
MVP Matching: A Maximum-value Perfect Matching for Mining Hard Samples,

with Application to Person Re-identification

Han Sun1,2, Zhiyuan Chen1,2, Shiyang Yan3, Lin Xu1,2∗

1Nanjing Institute of Advanced Artificial Intelligence 2Horizon Robotics 3Queen’s University Belfast

{han.sun1102, zhiyuan.chen01, elyotyan, lin.xu5470}@gmail.com

Abstract

How to correctly stress hard samples in metric learning

is critical for visual recognition tasks, especially in chal-

lenging person re-ID applications. Pedestrians across cam-

eras with significant appearance variations are easily con-

fused, which could bias the learned metric and slow down

the convergence rate. In this paper, we propose a novel

weighted complete bipartite graph based maximum-value

perfect (MVP) matching for mining the hard samples from

a batch of samples. It can emphasize the hard positive and

negative sample pairs respectively, and thus relieve adverse

optimization and sample imbalance problems. We then de-

velop a new batch-wise MVP matching based loss objec-

tive and combine it in an end-to-end deep metric learn-

ing manner. It leads to significant improvements in both

convergence rate and recognition performance. Extensive

empirical results on five person re-ID benchmark datasets,

i.e., Market-1501, CUHK03-Detected, CUHK03-Labeled,

Duke-MTMC, and MSMT17, demonstrate the superiority of

the proposed method. It can accelerate the convergence

rate significantly while achieving state-of-the-art perfor-

mance. The source code of our method is available at https:

//github.com/IAAI-CVResearchGroup/MVP-metric.

1. Introduction

Person re-identification (re-ID) is a hot yet challeng-

ing research topic in computer vision [5, 46, 1, 25, 53].

Recently, with the remarkable progresses in deep metric

learning [13, 11, 33, 41, 19, 52], many advanced methods

[21, 45, 6, 35, 40, 44] have been developed for visual recog-

nition. The joint learned deep feature representation and se-

mantical embedding metric yield significant improvements

in the community of person re-ID [26, 55, 19, 24, 22].

The core challenge lies in person re-ID is how to spot the

same pedestrian accurately across different disjoint cam-

eras under intensive variations of appearance, such as hu-
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(c) The metric learning process of batch-wise MVP matching based loss objective.

(a) Some typical hard samples illustration in person re-ID dataset (i.e., Market1501).

            (b) Learning a maximum-value perfect (MVP) matching from a weighted complete bipartite graph.

 

MVP Matching

Figure 1: Schematic illustration of learning with the proposed

MVP matching for emphasizing hard positive and negative sam-

ple pairs. (a): Typical hard inter-class and intra-class samples in

the Market-1501 dataset. (b): Learning an MVP matching from

a weighted complete bipartite graph for mining hard positive and

negative sample pairs. The colors of particles represent semanti-

cal (or category) information. (c): The metric learning process of

our batch-wise MVP matching based loss objective. The learned

metric is optimized within batches so that positive pairs with large

distances and negative pairs with small distances are emphasized

as red and yellow arrows shown. Learning with the MVP matching

guarantees that only one exclusive hard positive and negative pairs

are selected simultaneously. The adverse optimization including

overtraining (e.g., x1 and x4) and counteracting (e.g., x2 and x5)

as black arrows shown can be eliminated effectively. The length of

arrows indicates weights optimized by the proposed loss objective.

man poses, illumination conditions, and camera viewpoints.

Figure 1.(a) illustrates some typical easily confused hard

samples in the Market-1501 dataset. They could be broadly

divided into three categories, i.e., the appearance of differ-
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ent pedestrians may be highly similar, the pose of a person

may vary significantly as time and space changed, and the

light conditions taken by some cameras are sometimes poor.

These hard samples would strongly slow down the conver-

gence rate of the metric learning, which works on pulling

similar samples to cluster together while pushing dissimilar

ones to widen apart. Or worse of all, the learned embed-

ding metric and feature representation could be heavily bi-

ased by these hard samples. Most of the pre-existing metric

learning methods still have some limitations on this issue.

For instance, seminal contrastive loss [13] or triplet loss

[11] learns the semantical information within image pairs or

triplets based on the siamese-like networks [9]. They do not

make full use of all available information within a batch of

samples. Batch all triplet loss [19] and N-pair loss [41] have

been developed to remedy this flaw, but they do not attach

enough attention to hard samples and require expensive re-

sampling techniques to boost the performance. Lifted loss

[33] and quadruplet loss [12] only consider hard negative

samples mining while ignoring the hard positive samples.

Batch hard triplet loss [19] considers the hardest positive

and negative mining depended on the distances of features

simply. Its performance is easily influenced by some out-

lier samples (e.g., indistinguishable or mislabeled images

in person re-ID datasets), which could be regarded as hard-

est sample pairs by many other samples simultaneously and

lead to oscillation during metric learning process.

In this paper, we propose a novel weighted complete bi-

partite graph based maximum-value perfect (MVP) match-

ing for mining hard sample pairs within metric learning

framework. The primary motivation of the MVP match-

ing is how to correctly capture these inter-class and intra-

class hard samples in person re-ID datasets. As illustrated

in Figure 1.(b), we first construct a complete bipartite graph

[2] from a batch of samples, whose vertices (i.e., samples)

can be divided into two disjoint and independent sets such

that each edge (i.e., the weights of samples) connects a ver-

tex from a set to one in another set. Then an MVP match-

ing (i.e., a bijection with one-to-one correspondence) could

be found in this weighted bipartite graph with the Kuhn-

Munkres assignment (KA) algorithm [20]. We learn two

MVP matchings as yellow and red bi-directional arrows

shown in the weighted bipartite graph to emphasize the hard

positive and negative pairs, respectively. We further for-

mulate a batch-wise loss objective based on the proposed

MVP matching for deep metric learning. Figure 1.(c) il-

lustrates the metric learning process of the proposed loss

objective schematically. As mentioned, conventional batch-

wise loss objectives [41, 33, 19, 52] for metric learning can

be optimized using all available information within training

batches, so that all similar positive pairs with large ground

distances and dissimilar negative pairs with small ground

distances would be emphasized simultaneously. However,

these methods may encounter overtraining. Similar positive

pairs with small distances would still be optimized (e.g., x1

and x4). Or worse, if we treat the optimization as a whole

rather than the individual particle, the metric learning pro-

cess of these methods is vulnerable to oscillation. Since the

hard samples might be emphasized by many particles simul-

taneously, they could all cancel each other out (e.g., x2 and

x5). In contrast, metric learning with the MVP matching

based loss objective can guarantee that each sample selects

one exclusive hard positive and negative pairs. Then the

adverse optimization, e.g., overtraining and counteracting

yielded by other anchors as black arrows shown in Figure

1.(c) would be effectively eliminated. As a consequence,

the convergence rate and recognition performance of metric

learning could be improved significantly. We finally evalu-

ate the performance of our proposed method on five widely

used benchmark datasets, i.e., Market-1501 [56], CUHK03-

Detected [23], CUHK03-Labeled[23], Duke-MTMC [38],

and MSMT17 [49]. Experimental results demonstrate that

the proposed method can accelerate the convergence rate

significantly while achieving state-of-the-art performance.

In a nutshell, our main contributions in the present work

can be summarized as follows:

(1) We propose a novel weighted complete bipartite

graph based maximum-value perfect (MVP) matching for

mining hard samples. It can emphasize the hard positive

and negative sample pairs respectively and thus relieve ad-

verse optimization and sample imbalance problems.

(2) We develop a new batch-wise MVP matching based

loss objective and combine it into an end-to-end fashion for

deep metric learning. It leads to significant improvements

in both convergence rate and recognition performance.

(3) We verify the superiority of our proposed methods on

person re-ID datasets. Our method can achieve state-of-the-

art performances with a notably fast convergence rate.

2. Related Work

Person re-ID: The research works on person re-ID mainly

focus on the visual feature extraction and similarity metric

learning. The traditional feature representations are based

on hand-crafted methods, such as color histogram [17],

SIFT [29], LOMO [26], etc. Recently, with the develop-

ments on deep learning techniques and large-scale person

re-ID benchmark datasets, e.g., Market-1501 [56], CUHK-

03 [23], Duke-MTMC [38], MSMT17 [49] etc., many ad-

vanced methods have been proposed. For instance, features

of a pedestrian image split into three horizontal parts are

extracted by a siamese CNN, and the cosine distance metric

measures the similarity of features from different images.

FaceNet [40] consists of a batch of images and a deep CNN

backbone followed by ℓ2 normalization, which transforms

input to a mensurable Euclidean space. Deep-person [4] is

proposed to apply LSTM structure in an end-to-end way to
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model pedestrian images, seen as a sequence of body parts

from head to foot. BraidNet [47] proposes a deep CNN

with specially designed cascaded WConv layers to extract

features. PSE network [39] contains 3 channels of RGB

information and 14 channels of pose information with ac-

quired camera view and the detected joint locations, which

helps to learn an effective representation. A discriminative

identity loss combined with the verification loss objective

[57] also shows a superior recognition performance.

Deep metric learning: In deep metric learning, deep visual

features and semantical embedding metric can be learned

jointly [23, 22]. Inspired by the contrastive loss [13] and

triplet loss [11], many improved margin-based loss objec-

tives have been proposed for learning, e.g., quadruplet loss

[12], margin sample mining loss [51], lifted loss [33], etc.

These methods adopt margins as hyper-parameters tuned

before training to control the distance between pairs of sam-

ples. To make the fixed margin able to adjust feasibly, the

average distances of positive and negative pairs in a batch

represent margin thresholds adaptively in [12]. Further-

more, a learnable variable is introduced to determine the

boundary between positive and negative pairs [50]. Mean-

while, metric learning methods are sensitive to the selection

of hard pairs or triplets. Therefore, hard samples mining

is an essential and important element of [19, 12, 51]. The

semi-hard [40] and batch hard [19] loss objectives select the

hard triplets based on the margins directly. Since sampling

matters to learn deep embeddings, distance-weighted sam-

pling is proposed in [50] and thus steadily produces infor-

mative examples while controlling the variance. Consider-

ing weighting samples according to a novel ground distance

metric, the batch-wise sample-weighted matrix is learned in

the optimal transport problem framework [52]. Generally,

these methods pick out dissimilar positive pairs (a.k.a., hard

positive samples) and similar negative pairs (a.k.a., hard

negative samples) according to similarity scores.

Matching in a graph: In the mathematical discipline of

graph theory [8], a matching within a graph is a set of edges

without common vertices. Finding the maximum weighted

matching [30] in a weighted bipartite graph is one of the

fundamental combinatorial optimization problems [37]. It

is crucial both in theoretical and practical. On one hand,

it is a special case of more complex problems, such as the

generalized assignment problem [31], minimum cost flow,

and network flow problem [15]. On the other hand, many

real-world problems can be categorized in a matching prob-

lem, such as worker assignment problem [32].

3. Our Method

3.1. Adaptive Weighting for Positives and Negatives

We construct a complete bipartite graph [2] G(U ,V ,E)
based on a batch of samples. As illustrated in Figure 2, the

vertices (i.e., samples) in the graph can be divided into two

disjoint and independent sets U and V such that each edge

(i.e., the weights of sample) in set E connects a vertex in

U to one in V . Considering the fact that the number of

dissimilar negative pairs is often much more than similar

positive pairs within a training batch (a.k.a., sample imbal-

ance problem [48]), we further divide the graph G into two

bipartite graphs GP and GN for positive and negative pairs

respectively. We also define an adaptive weight M+
ij and

M
−
ij of each edge (i, j) in GP and GN . Specifically, the

edge weight for positive pairs can be defined as

M
+
ij (xi,xj ; f) = max{0, ||f(xi)− f(xj)||

2
2−α}, (3.1)

where α is a learnable variable that denotes the mar-

gin of similar positive samples. The hinge loss function

max{0, ||f(xi)− f(xj)||
2
2 − α} penalizes similar samples

beyond the margin α. It would prevent the overtraining for

positive samples in contrastive loss, which demands simi-

lar pairs gather as close as possible. For dissimilar negative

samples, we define the edge weight correspondingly as

M
−
ij (xi,xj ; f) = max{0, β−||f(xi)− f(xj)||

2
2}, (3.2)

where β = ε + α determines the margin of negative pairs

and the hyper-parameter ε controls the relative distance

between positive and negative margins. The hinge loss

max{0, β − ||f(xi)− f(xj)||
2
2} penalizes the dissimilar

pairs within the margin β and ignores the others.

3.2. MVP Matching for Hard Samples Pairs

We define the matching variables T
+
ij and T

−
ij for the

edge (i, j) on these two weighted bipartite graphs GP and

GN . The element tij ∈ T
+(or−) = 1 indicates a maching

pair, while tij = 0 means unmatching one. Thus the total

weights of positive and negative pairs are
∑

ij T
+
ijM

+
ij and∑

ij T
−
ij M

−
ij . Our goal is to find a maximum-value perfect

(MVP) matching for assigning positive and negative pairs,

respectively. Obviously, each vertex is adjacent to one edge

in the matching exactly, which can be formulated as linear

constraints, i.e.,
∑

j Tij = 1 for i ∈ U and
∑

i Tij = 1
for j ∈ V . Then, the MVP matching in these two weighted

bipartite graphs GP and GN can be formulated as

max
Tij≥0

∑n

i,j=1
T

+(or−)
ij M

+(or−)
ij

s.t.
∑n

j=1
T

+(or−)
ij = 1,

∑n

i=1
T

+(or−)
ij = 1

(3.3)

The process of optimizing this MVP matching is also called

as an assignment problem [20, 31], which is a fundamen-

tal combinatorial optimization problem [10, 60]. It consists

of finding a perfect matching (i.e., one-to-one matching)

where the sum of edge weights is maximum in a weighted
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Figure 2: Schematic illustration of our proposed MVP matching for mining hard positive and negative sample pairs. The two sets U and V

could be thought as samples with two categories (i.e., yellow or red). A complete bipartite graph can divide into subgraphs GP and GN for

positive and negative pairs. The positive and negative MVP matching matrices T+ and T
− are assigned according to the corresponding

pre-defined adaptive edge weight matrices M+ and M
−. Each row and column of T+ and T

− has only one non-zero element, which

is used to indicate the position of the hard positive and negative pairs with maximum-value of edge weights. The final MVP matching

solution T
∗ combines T+ and T

− to guarantee that one exclusive hard positive and negative pairs are selected simultaneously.

bipartite graph. The learned matching could emphasize the

hard positive and negative sample pairs respectively.

A naive solution for the MVP matching problem in

Equation (3.3) is to check all possible assignments and cal-

culate the cost of each one. However, this is very ineffi-

cient, since there are n! (i.e., factorial of n) different as-

signments with n-pair of samples. Many algorithms [34, 7]

have been developed for solving the assignment problem

in a polynomial time bounded of n. The Kuhn-Munkres

assignment (KA) algorithm [20] is one of the most popu-

lar algorithms [10, 60], which can find the global optimal

matching in Equation 3.3 with the complexity O(n3). Con-

sidering a complete weighted bipartite graph G, where the

weight of edge (i, j) ∈ E is denoted as Mij , we define a

labeling function ℓ : U ∪ V → R for each vertex. The

detailed procedures of KA algorithm are described in Algo-

tithm 1. For explaining KA algorithm how to find an MVP

matching in a bipartite graph, we first introduce definitions

of the feasible labeling and equality graph.

Definition 3.1. Feasible labeling: For each vertex in the

graph G, a labeling ℓ : ∀xi, xj ∈ U ∪ V → R is defined

to compute the vertex labeling value. The feasible labeling

demands the weight Mij of any edge (i, j) to satisfy

Mij ≤ ℓ(xi) + ℓ(xj). (3.4)

Definition 3.2. Equality graph: The summation of labeling

values between any two vertexes equals to the weight for the

Algorithm 1 Kuhn-Munkres Assignment (KA) Algorithm

Input: A complete weighted bipartite graph and a

weighted matrix denoted as G (U ,V ,E) and Mij .

Output: An optimal maximum-value perfect (MVP)

matching T
∗.

Step 1. Initialization:

Generate initial values of labeling function l. We set the

initial labeling values of vertexes in the set U and V as

+∞ and 0, respectively.

Step 2. Checking:

If T is an arbitrary perfect matching (i.e., one-to-one

matching) in Gℓ, assignment terminates. Otherwise pick

unmatching vertex xi ∈ U .

Step 3. Labeling:

If augment from xi by the Hungarian method [20] unsuc-

cessfully, update the labeling value greedily as

min{l(xi) + l(xj)−Mij (xi, xj)}.

Step 4. Iteration:

Augment from xi successfully, update T , go to Step 2.

corresponding edge in the equality graph Gℓ ( with respect

to ℓ), which is represented as

Gℓ = {∀(i, j) : Mij = ℓ(xi) + ℓ(xj)}. (3.5)

Theorem 3.3. If ℓ is a feasible labeling function and T is
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an arbitrary perfect matching in the equality graph Gℓ, then

T must be a maximum-value perfect (MVP) matching T
∗.

Proof. For an arbitrary perfect (i.e., one-to-one) match-
ing T in a weighted graph G(U ,V ,E), each vertex is cov-
ered only once. Thus, the edge weight Mij of each match-
ing (i, j) satisfies the condition in Equation 3.4. The equal-
ity holds only when edge(xi, xj) ∈ Gℓ. We denote the
summation of all labeling values as K. Therefore, the sum-
mation of all edge weights in this matching T satisfies

∑(xi,xj)∈T

Mij ≤
∑xi∈U

i
ℓ(xi) +

∑xj∈V

j
ℓ(xj) = K.

(3.6)

Only when all matching edges are in Gℓ, the equality in
Equation 3.6 is obtained. Hence, when T is an arbitrary
perfect matching in Gℓ, the summation of all edge weights
reaches the maximum value K and the maximum-value per-
fect (MVP) matching T

∗ is received as

∑(xi,xj)∈T∗

Mij =
∑xi∈U

i
ℓ(xi) +

∑xj∈V

j
ℓ(xj) = K.

(3.7)

The two matrices T
+ and T

− on graphs GP and GN as

shown in Figure 2 are the MVP matchings for hard positive

and negative sample pairs, which have a value of 1 in each

column and row. The combination T
∗ ensures each sample

selects one exclusive hard positive and negative samples.

3.3. Batch­wise MVP Matching based Loss

Finally, we formulate a batch-wise loss objective based

on the proposed MVP matching for metric learning as

L(xi,xj ; f)=L+ + L−

=
∑n

ij
yijT

+
ijM

+
ij +

∑n

ij
(1− yij)T

−
ij M

−
ij ,

(3.8)

where yij is a binary label assigned to a pair of samples.

Let yij = 1 if samples xi and xj are deemed similar, and

yij = 0 otherwise. The M
+
ij and M

−
ij are adaptive edge

weights. The MVP matching T
+
ij and T

−
ij can be learned

for emphasizing hard positive and negative pairs.
We minimize the proposed loss objective with batch gra-

dient descent. The gradients of loss function L(xi,xj ; f)
with respect to the input feature embedding representations
f(xi) and f(xj) at each update are computed as

∂L

∂f(xi)
=

n∑

j=1

2(f(xi)− f(xj))(δ
+
ijyijT

+
ij − δ

−

ij(1− yij)T
−

ij ),

∂L

∂f(xj)
=−

n∑

i=1

2(f(xi)−f(xj))(δ
+
ijyijT

+
ij −δ

−

ij(1− yij)T
−

ij ),

where δ+ij and δ−ij are binary indicators assigned to the pairs
of samples. If the edge weight for similar pairs in Equation
(3.1) is larger than 0, δ+ij outputs 1. The indicator of the edge
weight for dissimilar pairs in Equation (3.2) is denoted by
δ−ij . During optimization, T+

ij and T
−
ij are solved by the KA

algorithm and not considered as variables to compute gra-
dients. In conventional double-margin contrastive loss [27],
the margins are manually selected. However, it is feasible
to learn the positive margin by the variable α in our loss
objective. The gradient with α could be computed easily as

∂L

∂α
=

n∑

i,j=1

−yij1{||f(xi)− f(xj)||
2
2 − α > 0}+

(1− yij)1{ε+ α− ||f(xi)− f(xj)||
2
2 > 0}

As far as ∂L
∂α

, ∂L
∂f(xi)

and ∂L
∂f(xj)

are derived, the gradient

of network parameters could be easily computed with the

back-propagation method. Therefore, the whole network

can be trained end-to-end discriminatively.

4. Experiments

In this section, we evaluated the performance of our

proposed methods with applications to person re-ID tasks.

Five widely used benchmark datasets were employed in our

experiments, including Market-1501, CUHK03-Labeled,

CUHK03-Detected, Duke-MTMC and MSMT17.

4.1. Datasets

CUHK03 [23] is a large person re-ID dataset from the

Chinese University of Hong Kong (CUHK). The whole

dataset including 13,164 images of 1,360 pedestrians is cap-

tured with six surveillance cameras. Images are recorded

from these cameras for several months. The dataset has

manually cropped pedestrian images and also provided

samples detected with a state-of-the-art pedestrian detector.

Market-1501 [56] is another dataset provided by the

Tsinghua University. It totally contains 32,643 bounding

boxes grouped 1,501 identities. Images are also recorded

from six cameras, including five 1280 × 1080 HD cam-

eras and one 720 × 576 SD camera. Since these cameras

are placed in an open environment, each identity may have

multiple images under the same camera.

Duke-MTMC [38] is a manually annotated and multi-

camera video-based dataset. It consists of 8×85 minutes of

1080p video recorded at 60 frames per second from 8 static

cameras deployed on the Duke University during periods

between lectures. The data has about ten hours of video,

more than 2 million frames and 6,791 trajectories for 2,384

different identities. There are 2.5 single-camera trajectories

per identity and up to 7 in some case on average.

MSMT17 [49] is a large-scale multi-scene multi-time

person re-ID dataset provided by the Peking University.

The dataset utilizes a 15-camera network including 12 out-

door and 3 indoor cameras. The complex scenes and back-

grounds make this dataset more appealing and challenging.

Four days with different weather and lighting conditions

are selected during a month for video recording. Finally,

126, 441 bounding boxes of 4, 101 different identities are

detected and annotated by Faster RCNN [16].
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Figure 3: An overview of our proposed batch-wise MVP matching based metric learning framework. Given a batch of samples, we use a

siamese-like architecture with Resnet-50 to transform input images into deep CNN embeddings. The whole network could be trained end-

to-end discriminatively with the proposed batch-wise MVP matching based loss objective. The highlighted perfect matching T
+
ijM

+
ij and

T
−

ij M
−

ij are used for emphasizing hard positive and negative sample pairs. For instance, the MVP matching could find the hard positive

x2 and negative x3 samples with maximum-value weights for an anchor x1.

Market-1501 CUHK03-Detected CUHK03-Labeled Duke-MTMC MSMT17

mAP Top-1 Top-5 Top-1 Top-5 Top-10 Top-1 Top-5 Top-10 mAP Top-1 Top-5 mAP Top-1 Top-5

ID Loss [51] 70.4% 87.9% 92.9% 73.8% 91.4% 95.0% 75.8% 91.8% 95.2% 58.9% 78.3% 88.3% 33.9% 63.2% 74.0%

BA Triplet Loss [40] 72.3% 86.7% 95.8% 84.5% 97.5% 98.8% 87.6% 99.3% 99.7% 62.4% 77.0% 89.5% 27.1% 48.1% 68.5%

BH Triplet Loss [40] 76.9% 89.5% 95.9% 86.1% 97.5% 98.8% 89.1% 99.1% 99.6% 65.8% 79.8% 90.6% 44.5% 69.4% 83.3%

Lifted Loss [33] 75.5% 87.9% 95.4% 86.1% 97.8% 99.0% 90.2% 99.4% 99.7% 64.4% 79.7% 90.4% 41.7% 66.1% 81.3%

Batch-wise OT Loss [52] 76.7% 88.8% 95.5% 89.6% 98.8% 99.1% 92.5% 99.6% 99.7% 66.8% 79.6% 91.3% 44.5% 69.5% 82.6%

MVP Loss 80.5% 91.4% 96.9% 91.8% 98.8% 99.4% 93.7% 99.4% 99.6% 70.0% 83.4% 91.9% 46.3% 71.3% 84.7%

Table 1: Comparison results with different loss objectives for deep metric learning on five person re-ID benchmark datasets.

4.2. Experimental Settings

Architecture: Figure 3 illustrates the network architecture

for our MVP matching learning scheme. The backbone net-

work is Resnet-50 [18] with 512-dimensional embeddings.

For each sample, the MVP matching could find only one

exclusive positive and negative pair to compute loss.

Evaluations: Since the person re-ID task can be considered

as a sub-problem of image retrieval [28, 55], we used Eu-

clidean distance to measure the similarity of images based

on their embedding representations. Given a query identity,

a ranked list of the remaining test samples is returned ac-

cording to their distances to the query. Then, we can calcu-

late evaluation metrics including the mean value of average

precision (mAP) and the cumulated matching characteris-

tics (CMC) curve. The mAP for all queries is a common

evaluation metric for retrieval, which considers both preci-

sion and recall [56]. The CMC curve is another widely used

evaluation metric, which shows the probability that a query

identity appears in different sized candidate lists. CMC top-

k accuracy is 1 if top-k ranked gallery samples contain the

query identity, otherwise accuracy is 0.

Parameters settings: The learning rate and batch size were

set as 0.0001 and 64, respectively. Our learning rate would

decay by factor of 0.1 adaptively and the Adam optimizer

had 0.0005 weight decay rate. The relative distance ε in

Equation 3.2 was 200, while we initialized the learnable

positive margin variable β equaling 200. More detailed pa-

rameters settings please refer our released GitHub code 1.

4.3. Comparison with the Different Loss Objectives

Firstly, we empirically compared the performance of

our proposed the maximum-value perfect (MVP) match-

ing based loss with other state-of-the-art loss objectives

for deep metric learning, e.g., batch all (BA) triplet loss

[40], batch hard (BH) triplet loss [40], lifted loss [33], and

batch-wise optimal transport (OT) loss [52]. Identification

(ID) loss [51] denotes the cross-entropy loss for classifica-

tion, which is also a baseline experiment provided in the

project 2. The comparison results are summarized in Table

1. All metric learning loss objectives could improve mAP

and accuracy significantly. Among the compared methods,

our MVP matching loss based method achieves the best

retrieval (i.e., mAP) performance on Market-1501, Duke-

MTMC, and MSMT17. Meanwhile, the proposed MVP loss

also achieves the best CMC top-1 and top-5 accuracy on

both CUHK03-Detected and CUHK03-Labeled datasets.

We then evaluated the convergence rate of the proposed

MVP loss compared with the other top three metric learning

1https://github.com/IAAI-CVResearchGroup/MVP-metric
2https://github.com/KaiyangZhou/deep-person-reid/
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Figure 4: Evaluation metrics curves with respect to the number of epochs restrained by various loss objectives. Subfigure (a), (b) and (c)

illustrate the mAP curve on Market-1501, Duke-MTMC and MSMT17 respectively. Subfigure (d) represents the CMC top-1 accuracy curve

on CUHK03-Labeled. The metric is observed each 2 epochs on Duke-MTMC and CUHK03-Labeled, and each 4 epochs on others.

Methods
Market-1501 CUHK03 (Detected) CUHK03 (Labeled) Duke-MTMC

mAP Top-1 Top-1 Top-5 Top-1 Top-5 mAP Top-1

BoW + Kissme [56] 20.8% 44.4% 11.7% 33.3% - - 12.2% 25.1%

LOMO + XQDA [26] - - 46.3% - 52.2% - 17.0% 30.8%

Verification + Identification [57] 59.9% 79.5% 83.4% 97.1% - - 49.3% 68.9%

MSCAN [22] 57.5% 80.3% 68.0% 91.2% 74.2% 94.3% - -

SVDNet [43] 62.1% 82.3% 81.8% 95.2% - - 56.8% 76.7%

DPLAR [54] 63.4% 81.0% - - 85.4% 97.6% - -

PDC [42] 63.4% 84.1% 78.3% 94.8% 88.7% 98.6% - -

JLMT [24] 65.5% 85.1% 80.6% 96.9% 83.2% 98.0% - -

SSM [3] 68.8% 82.2% 72.7% 92.4% 76.6% 94.6% - -

MuDeep [36] - - 75.6% 94.4% - 76.9% - -

FMN [14] 67.1% 86.0% 42.6% 56.2% 40.7% 54.5% 56.9% 74.5%

PAN [58] 63.4% 82.8% 36.3% 55.5% 36.9% 56.9% 51.5% 71.6%

D-person [4] 79.6% 92.3% 89.4% 98.2% 91.5% 99.0% 64.8% 80.9%

FMN + Rerank [14] 80.6% 87.9% 47.5% - 46.0% - 72.8% 79.5%

PAN + Rerank [58] 81.5% 88.6% 41.9% - 43.9% - 66.7% 75.9%

MVP Loss 80.5% 91.4% 91.8% 98.8% 93.7% 99.4% 70.0% 83.4%

MVP Loss + Rerank 90.9% 93.3% 96.4% 99.4% 97.7% 99.8% 83.9% 86.3%

Table 2: Retrieval results on the Market-1501, CUHK03, and Duke-MTMC datasets.

loss objectives, i.e., BH triplet loss, lifted loss, and batch-

wise OT loss according to Table 1. The mAP curves on

Market-1501, Duke-MTMC and MSMT17, and the CMC

top-1 accuracy on CUHK03-Labeled of the comparison re-

sults are demonstrated in Figure 4. As illustrated, the con-

vergence rate of our method outperforms the other three loss

objectives significantly while tending to achieve better and

more stable recognition performance. This indicates that

the MVP matching can effectively stress hard positive and

negative pairs during the training process.
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Figure 5: Visualization of an exclusive hard positive and negative pair selected via the MVP matching from a batch of samples. The

leftmost image is the anchor sample, and the right is a batch of samples (with batch size 32). For each anchor image, the hard similar

positive and dissimilar negative images selected by the MVP matching are marked with yellow and red borders, respectively. We only

chose 6 anchor images (i.e., 6 × 32 ) for illustration. The full batch-wise correspondence (i.e., 32 × 32) can be found in our supplementary

materials. Please also refers to the electronically edition for better visual effect.

4.4. Comparison with the State­of­the­Art Methods

We finally compared our method with the other state-of-

the-art methods on four person re-ID benchmark datasets,

i.e., Market-1501, CUHK03-Detected, CUHK03-Labeled,

and Duke-MTMC datasets. The detailed comparison results

are summarized in Table 2. On the Market-1501 dataset,

a baseline method with MVP loss can achieve 80.5% mAP

and 91.4% CMC top-1 accuracy. The results outperform the

majority of methods in Table 2 expect for D-person, where a

more complex model including global and local information

are used. After using re-ranking technique [59], MVP loss

achieves the state-of-the-art performance. For instance, the

mAP and CMC top-1 accuracy of our method reach 90.9%
and 93.3%. Similar empirical results can be found on the

CUHK03 dataset. The CMC top-1 accuracy of MVP loss

reaches 91.8% and 93.7% for detected and labeled images.

Using re-ranking, the top-1 and top-5 accuracy is 96.4%
and 99.4% for CUHK03 detected images, which is 7.0%
and 1.2% higher than the D-person. These two indexes for

CUHK03 labeled images are 97.7% and 99.8% compared

with 91.5% and 99.0% using D-person. On more challeng-

ing Duke-MTMC dataset, MVP loss still outperforms other

methods significantly. We reported the optimal mAP and

CMC top-1 accuracy with 83.9% and 86.3%, respectively.

For a batch of samples, we chose 6 images and their cor-

responding hard positive and negative pairs selected by the

MVP matching. The visualization of results is shown in

Figure 5. An interesting note is that the hard similar pos-

itive pairs selected via the MVP matching within a batch

are often with the intensive appearance variations, e.g., hu-

man poses, scale, and viewpoints, while the hard dissimilar

negative pairs are usually with the similar appearance.

5. Conclusion

In this paper, we proposed a novel maximum-value per-

fect (MVP) matching strategy for mining easily confused

hard samples in person re-ID tasks. The learned MVP

matching could deal with unbalanced samples according to

the adaptive edge weights in the bipartite graph and empha-

size the positive and negative sample pairs automatically.

Then we developed a batch-wise loss objective based on

the MVP matching pairs and incorporated it into an end-

to-end deep metric learning network for recognition. We

evaluated the performance of our method with application

to person re-ID on five benchmark datasets. The empirical

results verified that the proposed method could achieve the

state-of-the-art recognition performance with a faster con-

vergence rate. Future work will involve facilitating such a

trend and applying this MVP matching to more widespread

applications, such as scene reconstruction, 3D facial recog-

nition, and point cloud based object segmentation.
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