation error with respect to the diagonal length of

the bounding box of the underlying model. With this setup,

the first setting consider objects with self-symmetries (i.e.,

models in ShapeNetCoreSym and ScanNetSym). Instead

of evaluating with respect to the single underlying ground-

truth, we define the angular rotation error or translation er-

ror associated with each pair of scans as the smallest one

with respect to poses induced from the underlying symme-

try group. Since our approach outputs multiple solutions per

pair, we take the maximum rotation error or translation er-

ror among all pairwise solutions derived from our approach.

Note that this metric implicitly favors baseline approaches,

since they only output one relative pose per scan pair. As

shown in Table 1, we report the percentage of pairs (across

all models in each benchmark dataset) whose angular rota-

tion errors or translation errors are smaller than a varying

threshold. The second setting is a special case of the first

setting, where we simply evaluate with respect to the un-

derlying ground-truth. This setting applies to all models in

ShapeNetCore and ScanNet. We apply the same protocol to

report the rotation and translation errors.
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Figure 2: Qualitative comparisons between our approach (single-best) and baseline approaches on randomly sampled ScanNet scenes [19].

We use the rotation and translation computed by the algorithms to reconstruct the scenes in point-cloud-form, and render the point clouds.

It is visually obvious that our approach outperforms the three methods that we are comparing with.

5.2. Results on ShapeNetCore

Figure 1 and Table 1 show the qualitative and quan-

titative results of our approach and baseline approaches,

respectively. Overall, our approach delivers accurate re-

sults. The mean rotation/translation errors of our ap-

proach are 6.7◦/0.17 and 9.7◦/0.24 on ShapeNetCoreSym

and ShapeNetCore, respectively. In contrast, the top per-

forming baseline approaches only achieved 12.1◦/0.19 and

13.7◦/0.39, respectively.

On ShapeNetCoreSym, the top-performing baseline is

MRF-SFM. We can understand this from the fact that most

incorrect input pairwise transformations are caused by the

underlying symmetries. Such inputs favor MRF-SFM, as

in the limit, if 1) all input transformations are accurate

when factoring out the underlying symmetry, and 2) MRF-

SFM places accurate samples, then MRF-SFM shall out-

put one consistent solution. In this experimental setup, our

approach still outperforms MRF-SFM due to the fact that

we can sample significantly more densely than MRF-SFM.

Moreover, baseline approaches that employ continuous op-

timization result in large errors on ShapeNetCoreSym. One

explanation is that in the presence of multiple competing

modes in the input data, existing continuous optimization

techniques (even under robust norms) tend to find averages

of existing solutions rather than identifying a single consis-

tent mode.

On ShapeNetCore, the behavior of the baseline ap-

proaches changes. Most ShapeNetCore models possess

strong consistent matches. As a result, RobustAlign and

IRLS yield better results than MRF-SFM, which is re-

stricted by the relatively low sampling density. Still, our ap-

proach exhibits noticeable performance gains from all base-

line approaches. This shows the advantage of using the K-

best solution as an intermediate representation for approxi-

mately symmetric or even non-symmetric objects.

The running time of our approach on ShapeNetCore is

1.2s on average on a desktop with 32G memory and a 3.2G

Hz CPU. In contrast, the fastest baseline approach, Ro-

bustAlign, takes 0.6s on average on the same platform.

5.3. Results on ScanNet

As illustrated in Table 1 and Figure 2, our approach

outperforms all baseline approaches on ScanNet. Similar

to the results on ShapeCoreSym, all baseline approaches

exhibit large errors on ScanNetSym. The results again

show that when applying continuous optimization tech-

niques (even with robust norms) to input data that exhibit

multiple modes, existing approaches return the average of

different modes rather than finding one mode. Hence these

approaches exhibit large error under the K-best protocol.

The performance gaps between our approach and base-

line approaches on ScanNet are larger than those on

ShapeNetCore as well. We can understand this from the

fact that the outlier ratio of the input is high on ScanNet,

making it extremely difficult to handle for both continu-

ous optimization based techniques and MRF-SFM. Our ap-

proach alleviates this issue by following a flexible two-step

procedure, namely, we first detect K-dominant modes, from

which we can then compute the best solution.

Compared to the running time on ShapeNetCore, our ap-

proach took longer to converge on ScanNet. The averaged

running time was 4.6s. In contrast, it was 1.2s on ShapeNet-

Core. This increase in running time is again largely due to

the high outlier ratio. In contrast, RobustAlign took 0.8s on

average on this dataset.

5.4. Results on Multi­View Structure­from­Motion

We also tested our approach on three large-scale

structure-from-motion examples for the purpose of rotation

synchronization: Notre-dame [12], Cornell-Artsquad [18]
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Figure 3: Quantitative evaluations of our method on Notre-dame [12], Cornell-Artsquad and San-Francisco [18]. Our approach is similar

to[12] in terms of overall performance.

ShapeNetCoreSym (K-Best) ScanNetSym (K-Best) ShapeNetCore (Single-Best) ScanNet (Single-Best)

Rotation Trans. Rotation Trans. Rotation Trans. Rotation Trans.

3
◦

30
◦ Mean 0.05 0.25 Mean 3

◦
30

◦ Mean 0.05 0.25 Mean 3
◦

30
◦ Mean 0.05 0.25 Mean 3

◦
30

◦ Mean 0.05 0.25 Mean

Input[46] 41.4 76.1 24.5 34.1 61.2 0.36 32.5 51.1 41.2 31.9 51.1 0.69 42.1 62.1 39.1 24.8 52.8 0.65 19.8 38.0 69.9 12.5 29.3 1.35

MRF-SFM[18] 51.5 84.6 12.1 45.1 78.1 0.19 32.1 62.3 31.6 36.5 64.3 0.42 47.8 81.1 13.7 31.2 55.9 0.48 33.6 55.9 36.3 22.7 35.1 0.81

IRLS[12, 25] 42.5 78.3 25.2 32.3 65.2 0.40 34.2 53.1 35.5 33.2 55.1 0.65 51.1 79.1 20.5 31.0 61.2 0.45 31.1 51.0 45.4 24.5 36.7 0.78

RobustAlign[16] 42.7 79.2 23.2 33.4 67.3 0.37 34.4 52.2 34.5 34.2 57.2 0.64 52.3 78.5 22.5 31.2 63.3 0.39 33.8 50.5 43.4 24.7 38.4 0.70

Our approach 67.2 91.3 6.7 49.3 80.1 0.17 41.1 84.4 19.6 38.5 67.3 0.29 51.8 87.1 9.7 36.2 58.9 0.24 39.6 63.9 21.3 26.7 39.4 0.56

K
gt 69.9 95.1 5.8 53.3 86.1 0.15 44.5 87.3 16.9 40.2 70.1 0.26 55.3 89.8 15.2 39.4 61.9 0.21 40.6 66.1 19.1 28.7 42.1 0.52

3×binsize 59.2 88.3 8.9 42.5 78.4 0.21 35.1 80.1 22.6 32.7 65.4 0.32 47.9 84.9 11.5 33.4 56.4 0.27 35.3 60.8 22.9 25.2 38.1 0.59

2×binsize 65.1 90.2 6.5 48.1 79.3 0.18 39.6 83.3 20.1 36.8 65.7 0.30 50.7 86.2 9.9 34.7 57.3 0.25 38.1 62.7 22.9 24.9 38.1 0.57

0.5×binsize 70.2 90.4 6.5 48.8 79.2 0.16 44.3 82.3 18.9 39.1 66.4 0.30 52.4 86.7 9.9 38.1 58.2 0.24 40.1 64.9 20.5 28.6 40.4 0.58

Vary-root ±4.7 ±3.1 ±0.3 ±4.5 ±2.7 ±0.02 ±3.2 ±2.5 ±0.5 ±5.1 ±2.8 ±0.02 ±3.8 ±3.1 ±0.3 ±4.1 ±2.7 ±0.01 ±3.3 ±2.9 ±0.4 ±3.5 ±2.2 ±0.02

Table 1: Benchmark evaluation on our approach and baseline approaches. The columns labeled as 3◦, 30◦, 0.05 and 0.25 tell the portion

of the algorithm output that is within these error bracket. The columns labeled as ’mean’ tell the mean rotation error or the translation error.

Our approach outperforms the three methods that we are comparing with.

and San-Francisco [18]. To this end, we modify our ap-

proach by only performing propagation and clustering on

rotation samples. As these datasets possess a single-best

underlying ground-truth, we only evaluate the single-best

solution of our approach. Overall, our approach is com-

parable to the state-of-the-art rotation synchronization ap-

proach [12] on each instance (See Figure 3). In particu-

lar, our approach even possesses a slight performance gain

on Cornell Artsquad. This is quite encouraging as our

approach uses an iterative procedure on discrete samples,

while [12] is based on continuous optimization. Computa-

tionally, our approach is also comparable to [12]. On the

same computing platform described above, our approach

took 34.2s, 122.1s, and 212.3s on Norte Dame, Cornell

Artsquad and Scan Francisco, respectively, while [12] took

23.1s, 95.1s, and 172.1s, respectively.

5.5. Ablation Study

How good is the predicted K? Our approach predicts the

underlying K⋆ accurately, i.e., the prediction accuracies on

ShapeNet and ScanNet are 98.2% and 97.4%, respectively.

We also run our approach with the ground-truth K⋆. As

shown in Table 1, the rotation and translation errors improve

slightly. However, the performance gaps are not salient.

How sensitive is the sampling density? Our approach is

insensitive to the bin size we use for generating the sam-

ples for SE(3). As shown in Table 1, we vary the bin size

by 3×,2×,0.5× the default value. As shown we see that

with 3× and 2× bin sizes, the rotation and translation er-

rors increase slightly. With 0.5× bin size, the percentages

with respect to 3◦ increase slightly while those with respect

to 30◦ drop slightly. However, the overall accuracies remain

approximately the same when varying the sampling density.

How sensitive is the root node? We also tested our ap-

proach by varying the root object for each dataset. Experi-

mental results show that the variance in rotation errors and

translation errors appears to be small. As shown in Table 1,

the variance in mean rotation error is less than 0.5◦, and the

variance in mean translation error is less than 0.02, both of

while are small when compared to the absoluate values.

6. Conclusions

In this paper, we have described an approach for syn-

chronizing multiple consistent transformations among a

collection of objects. Our approach takes as input a set

of pair-wise transformations and outputs K-best solutions,

each of which specifies a consistent match across the in-

put objects. We introduce an iterative clustering method,

which alternates between transformation propagation and

transformation clustering. These K-best solutions can be

subsequently used to derive a single-best solution via com-

puting the leading eigenvector of a data matrix that encodes

the input pairwise transformations. We provide strong exact

recovery conditions of our approach. Experimental results

demonstrate the usefulness of our approach on both sym-

metric objects and non-symmetric objects.
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Tsai, Ramakrishna Vedantham, Timo Pylvänäinen, Kimmo
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