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Abstract

Visual localization in large and complex indoor scenes,

dominated by weakly textured rooms and repeating geomet-

ric patterns, is a challenging problem with high practical

relevance for applications such as Augmented Reality and

robotics. To handle the ambiguities arising in this scenario,

a common strategy is, first, to generate multiple estimates

for the camera pose from which a given query image was

taken. The pose with the largest geometric consistency with

the query image, e.g., in the form of an inlier count, is then

selected in a second stage. While a significant amount of

research has concentrated on the first stage, there has been

considerably less work on the second stage. In this paper,

we thus focus on pose verification. We show that combin-

ing different modalities, namely appearance, geometry, and

semantics, considerably boosts pose verification and con-

sequently pose accuracy. We develop multiple hand-crafted

as well as a trainable approach to join into the geometric-

semantic verification and show significant improvements

over state-of-the-art on a very challenging indoor dataset.

1. Introduction

Visual localization is the problem of estimating the 6

Degree-of-Freedom (DoF) pose from which an image was

taken with respect to a 3D scene. Visual localization is

vital to applications such as Augmented and Mixed Real-

ity [15,44], intelligent systems such as self-driving cars and

other autonomous robots [41], and 3D reconstruction [61].

State-of-the-art approaches for accurate visual localiza-

tion are based on matches between 2D image and 3D scene

coordinates [10, 11, 16, 40, 46, 47, 56, 71, 72, 85]. These

2D-3D matches are either established using explicit feature
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Figure 1: Using further modalities for indoor visual lo-

calization. Given a set of camera pose estimates for a query

image (a, g), we seek to identify the most accurate estimate.

(b, h) Due to severe occlusion and weak textures, a state-

of-the-art method [72] fails to identify the correct camera

pose. To overcome those difficulties, we use several modal-

ities along with visual appearance: (top) surface normals

and (bottom) semantics. (c, i) Our approach verifies the es-

timated pose by comparing the semantics and surface nor-

mals extracted from the query (d, j) and database (f, l).

matching [40,56,71,72,85] or via learning-based scene co-

ordinate regression [10, 11, 16, 46, 47, 65]. At large scale

or in complex scenes with many repeating structural ele-

ments, establishing unique 2D-3D matches becomes a hard

problem due to global ambiguities [40, 71, 85]. A strategy

to avoid such ambiguities is to restrict the search space for

2D-3D matching. For example, image retrieval [49, 69] can
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be used to identify a few parts of the scene most likely to be

seen in a query image [29, 58, 72]. 2D-3D matching is then

performed for each such retrieved place, resulting in one

pose hypothesis per place. Subsequently, the “best” pose is

selected as the final pose estimate for the query image.

Traditionally, the “best” pose has been defined as the

pose with the largest number of inlier matches [29,61]. Yet,

it has been shown that a (weighted) inlier count is not a good

decision criterion in the presence of repeated structures and

global ambiguities [55]. Rather than only accounting for

positive evidence in the form of the inliers, [72] proposed to

compare the query photo against an image of the scene ren-

dered using the estimated pose. [72] have shown that such

a pixel-wise comparison, termed Dense Pose Verification

(DensePV), leads to a significantly better definition of the

“best” pose and subsequently improves pose accuracy.

In this paper, we follow the approach from [72], which

focuses purely on comparing low-level appearance and ge-

ometry information between the re-rendered and actual

query image. This paper asks the question whether it is

possible to improve the pose verification stage and thus the

pose accuracy of visual localization approaches. To this

end, we analyze the impact of using further geometric and

semantic modalities as well as learning in the verification

stage. In detail, this paper makes the following contribu-

tions: 1) We investigate the impact of using multiple modal-

ities during pose verification for indoor visual localization

in challenging scenarios. We hand-design several modifica-

tions of the original DensePV approach that integrate addi-

tional 3D geometry as well as normal and semantic infor-

mation. We show that these approaches improve upon the

original DensePV strategy, setting a new state-of-the-art in

localization performance on the highly challenging InLoc

dataset [72]. None of these approaches require fine-tuning

on the actual dataset used for localization and are thus gen-

erally applicable. We are not aware of prior work that com-

bines such modalities. 2) We also investigate a trainable

approach for pose verification. We show that it outperforms

the original DensePV, which uses a hand-crafted representa-

tion. However, it is not able to outperform our novel modifi-

cations, even though it is trained on data depicting the scene

used for localization. 3) We show that there is still signif-

icant room for improvement by more advanced combina-

tions, opening up avenues for future work. In addition, we

show that a standard approach for semantic pose verifica-

tion used for outdoor scenes in the literature [21, 22, 74, 75]

is not applicable for indoor scenes. 4) We make our source

code and training data publicly available1.

2. Related Work

Visual localization. Structure-based visual localization

uses a 3D scene model to establish 2D-3D matches be-

1http://www.ok.sc.e.titech.ac.jp/res/RIGHTP/

tween pixel positions in the query image and 3D points in

the model [11, 14, 16, 29, 40, 42, 56, 65, 71, 72, 85]. The

scene model can be represented either explicitly, e.g., a

Structure-from-Motion (SfM) point cloud [29, 39, 40, 56]

or a laser scan [72], or implicitly, e.g., through a convo-

lutional neural network (CNN) [10,11,45] or a random for-

est [16, 45–47, 65]. In the former case, 2D-3D matches

are typically established by matching local features such as

SIFT [43]. In contrast, methods based on implicit scene

representations directly regress 3D scene coordinates from

2D image patches [10, 11, 16, 45]. In both cases, the cam-

era pose is estimated from the resulting 2D-3D matches

by applying an n-point-pose solver [27, 35, 38] inside a

RANSAC [18, 19, 25] loop. Methods based on scene coor-

dinate regressions are significantly more accurate than ap-

proaches based on local features [11,72]. Yet, they currently

do not scale to larger and more complex scenes [72].

Closely related to visual localization is the place recogni-

tion problem [1, 4, 17, 26, 34, 36, 55, 60, 77, 78, 84]. Given

a database of geo-tagged images, place recognition ap-

proaches aim to identify the place depicted in a given query

image, e.g., via image retrieval [3, 19, 49, 69, 76]. The geo-

tag of the most similar database image is then often used

to approximate the pose of the query image [30, 31, 77, 84].

Place recognition approaches can also be used as part of

a visual localization pipeline [13, 29, 53, 62, 72]: 2D-3D

matching can be restricted to the parts of the scene visible in

a short list of n visually similar database images, resulting

in one pose estimate per retrieved image. This restriction

helps to avoid global ambiguities in a scene, e.g., caused by

similar structures found in unrelated parts of a scene, dur-

ing matching [54]. Such retrieval-based methods currently

constitute the state-of-the-art for large-scale localization in

complex scenes [53, 55, 72]. In this paper, we follow this

strategy. However, unlike previous work focused on im-

proving the retrieval [1,4,20,26,34,36] or matching [56,72],

we focus on the pose verification stage, i.e., the problem of

selecting the “best” pose from the n estimated poses.

An alternative to the localization approaches outlined above

is to train a CNN that directly regresses the camera pose

from a given input image [9, 12, 32, 33, 50, 79]. However, it

was recently shown that such methods do not consistently

outperform a simple image retrieval baseline [59].

Semantic visual localization. In the context of long-time

operation in dynamic environments, the appearance of a

scene can change drastically over time [57, 62, 72]. How-

ever, the semantic description of each scene part remains

mostly invariant to such changes. Semantic visual localiza-

tion approaches [5–7,22,34,50,52,62,63,68,70,74,75,81,

82] thus use scene understanding, e.g., via semantic seg-

mentation or object detection, as some form of invariant

scene representation. Previous work has focused on im-

proving the feature detection and description [34, 62], fea-
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ture association [7, 37, 52, 63, 70, 75, 81], image retrieval [5,

34,62,68,74,82], and pose estimation stages [50,70,74,75].

In contrast, this paper focuses on the pose verification stage.

Pose verification. Most similar to this paper are works

on camera pose verification. The classical approach is to

select the pose with the largest number of (weighted) in-

liers among all candidate poses [25, 29, 61]. However, a

(weighted) inlier count is not an appropriate decision cri-

terion in scenes with repetitive structures as an incorrect

pose might have more inliers than the correct one [55]. In-

stead, it is necessary to explicitly account for such struc-

tures [55]. Still, focusing on the geometric consistency of

feature matches only accounts for positive evidence. In or-

der to take all pixels into account, [72] propose to re-render

the scene from the estimated pose. They compare the re-

sulting image with the original query photo using densely

extracted RootSIFT [2, 43] features. In this paper, we build

on their Dense Pose Verification (DensePV) approach and

integrate additional modalities (surface normals and seman-

tic segmentation) into the verification process. These ad-

ditional modalities further improve the performance of the

pose verification stage. While DensePV is a hand-crafted

approach, we also propose a trainable variant.

[21, 22, 74, 75] use semantic scene understanding for

pose verification: given a pose, they project the 3D points

in a scene model into a semantic segmentation of the query

image. They measure semantic consistency as the percent-

age of 3D points projected into an image region with the

correct label. Besides determining whether an estimated

camera pose is consistent with the scene geometry [21, 22],

this measure can be used to identify incorrect matches [75]

and to refine pose estimates [70, 74]. We show that this ap-

proach, which has so far been used in outdoor scenes, is not

applicable in the indoor scenarios considered in this paper.

View synthesis. Following [72], we use view synthe-

sis to verify estimated camera poses by re-rendering the

scene from the estimated viewpoints. View synthesis has

also been used to enable localization under strong appear-

ance [8,77] or viewpoint [64,66,77] changes. However, we

are not aware of any previous work that combines multiple

modalities and proposes a trainable verification approach.

3. Geometric-Semantic Pose Verification

In this paper, we are interested in analyzing the benefits

of using more information than pure appearance for cam-

era pose verification in indoor scenes. As such, we pro-

pose multiple approaches for pose verification based on the

combination of appearance, scene geometry, and seman-

tic information. We integrate our approach into the InLoc

pipeline [72], a state-of-the-art visual localization approach

for large-scale indoor scenes. In Sec. 3.1, we first review

the InLoc algorithm. Sec. 3.2 then discusses how additional

geometric information can be integrated into InLoc’s pose

verification stage. Similarly, Sec. 3.3 discusses how seman-

tic information can be used for pose verification.

Since obtaining large training datasets for indoor scenes

can be hard, this section focuses on verification algorithms

that do not require training data. Sec. 4 then introduces a

trainable verification approach.

3.1. Indoor Localization with Pose Verification

The InLoc pipeline represents the scene through a set of

RGB-D images with known poses. Given an RGB image

as an input query, it first identifies a set of locations in the

scene potentially visible in the query via image retrieval.

For each location, it performs feature matching and re-ranks

the locations based on the number of matches passing a 2D

geometric verification stage. Camera poses are then esti-

mated and verified for the top-ranked locations only.

Candidate location retrieval. InLoc uses the

NetVLAD [1] descriptor to identify the 100 database

images most visually similar to the query. For retrieval, the

depth maps available for each database image are ignored.

Dense feature matching and pose estimation (DensePE).

NetVLAD aggregates densely detected CNN features into

a compact image-level descriptor. Given the top 100 re-

trieved images, InLoc performs mutually nearest neighbor

matching of the densely extracted CNN features and per-

forms spatial verification by fitting homographies. For the

top 10 candidates with the largest number of homography-

inliers, InLoc estimates a 6DoF camera pose: The dense

2D-2D matches between the query image and a retrieved

database image define a set of 2D-3D matches when taking

the depth map of the database image into account. The pose

is then estimated using standard P3P-RANSAC [25].

Dense pose verification (DensePV). In its final stage, In-

Loc selects the “best” among the 10 estimated camera

poses. To this end, InLoc re-renders the scene from each

estimated pose using the color and depth information of the

database RGB-D scan: The colored point cloud correspond-

ing to the database RGB-D panoramic scan from which the

retrieved database image D originated is projected into the

estimated pose of the query image Q to form a synthetic

query image QD. InLoc’s dense pose verification stage then

densely extracts RootSIFT [2,43] descriptors from both the

synthetic and the real query image2. It then evaluates the

(dis)similarity between the two images as the median of the

inverse Euclidean distance between descriptors correspond-

ing to the same pixel position. Let

SD(x, y,D) = ‖d(Q, x, y)− d(QD, x, y)‖
−1 (1)

be the local descriptor similarity function between Root-

SIFT descriptors extracted at pixel position (x, y) in Q and

2RootSIFT is used for robustness to uniform illumination changes.
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QD. The similarity score between Q and QD then is

DensePV(Q,QD) = median
x,y

(SD(x, y,D)) . (2)

The median is used instead of the mean as it is more robust

to outliers. Invalid pixels, i.e., pixels into which no 3D point

projects, are not considered in Eq. 2.

InLoc finally selects the pose estimated using database

image D that maximizes DensePV(Q,QD).

3.2. Integrating Scene Geometry

Eq. 2 measures the similarity in appearance between the

original query image and its synthesized version. The origi-

nal formulation in the InLoc pipeline has two drawbacks: 1)

It only considers the 3D geometry seen from a single scan

location corresponding to the retrieved database image D.

As the pose of the query image can substantially differ from

the pose of the database image, this can lead to large regions

in the synthesized image into which no 3D points are pro-

jected (c.f . Fig. 1(i)). 2) Indoor scenes are often dominated

by large untextured parts such as white walls. The image

appearance of these regions remains constant even under

strong viewpoint changes. As such, considering only image

appearance in these regions does not provide sufficient in-

formation for pose selection. In the following, we propose

strategies to address these problems.

Merging geometry through scan-graphs. To avoid large

regions of missing pixels in the synthesized images, we

use 3D data from multiple database RGB-D scans when

re-rendering the query. We construct an image-scan-graph

(c.f . Fig. 2) that describes which parts of the scene are re-

lated to each database image and are thus used for generat-

ing the synthetic query image. Given a retrieved database

image D, the graph enables us to re-render the query view

using more 3D points than those visible in the panoramic

RGB-D scan associated with D3. To construct the graph,

we first select the ten spatially closest RGB-D panoramic

scans for each database image. We estimate the visibility

of each 3D scan in the database image by projecting the 3D

points into it while handling occlusions via depth and nor-

mal information. We establish a graph edge between the

database image and a scan if more than 10% of the database

image pixels share the 3D points originating from the scan.

Given a query image Q, the retrieved database image D,

and the estimated camera pose obtained using DensePE, we

can leverage the constructed scan-graph to render multiple

synthetic query images, one for each scan connected to D in

the graph. These views are then combined by taking depth

and normal directions into account to handle occlusions.

Our approach assumes that the scans are dense and rather

complete, and that different scans are registered accurately

3The InLoc dataset used in our experiments consists of multiple

panoramic RGB-D scans, subdivided into multiple database images each.

5m
(a)

(b)

(c)(d)

Figure 2: Image-scan-graph for the InLoc dataset [72].

(a) Example RGB-D panoramic scan. (b) Neighboring

database image. (c) 3D points of the RGB-D panoramic

scan projected onto the view of the database image. (d)

Red dots show where RGB-D panoramic scans are cap-

tured. Blue lines indicate links between panoramic scans

and database images, established based on visual overlap.

w.r.t. each other. These assumptions do not always hold in

practice. Yet, our experiments show that using the scan-

graph improves localization performance by reducing the

number of invalid pixels in synthesized views compared to

using individual scans (c.f . Sec. 5).

Measuring surface normal consistency. The problem of

a lack of information in weakly textured regions can also

be addressed by considering other complementary image

modalities, such as surface normals. When rendering the

synthetic view, we can make use of the depth information

in the RGB-D images to create a normal map with respect

to a given pose. For each 3D point P that projects into a 2D

point p in image space, the normal vector is computed by

fitting a plane in a local 3D neighbourhood. This 3D neigh-

borhood is defined as the set of 3D points that project within

a 5 × 5 pixel patch around p. This results in a normal map

ND as seen from the pose estimated via the database image

D, where each entry ND(x, y) corresponds to a unit-length

surface normal direction. On the query image side, we use

a neural network [83] to predict a surface normal map NQ.

We define two verification approaches using surface nor-

mal consistency. Both are based on the cosine similarity

between normals estimated at pixel position (x, y):

SN(x, y,D) = NQ(x, y)
⊤ND(x, y) . (3)

The first strategy, termed dense normal verification

(DenseNV), mirrors DensePV but considers the normal

similarities SN instead of the descriptor similarities SD:

DenseNV(Q,QD) = median
x,y

(SN(x, y,D)) . (4)

The surface normal similarity maps SN can contain richer

information than the descriptor similarity maps SD in the
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case of untextured regions. Yet, the contrary will be the case

for highly textured regions. Therefore, we propose a second

strategy (DensePNV), which includes surface normal con-

sistency as a weighting term for the descriptor similarity:

DensePNV(Q,QD) = median
x,y

(w(x, y,D) · SD(x, y,D)),

(5)

where the weighting term w(D) shifts and normalizes the

normal similarities as

w(x, y,D) =
1 +max(0, SN(x, y,D))

2
. (6)

Through w, the normal similarities act as an attention mech-

anism on the descriptor similarities, focusing the attention

on image regions where normals are consistent.

Implementation details. For the query images, for which

no depth information is available, surface normals are esti-

mated using [83]. The original implementation from [83]

first crops the input image into a square shape and rescales

it to 256× 256 pixels. However, the cropping operation can

decrease the field of view and thus remove potentially im-

portant information [73]. To preserve the field of view, we

modified the network configuration to predict surface nor-

mals for rectangular images and scale each image such that

its longer side is 256 pixels.

3.3. Integrating Scene Semantics

DensePV, DenseNV, and DensePNV implicitly assume that

the scene is static, i.e., that the synthesized query image

should look identical to the real query photo. In practice,

this assumption is often violated as scenes change over time.

For example, posters on walls or bulletin boards might be

changed or furniture might be moved around. Handling

such changes requires a higher-level understanding of the

scene, which we model via semantic scene understanding.

Projective Semantic Consistency (PSC).A standard ap-

proach to using scene understanding for pose verification is

to measure semantic consistency [21, 74, 75]: These meth-

ods use a semantically labeled 3D point cloud, e.g., ob-

tained by projecting semantic labels extracted from RGB

images onto a point cloud, and a semantic segmentation of

the query image. The labeled 3D point cloud is projected

into the query image via an estimated pose. Semantic con-

sistency is then computed by counting the number of match-

ing labels between the query and the synthetic image.

Ignoring transient objects. PSC works well in outdoor

scenes, where there are relatively many classes and where

points projecting into “empty” regions such as sky clearly

indicate incorrect / inaccurate pose estimates. Yet, we will

show in Sec. 5 that it does not work well in indoor scenes.

This is due to the fact that there are no “empty” regions and

that most pixels belong to walls, floors, or ceilings. Instead

of enforcing semantic consistency everywhere, we use se-

mantic information to determine where we expect geomet-

ric and appearance information to be unreliable.

We group the semantic classes into five “superclasses”:

people, transient, stable, fixed, and outdoor. The transient

superclass includes easily-movable objects, e.g., chairs,

books, or trash cans. The stable superclass contains ob-

jects that are moved infrequently, e.g., tables, couches, or

wardrobes. The fixed superclass contains objects that are

unlikely to move, e.g., walls, floors, and ceilings. When

computing DensePV, DenseNV, or DensePNV scores, we

ignore pixels in the query image belonging to the people

and transient superclasses. We refer to these approaches as

DensePV+S, DenseNV+S, and DensePNV+S.

Implementation details. Semantics are extracted us-

ing the CSAIL Semantic Segmentation/Scene Parsing ap-

proach [87, 88] based on a Pyramid Scene Parsing Net-

work [86], trained on the ADE20K dataset [87, 88] con-

taining 150 classes. Details on the mapping of classes to

superclasses are provided in [73].

4. Trainable Pose Verification

In the previous section, we developed several methods

for camera pose verification that did not require any train-

ing data. Motivated by the recent success of trainable meth-

ods for several computer vision tasks, this section presents

a trainable approach for pose verification (TrainPV), where

we will train a pose verification scoring function from ex-

amples of correct and incorrect poses. We first describe the

proposed model (c.f . Fig. 3), then how we obtained training

data, and finally the loss used for training.

Network architecture for pose verification. Our net-

work design follows an approach similar to that of

DensePV, where given the original Q and a synthetic

query image QD we first extract dense feature descriptors

d(Q, x, y) and d(QD, x, y) using a fully convolutional net-

work. This feature extraction network plays the role of the

dense RootSIFT descriptor of DensePV. Then, a descriptor

similarity score map is computed by the cosine similarity4:

SD(x, y,D) = d(Q, x, y)⊤d(QD, x, y) . (7)

Finally, the 2D descriptor similarity score-map given by

Eq. 7 is processed by a score regression CNN that estimates

the agreement between Q and QD, resulting in a scalar

score. This score regression CNN is composed of several

convolution layers followed by ReLU non-linearities and a

final average pooling layer. The intuition is that the succes-

sive convolution layers can identify coherent similarity (and

dissimilarity) patterns in the descriptor similarity score-map

4The descriptors are L2 normalized beforehand.
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Figure 3: Network architecture for Trainable Pose Veri-

fication. Input images are passed through a feature extrac-

tion network F to obtain dense descriptors f . These are

then combined by computing the descriptor similarity map

SD. Finally a score regression CNN R produces the score s
of the trainable pose verification model.

SD. A final average pooling then aggregates the positive and

negative evidence over the score map to accept or reject the

candidate pose. Note that our architecture bears a resem-

blance to recent methods for image matching [51] and opti-

cal flow estimation [24]. Contrary to these methods, which

estimate global geometric transformations or local displace-

ment fields, our input images (Q, QD) are already spatially

aligned and we seek to measure their agreement.

Training data. In order to train the proposed network, we

need appropriate annotated training data. For this, we use

additional video sequences recorded for the InLoc bench-

mark [72], which are separate from the actual test images.

We created 6DoF camera poses for the new images via man-

ual annotation and Structure-from-Motion (SfM) [73]. For

each image, we generated pose candidates for training in

two different ways.

The first approach randomly perturbs the ground-truth

pose with 3D translations and rotations up to ±1m and

±20deg. We use the perturbed random poses to generate

synthetic images by projecting the 3D point cloud from the

InLoc database scan associated to that image.

The second approach uses the DensePE pipeline [72] as

a way of generating realistic estimated poses for the addi-

tional images. For this, we run the images through the lo-

calization pipeline, obtaining pose estimates and the corre-

sponding database images. Then we run synthetic image

rendering on these poses and use these images for training.

Note that, contrary to the randomized approach where im-

ages are generated from the correct query-database image

pair, here the synthetic images might be generated from un-

related pairs. This is because the localization pipeline might

fail to generate “hard-negatives”, i.e., examples correspond-

ing to other similar-looking but different locations.

In both cases, for each real and synthetic image pair,

both the ground-truth (PGT) and the estimated (P̃ ) poses are

known. In order to generate a scalar score that can be used

as a training signal, we compute the mean 2D reprojection

error r(QD) of the 3D point cloud {Xi}
N
i=1

in image space:

r(QD) =
1

N

N∑

i=1

‖P(Xi, PGT)− P(Xi, P̃ )‖ , (8)

where P is the 3D-2D projection function.

Training loss. A suitable loss is needed in order to train

the above network for pose verification. Given a query

image Q and a set of candidate synthesized query images

{QDi
}Ni=1

, we would like to re-rank the candidates in the

order given by the average reprojection errors (c.f . Eq. 8).

In order to do this, we assume that each synthetic image

QDi
has an associated discrete probability p(QDi

) of cor-

responding to the best matching pose for the query image

Q among the N candidates. This probability should be in-

versely related to the reprojection error from Eq. 8, i.e., a

pose with a high reprojection error has little probability of

being the best match. Then, the scores si = s(Q,QDi
) pro-

duced by our trained pose verification CNN can be used to

model an estimate of this probability p̂(QDi
) as

p̂(QDi
) =

exp(si)∑N

k=1
exp(sk)

. (9)

To define the ground-truth probability distribution p, we

make use of the reprojection error ri = r(QDi
) from Eq. 8:

p(QDi
) =

exp(−r̃i)∑N

k=1
exp(−r̃k)

, (10)

where r̃i = ri/mink rk is the relative reprojection error

with respect to the minimum value within the considered

candidates. The soft-max function is used to obtain a nor-

malized probability distribution5.

The training loss L is defined as the cross-entropy be-

tween the ground-truth and estimated distributions p and p̂:

L = −
N∑

i=1

p(QDi
) log p̂(QDi

) , (11)

where the sum is over the N candidate poses.

Note that because the ground-truth score distribution p
is fixed, minimizing the cross-entropy between p and p̂ is

equivalent to minimizing the Kullback-Leibler divergence

between these two distributions. Thus, the minimum is

achieved when p̂ matches p exactly. Also note that, at the

optimum, the ground-truth ranking between the candidate

poses is respected, as desired.

Implementation details. The feature extraction network

is composed of a fully convolutional ResNet-18 architec-

ture (up to the conv4-2 layer) [28], pretrained on Ima-

geNet [23]. Its weights are kept fixed during training as

the large number of parameters would lead to overfitting in

our small-sized training sets. The score regression CNN

5Relative reprojection errors are used to prevent saturation of the soft-

max function.

4378



is composed of four convolutional layers with 5 × 5 filters

and a padding of 2, each followed by ReLU non-linearities.

Each convolutional layer operates on 32 channels as input

and output, except the first one, which takes the single chan-

nel descriptor similarity map dD as input, and the last one,

which also outputs a single channel tensor. Finally, an av-

erage pooling layer is used to obtain the final score esti-

mate s(Q,QD). The score regression CNN is trained for 10

epochs using the PyTorch framework [48], with the Adam

optimizer and a learning rate of 10−5.

5. Experimental Evaluation

Dataset. We evaluate our approach in the context of in-

door visual localization on the recently proposed InLoc

dataset [72]. The dataset is based on the 3D laser scan

model from [80] and depicts multiple floors in multiple uni-

versity buildings. The 10k database images correspond to a

set of perspective images created from RGB-D panoramic

scans captured using a camera mounted on a laser scan-

ner, i.e., a depth map is available for each database im-

age. The 329 query images were recorded using an iPhone7

about a year after the database images and at different times

of the day compared to the database images. The result-

ing changes in scene appearance between the query and

database images make the dataset significantly more chal-

lenging than other indoor datasets such as 7 Scenes [65].

Evaluation measure. Following [57, 72], we measure the

errors of an estimated pose as the differences in position and

orientation from the reference pose provided by the dataset.

We report the percentage of query images whose estimated

poses differ by no more than X meters and Y degrees from

the reference pose for different pairs of thresholds (X,Y ).

Baselines. Our approach is based on the InLoc ap-

proach [72], which is the current state-of-the-art in large-

scale indoor localization and thus serves as our main base-

line (c.f . Sec. 3.1). We build on top of the code released

by the authors of [72]. For a given input image, we first

retrieved the top 100 database images via NetVLAD with

a pre-trained Pitts30K [1] VGG-16 [67] model. Feature

matching is then performed between query and retrieved

images also using the densely extracted CNN features of

NetVLAD’s VGG-16 [67] architecture. After re-ranking

the image list according to the number of homography-

inliers, we estimate pose candidates for the top 10 best

matched images using a set of dense inlier matches and

database depth information (DensePE).

For each candidate, DensePV renders the view with

respect to the RGB-D panoramic scan from which the

database image originated. The similarity between the orig-

inal and the rendered view is computed as the median dis-

tance of densely extracted hand-crafted features [2, 43].

As a semantic baseline, we project the database 3D

Error [meter, degree]

Method [0.25, 5] [0.50, 5] [1.00, 10] [2.00, 10]

w/o scan-graph

DensePE [72] 35.0 46.2 57.1 61.1

DensePV [72] 38.9 55.6 69.9 74.2

PSC 30.4 44.4 55.9 58.4

DensePV+S 39.8 57.8 71.1 75.1

DenseNV 32.2 45.6 58.1 62.9

DenseNV+S 31.6 46.5 60.5 64.4

DensePNV 40.1 58.1 72.3 76.6

DensePNV+S 40.1 59.0 72.6 76.3

w/ scan-graph

DensePV 39.8 59.0 69.0 71.4

PSC 28.3 43.2 55.0 58.4

DensePV+S 41.3 61.7 71.4 74.2

DenseNV 34.3 50.5 62.9 66.6

DenseNV+S 35.9 51.4 64.4 68.4

DensePNV 40.4 60.5 72.9 75.4

DensePNV+S 41.0 60.5 72.3 75.1

TrainPV (random) 39.5 56.5 72.3 76.3

TrainPV (DPE) 39.5 56.8 72.3 76.3

Oracle (Upper-bound) 43.5 63.8 77.5 80.5

Table 1: The impact of using the scan-graph for pose ver-

ification evaluated on the InLoc dataset [72]. We report

the percentage of queries localized within given positional

and rotational error bounds.
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Figure 4: The impact of geometric and semantic infor-

mation on the pose verification stage. We validate the

performance of the proposed methods that consider addi-

tional geometric and semantic information on the InLoc

dataset [72]. Each curve shows the percentage of the queries

localized within varying distance thresholds (x–axis) and a

fixed rotational error of at most 10 degrees.

points, labeled via the database image, into the query and

count the number of points with consistent labels (PSC).

As reported in [72], both DSAC [10, 11] and

PoseNet [32, 33] fail to train on the InLoc dataset. We thus

do not consider them in our experiments.

The impact of using additional modalities. Tab. 1 and

Fig. 4 compare the localization performance of the baseline

pose verification methods against our novel variants pro-

posed in Sec. 3. DenseNV and PSC perform worst, even

compared to the baseline DensePE. This is not surprising as

both completely ignore the visual appearance and instead

focus on information that by itself is less discriminative
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(a) (b) (c)

(d) (e) (f)

Figure 5: Typical failure cases of view synthesis using

the scan-graph. Top: Synthetic images obtained during

DensePV with the scan-graph, affected by (a) misalignment

of the 3D scans to the floor plan, (b) sparsity of the 3D

scans, and (c) intensity changes. Bottom: A typical failure

case of DensePV with the scan-graph: (d) query image, (e)

re-rendered query, (f) error map computed with RootSIFT.

(surface normals and semantic segmentation, respectively).

On the other hand, combining geometric and / or semantic

information with appearance information improves the lo-

calization performance compared to DensePV. This clearly

validates our idea of using multiple modalities.

We observe the biggest improvement by using our scan-

graph, which is not surprising as it reduces the number of in-

valid pixels and thus adds more information to the rendered

images. DensePV+S using a scan-graph shows the best per-

formance at higher accuracy levels. DensePNV using the

scan-graph combines appearance and normal information

and constantly shows more than a 5% performance gain

compared to DensePV. Yet, DensePNV+S with the scan-

graph shows less improvement compared to its single scan

variant and even performs worse for larger error thresholds.

This is partially due to inaccurate depths and camera poses

of the database images (c.f . Fig. 5 (a–c)). There are also

failures where a single scan already provides a rather com-

plete view. Fig. 5 (d–f) shows such an example: due to weak

textures, the rendering appears similar to the query image.

Such failures cannot be resolved using the scan-graph.

Interestingly, simply combining all modalities does not

necessarily lead to the best performance. To determine

whether the modalities are simply not complementary or

whether this is due to the way they are combined, we cre-

ate an oracle. The oracle is computed from four of our

proposed variants (DensePV [72], DensePV w/ scan-graph,

DensePV+S w/ scan graph, and DensePNV w/ scan-graph):

Each variant provides a top-ranked pose and the oracle, hav-

ing access to the ground truth, simply selects the pose with

the smallest error. As can be seen from Tab. 1 and Fig. 4,

the oracle performs clearly better than any of our proposed

variants. We also observed DenseNV+S provides better

poses than the oracle (which does not use DenseNV+S) for

about 9% the queries, which could lead to further improve-

ments. This shows that the different modalities are indeed

complementary. Therefore, we attribute the diminishing

returns observed for DensePNV+S to the way we combine

semantic and normal information. We assume that better re-

sults could be obtained with normals and semantics if one

reasons about the consistency of image regions rather than

on a pixel level (as is done by using the median).

Trainable pose verification. We next evaluate two train-

able approaches (TrainPV), which are trained by randomly

perturbed views (random) or by selecting views based on

DensePE estimation (DPE) (c.f . Sec. 4). Even though both

are trained using only appearance information, they still are

able to use higher-level scene context as they use dense fea-

tures extracted from a pre-trained fully convolutional net-

work. Tab. 1 compares both TrainPV variants with the base-

lines and our hand-crafted approaches. Even though both

variants use different training sets, they achieve nearly the

same performance6. This indicates that the choice of train-

ing set is not critical in our setting. The results show that

TrainPV outperforms the DensePV baseline, but not neces-

sarily our hand-crafted variants based on multiple modali-

ties. This result validates our idea of pose verification based

on different sources of information. We also tried variants

of TrainPV that use multiple modalities, but did not observe

further improvements.

6. Conclusion

We have presented a new pose verification approach to im-

prove large-scale indoor camera localization, which is ex-

tremely challenging due to the existence of repetitive struc-

tures, weakly-textured scenes, and dynamically appear-

ing/disappearing objects over time. To address these chal-

lenges, we have developed and validated multiple strategies

to combine appearance, geometry, and semantics for pose

verification, showing significant improvements over a cur-

rent state-of-the-art indoor localization baseline. To encour-

age further progress on the challenging indoor localization

problem, we make our code publicly available.
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Leal-Taixé. Understanding the Limitations of CNN-based

Absolute Camera Pose Regression. In Proc. CVPR, 2019. 2

[60] Grant Schindler, Matthew Brown, and Richard Szeliski.

City-Scale Location Recognition. In Proc. CVPR, 2007. 2

[61] Johannes Lutz Schönberger and Jan-Michael Frahm.

Structure-From-Motion Revisited. In Proc. CVPR, 2016. 1,

2, 3

[62] Johannes Lutz Schönberger, Marc Pollefeys, Andreas

Geiger, and Torsten Sattler. Semantic Visual Localization.

In Proc. CVPR, 2018. 2, 3

[63] Markus Schreiber, Carsten Knöppel, and Uwe Franke. Lane-

Loc: Lane marking based localization using highly accurate

maps. In Proc. IV, 2013. 2, 3

[64] Qi Shan, Changchang Wu, Brian Curless, Yasutaka Fu-

rukawa, Carlos Hernandez, and Steven M. Seitz. Accurate

Geo-Registration by Ground-to-Aerial Image Matching. In

Proc. 3DV, 2014. 3

[65] Jamie Shotton, Ben Glocker, Christopher Zach, Shahram

Izadi, Antonio Criminisi, and Andrew Fitzgibbon. Scene co-

ordinate regression forests for camera relocalization in RGB-

D images. In Proc. CVPR, 2013. 1, 2, 7

[66] Dominik Sibbing, Torsten Sattler, Bastian Leibe, and Leif

Kobbelt. SIFT-realistic rendering. In Proc. 3DV, 2013. 3

[67] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. In Proc.

ICLR, 2015. 7

[68] Gautam Singh and Jana Košecká. Semantically Guided Geo-
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