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Abstract

Many real-world tasks require models to compare im-

ages along multiple similarity conditions (e.g. similarity

in color, category or shape). Existing methods often rea-

son about these complex similarity relationships by learn-

ing condition-aware embeddings. While such embeddings

aid models in learning different notions of similarity, they

also limit their capability to generalize to unseen categories

since they require explicit labels at test time. To address this

deficiency, we propose an approach that jointly learns rep-

resentations for the different similarity conditions and their

contributions as a latent variable without explicit supervi-

sion. Comprehensive experiments 1 across three datasets,

Polyvore-Outfits, Maryland-Polyvore and UT-Zappos50k,

demonstrate the effectiveness of our approach: our model

outperforms the state-of-the-art methods, even those that

are strongly supervised with pre-defined similarity condi-

tions, on fill-in-the-blank, outfit compatibility prediction

and triplet prediction tasks. Finally, we show that our model

learns different visually-relevant semantic sub-spaces that

allow it to generalize well to unseen categories.

1. Introduction

Reasoning about the similarity between images or data

of different modalities is an inherent challenge in computer

vision. Beyond its prevalence in fundamental problems

such as image-sentence retrieval [41, 38], cross-domain

image-matching [32, 16], attribution learning [4, 33] and vi-

sual categorization [29], it also has an increasingly promi-

nent role in computer vision problems in the fashion and

retail domains like outfit style modeling [14], fashion item

retrieval and recommendation [10, 22] and automatic cap-

sule wardrobe generation [15]. Metric learning (the task

of learning a distance function between features based on

supervised similar/dissimilar pairs) is a common approach

1https://github.com/rxtan2/
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Figure 1: We propose the SCE-Net model for learning

multi-faceted similarity between images, such as compat-

ibility of two fashion items. Previous work needed user-

defined labels to learn multiple feature subspaces for mea-

suring different aspects of similarity, e.g., one for compar-

ing tops and bottoms and another for comparing bottoms

and shoes (e.g., [36, 27, 35]). In contrast, our approach

learns important subspaces without such labels in a data-

driven manner. The concepts and their contributions to a

final similarity score are learned together as a single end-to-

end trained model.

used to tackle the above-mentioned problems and is often

addressed by learning representations for objects in a uni-

fied embedding space, where the distances provide a mea-

sure of their similarity. However, this is not naturally repre-

sentative of the real world. Objects can usually be described

with multiple visual attributes such as color, shape or cate-

gory. Consider the example where a red shirt is similar to a

pair of red shoes in color but dissimilar in object category.

A single embedding space is unable to learn representations

for these contradicting notions of similarity. By discounting

such valuable information, these embeddings are not able
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Figure 2: An overview of Similarity Condition Embedding Network (SCE-Net) which is trained end-to-end as a single model.

The images are first passed into a Convolutional Neural Network (CNN) to extract their features, denoted V1 and V2, in a

general embedding space. To determine which semantic subspace is relevant to their comparison, both visual features are

passed into the condition weight branch, which is a simple neural network. The output of the weight branch is a feature

vector of dimension M, represented by W1, · · ·,WM . It performs a dynamic assignment of the similarity condition masks,

denoted C1, · · ·, CM , to the pair of images. Each similarity condition mask Ci has the same dimension D as the visual

features and applied as a mask via element-wise product. The masked embeddings are multiplied by the weight vector to

produce the final representations E1 and E2. These final representations induce a relevant semantic subspace within which

the similarity between both images are compared. We note that the subspace of ’color and pattern’, shown in the figure,

provides an example of possible notions of similarity encoded by the subspaces but we do not actually restrict the types of

subspaces learned by the model. The arrows from V2 and to E2 are removed to prevent the figure from being too crowded.

to reason comprehensively about the relative similarity be-

tween objects. There has been a recent trend of training

embedding models conditioned on some given axis of simi-

larity such as the object category (e.g., [36, 27, 35]) in order

to learn disentangled representations (i.e. illustrated on the

top part of Figure 1). This helps simplify complex similar-

ity relationships by allowing the model to focus on only one

similarity condition at a time for each semantic subspace.

However, by relying on such labels, these approaches can-

not generalize to unseen categories and attributes, one of

the primary advantages of embedding models. As such, we

seek to learn multiple notions of similarity jointly without

explicit supervision via user-defined labels.

In this paper, we aim to learn how to separate the data,

where the different similarity conditions and their contribu-

tion are treated as a latent variable and learned in a weakly

supervised manner. To obtain richer representations of vi-

sual similarity, we propose a Similarity Condition Embed-

ding Network (SCE-Net) model that jointly learns multiple

similarity conditions from a unified embedding space. An

illustrative overview of our model is provided in Figure 2.

To begin, images are projected into a unified embedding

space using a convolutional neural network. The core com-

ponent of our model is a set of parallel similarity condition

masks, denoted as C1, · · ·, CM in Figure 2. These masks

are applied on the image features in the general embedding

space. By reweighting dimensions that are relevant to a spe-

cific notion of similarity, each similarity condition mask is

encouraged to learn representations that encode different se-

mantic subspaces. The relevance of each condition mask to

the objects is determined by a weight branch conditioned on

their visual representations in the unified embedding space.

The condition weight branch can be thought of as a type of

attention mechanism [42] that performs a dynamic assign-

ment of each condition mask to the objects being compared.

Our work on learning disentangled representations is

motivated by the Conditional Similarity Networks (CSN) of

Veit et al. [36]. The CSN model pre-defined similarity con-

ditions to supervise the learning of disentangled represen-

tations. Our model attempts to learn such representations

without explicit supervision via such pre-defined condi-

tions. Plummer et al. [27] found that considering the global

similarity between items during training a CSN model pro-

duced more human-intuitive embedding spaces in addition

to improving performance. Vasileva et al. [35] adapted the

CSN model to learn type-aware embeddings for modeling

outfit compatibility. Another drawback of these approaches

is that they exhibit linear ([36, 27]) or quadratic [35] growth

in the number of conditions per desired similarity condition.

In contrast, we found that we can often achieve better per-
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formance with far fewer learned subspaces (e.g., Vasileva et

al. learns 66 conditional subspaces for the fashion compat-

ibility task on Polyvore Outfits whereas we obtain better

performance with 5 learned subspaces).

The contributions of our paper are summarized below:

• We propose the Similarity Condition Embedding Net-

work (SCE-Net), which learns richer representations

of different notions of similarity from images without

explicit category or attribute supervision.

• We demonstrate that SCE-Net generalizes well to

novel categories and attributes in zero-shot tasks.

• Most importantly, we demonstrate that a dynamic

weighting mechanism is integral in aiding a weakly

supervised model to learn representations for different

notions of similarity.

We perform extensive experiments over three datasets,

Polyvore-Outfits [35], Maryland-Polyvore [12] and UT-

Zappos50K [43], where our approach outperforms the state-

of-the-art in outfit compatibility prediction, fill-in-the-blank

outfit completion and triplet prediction tasks, respectively,

without requiring strong supervision (via category or at-

tribute labels) used in prior work at test time.

2. Related Work

Metric Learning. Substantial prior work [40, 5, 11] has

focused on measuring similarity between images in a single

similarity context. To achieve this, images are typically pro-

jected into a general embedding space where the respective

distances between objects provide a measure of their rela-

tive similarity. One notable shortcoming of this approach is

that it does not consider different types of visual features. In

response to this, there has been a recent trend of comparing

images across multiple axes of similarity. As discussed in

the introduction, several papers have proposed methods that

attempt to learn disentangled representations which capture

the different notions of similarity via supervision by pre-

defined similarity conditions [36, 28, 35]. However, since

these approaches are trained to only compare items along

a known axis of similarity, they cannot make predictions

between novel categories at test time. Our idea of overcom-

ing this restriction by using a similarity condition weight

branch is similar to the phrase localization approach uti-

lized by Plummer et al. [28]. However, their work is primar-

ily focused on measuring similarity between image regions

and text, and their conditions are also supervised by text de-

scriptions. Learning distance metrics has also attracted a lot

of interest from the computer vision community. Hsieh et

al. [14] utilizes collaborative filtering with implicit feed-

back to learn a joint metric which encodes user-user and

user-item similarity while Sohn et al. [34] introduce a multi-

class N -pair loss objective to improve deep metric learning.

Visual Attributes. Visual attributes (e.g. color and pat-

tern) entail a lot of information and have been shown to

be an effective mode of communication between both hu-

mans and artificial agents [7, 2]. For example, Batra et al.

[2] seeks to improve the performance of agents by using

visual attributes as their main mode of communication. At-

tributes have also been used to address tasks such as image

search and classification [19, 18] and scene understanding

[31, 25, 20]. However, one major limitation that researchers

often face is the sparsity of supervision (i.e., a lack of ex-

ample images and/or labels). To address this, Yu et al. [44]

trains attribute ranking models on synthetic images to de-

termine the relevance of each attribute for the comparison

of a pair of images. Others focus on ways of automatically

discovering attributes in images [3, 30, 39, 9]. For example,

Ferrari et al. [9] introduce a probabilistic generative model

of visual attributes as well as an approach to learn its pa-

rameters from images.

Recommendation and Retrieval. Similarity learning

has also been used extensively to solve computer vision

problems in other domains such as fashion and retail (e.g.,

[12, 35, 37]). Using visual attributes is a naturally intu-

itive way to describe fashion items (e.g. color, cut and style).

As such, identifying relevant attributes in visual representa-

tions of fashion items is essential to reasoning about sim-

ilarity between them. The deficiency of comparing im-

ages by projecting them into a general embedding space

as described above is especially apparent in prior work on

modeling fashion outfit compatibility [21, 12, 35, 37]. In

their approach, Veit et al. [37] do not distinguish items

by their types but instead attempt to learn the concepts of

compatibility and similarity from heterogeneous dyadic co-

occurrences of items in user data. These visual attributes

also form the basis of many interactive fashion search en-

gines and recommendation systems [45, 1, 15, 27].

3. Similarity Condition Embedding Network

In this section we describe SCE-Net, our model which

jointly learns representations for the different similarity

conditions that may be present in a dataset by treating them

and their contributions as a latent variable. This allows us to

train our end-to-end model in a weakly supervised manner

where we only know if a pair of images are similar under

some unknown condition. To begin, the images are pro-

jected via a CNN into a common feature space which we

term as the general embedding space. We denote this oper-

ation as g(x; θ) where x and θ represent the sets of images

and parameters respectively. Our network consists of two

components - a set of parallel similarity condition masks

which we will discuss in Section 3.1, and a condition weight

branch we will discuss in Section 3.2. We discuss vari-

ants of our condition weight branch with inputs of different

modalities in Section 3.3.
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3.1. Learning Similarity Conditions

A core component of our model is a set of M paral-

lel similarity condition masks of dimension D, denoted as

C1, · · ·, CM in Figure 2. The value of M is determined ex-

perimentally using held out data. The similarity condition

masks are applied, via elementwise product, to the image

features in the general embedding space and their bearing

on a similarity relationship is learned during training. By

re-weighting relevant dimensions, the similarity condition

masks are projecting the image features into secondary se-

mantic subspaces of RD which encode different similarity

substructures. For each similarity condition mask Cj and

general image feature Vi , the masking operation is per-

formed as follows:

Eij = Cj ⊙ Vi, (1)

where Eij is the masked embedding and ⊙ denotes the

Hadamard product. The output of the masking operation

over all similarity condition masks and an image feature vi
is a matrix of dimensions M×D. Let O represent the output

of the masking operation where O = [Ei1, · · ·, EiM ]. Then,

the final representation for the image feature is computed as

a matrix-vector multiplication operation:

Ei = wOT , (2)

where w is the weight vector of dimension M computed by

the condition weight branch described below.

3.2. Condition Weight Branch

Instead of pre-defining a set of similarity conditions, we

use a condition weight branch to allow the model to auto-

matically determine what concepts to learn. The condition

weight branch determines the relevance of each condition

mask based on the pair of objects being compared. For a

pair of images xi and xj , the input feature to the condition

weight branch is computed as follows:

y = concat{Vi, Vj}, (3)

where concat{...} denotes the concatenation operation. As

seen in Figure 2, after concatenating these image features

they are fed into a series of fully-connected and ReLU lay-

ers. A softmax is used on the final activations resulting in a

vector w of dimension M that is used to determine the rele-

vance of each similarity condition mask to the objects being

compared.

A triplet loss is a naturally intuitive way to learn repre-

sentations with complex similarity relationships. We define

a triplet of objects as a set {xi, xj , xk} where xi is the refer-

ence object and xj and xk are positive and negative objects

that have been determined by the oracle to be semantically

similar and dissimilar to xi under some unobserved condi-

tion c, respectively. In the context of this work, an oracle

is defined to be a general entity that has the ground truth

measures of similarity between all objects under the set of

all possible similarity conditions. Usually, the oracle takes

the form of crowd-sourced datasets that are annotated with

human labels. The final triplet loss is then given as:

ltriplet(xi, xj , xk) = max{0, d(Ei, Ej)−d(Ei, Ek)+µ},
(4)

where d(Ei, Ej) denotes the Euclidean distance between

the representations of objects xi and xj and the margin µ is

a hyper-parameter. The triplet loss requires that d(Ei, Ej)
is smaller than d(Ei, Ek) by a margin µ where the final im-

age representations E are computed as described above.

As in Veit et al. [36], we impose an l1 loss on the sim-

ilarity condition masks to encourage sparsity and disentan-

glement. In addition, we regularize the learned image rep-

resentations g(x; θ) with an l2 penalty. As such, the final

objective function for our model is given by:

lfinal = ltriplet(x) + λ1 l1 + +λ2 l2, (5)

where λ1 and λ2 are scalar hyperparameters.

3.3. Multimodal Variants of SCE­Net

In addition to the vision-only version of the condition

weight branch used in our network, we also experiment with

variations which leverages multimodal features that may

provide some semantic relationship between the different

conditions we wish to learn. These variants are:

Text Features. We use the word ‘text’ to refer to both

sentences which may represent either the category labels or

natural language descriptions of the images. A sentence is

tokenized and each token is represented using a pre-trained

word embedding (e.g., [26, 24]). For a pair of text features

(Ti, Tj) corresponding to image pair (xi, xj), the input fea-

ture to the condition weight branch is computed according

to the formulation above:

y = concat{Ti, Tj}. (6)

Visual-Text Features. For a pair of image features

(Vi, Vj) and their text features (Ti, Tj), the condition

weight branch determines the relevance of each condition

embedding based on the input feature:

y = concat{(Vi ⊙ Ti), (Vj ⊙ Tj)}. (7)

We note that there are different ways to combine visual and

text features such as concatenation and projections of both

modalities into the same embedding space but elementwise

product performed best in our experiments.

4. Experimental Analysis

We evaluate the capability of the SCE-Net model to cap-

ture different notions of similarity as well as how well it
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generalizes to novel image categories that are not seen dur-

ing the training process. To provide a fair comparison 2

of our approach to other baseline models, we perform ex-

periments on the Maryland-Polyvore [12], Polyvore-Outfits

[35] and UT-Zappos50k [43] datasets. The Maryland

Polyvore and Polyvore Outfits datasets contain two evalu-

ation tasks - outfit compatibility prediction and fill-in-the-

blank (FITB). For outfit compatibility prediction, the task

is to evaluate the compatibility of a set of fashion items in

an outfit. As in Han et al. [12], performance on this task is

evaluated with the area under a receiver operating charac-

teristic curve (AUC). In the FITB experiment, given a set of

candidate items and a subset of items in an outfit, the task is

to select the most compatible candidate. The effectiveness

of the model is evaluated based on the overall accuracy. Al-

though using a larger final embedding has shown to have

performance benefits (e.g., [12, 35]), this comes at a higher

computational cost at test time. We compare methods with

the same final embedding size for a fair comparison. We

also evaluate the ability of our model to identify different

relative strengths of attributes using the task triplet predic-

tion of [36] on the UT-Zappos50k dataset. We note that the

level of supervision indicated in Tables 1 and 5 refers to the

amount of supervision required by ours and baseline mod-

els during test time (i. e. the models know explicitly which

axis of similarity to compare the objects on).

4.1. Datasets

Maryland Polyvore [12]. This dataset collected 21,799

outfits from the social commerce website Polyvore. We

use the outfit splits provided by the authors consisting of

17,316 outfits in the training set, 3,076 in the test set and

1,407 in the validation set. In the test set provided by the

authors, negatives in both the compatibility prediction and

FITB tasks are sampled at random without consideration

for item compatibility or category (i.e. they could replace a

“top” in an outfit with “sunglasses”). As such, we evaluate

our model on a much more challenging test set provided by

Vasileva et al. [35], where the item category is taken into

account when sampling for negatives.

Polyvore Outfits [35]. This dataset is much larger

than Maryland Polyvore, containing 53,306 outfits for train-

ing, 10,000 for testing and 5000 for validation. It is also

sourced from the Polyvore website, but unlike the Maryland

Polyvore dataset, it contains annotations for fine-grained

item types and provides a text description of items.

UT-Zappos50k [43]. This dataset contains 50,000 im-

ages of shoes with meta-data labels for annotations. We use

the triplets provided by Veit et al. [36] which are sampled

2Recently, [6] proposed a fashion compatibility model and evaluated on

the Maryland Polyvore dataset, but it was published after our submission

and thus, should be considered concurrent work. In addition, they use a

larger base network, ResNet-50 (theirs) vs. ResNet-18 (ours); we omitted

their results since they are not directly comparable.

based on four similarity conditions - type of the shoes, gen-

der of the shoes, height of the shoe heels and the closing

mechanism of the shoes. Veit et al. generated 200k train,

20k validation and 40k test triplets for each characteristic.

When training SCE-Net, we combine all the triplets from

each characteristic into a single training set.

4.2. Implementation Details

Maryland Polyvore and Polyvore Outfits. For fair

comparison, we adopt the implementation as detailed in

Vasileva et al. [35]. We use an 18-layer deep residual net-

work [13] as a shared feature extractor that has been pre-

trained on ImageNet [8] and fine-tuned during training on

this task. The features in the unified embedding space have

an embedding size of 64 dimensions. To represent the text

descriptions, we also use the HGLMM Fisher vectors [17]

of word2vec [24] which have been PCA reduced to 6000 di-

mensions. Vaslieva et al. also took advantage of additional

regularizers on their general embedding space (i.e., the out-

put of g(x; θ) discussed in Section 3) which helped improve

performance. These include:

• VSE: Visual-semantic loss which requires that an im-

age xi is embedded closer to its description ti as com-

pared to the other two images within a triplet.

• Sim: A loss which encourages similar images to em-

bed nearby each other (analogously, similar text de-

scriptions should also embed nearby each other).

For our experiments on both of these datasets, we in-

cluded the VSE and Sim losses into our objective function.

As such, our objective function becomes:

lfinal = ltriplet(x) + λ1 l1 + λ2 l2 + λ3 lV SE + λ4 lSim,

(8)

where λ3 and λ4 are scalar hyperparameters. We use the

same settings as Vasileva et al. for learning rates and hyper-

parameters for loss functions.

UT-Zappos50k Dataset. An 18-layer ResNet is also

used as our base image encoder on this dataset. Due to the

triplet format of the dataset, we modify the weight branch

to be conditioned on all three images in a triplet. Given a

triplet {xi, xj , xk}, the input to the condition weight branch

(at both train and test time) is given as,

y = concat{Vi, Vj , Vk}, (9)

where Vi, Vj and Vk are the representations of images xi,

xj and xk respectively. In Section 4.3.2, we demonstrate

that conditioning the weight branch on triplet visual repre-

sentations helps our model to learn the different notions of

similarity explicitly defined in the dataset.
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Test-time Polyvore Outfits Maryland Polyvore

Method Supervision Compat AUC FITB Acc Compat AUC FITB Acc

Siamese Net [35] None 0.81 52.9 0.85 54.4

Type-Aware Embedding Network [35] Strong 0.86 55.3 0.90 59.9

SCE-Net None 0.91 61.6 0.90 60.8

Table 1: Comparison of different methods on the outfit compatibility prediction and fill-in-the-blank tasks over the test set

for Maryland Polyvore and Polyvore Outfits datasets.

(a) Compatibility AUC results (b) FITB Accuracy results

Figure 3: We report results of our model with average embeddings and random embeddings of 64 and 256D on the Polyvore-Outfit test

set. The values on the x-axis represent the number of similarity condition masks used in SCE-Net. In both plots, the red line denotes the

best result obtained by our SCE-Net model for comparison.

4.3. Results

4.3.1 Polyvore Outfits and Maryland Polyvore

Table 1 reports performance on the compatibility prediction

and fill-in-the-blank tasks for the Maryland Polyvore and

Polyvore Outfits datasets. Across both datasets, our model

obtains consistent improvements in both tasks over prior

work. In particular, our approach outperforms the state-

of-the-art Type-Aware Embedding Network [35] by 5% and

6.3% on the compatibility prediction and FITB tasks respec-

tively, demonstrating that it can better capture the compati-

bility relationship between items without requiring the type

of each item being compared at test time. In addition, we

perform better using only 5 similarity conditions, whereas

[35] learns 66 similarity conditions for Polyvore Outfits.

To show that our condition weight branch provides

meaningful assignments, we compare to making random as-

signments of image pairs to conditions in Figure 3. We also

compare to averaging the embeddings, which demonstrate

that the additional parameters (from using multiple condi-

tions for each image pair) in our approach cannot account

for most of the improvements we see over [35] (which uses

a single condition for each pair). The significant perfor-

Number of Conditions Compat AUC FITB Accuracy

1 0.86 53.2

2 0.90 59.7

5 0.92 62.1

10 0.91 60.8

20 0.89 59.7

Table 2: Ablation studies on how the number of similarity

condition masks effect the performance of our model on the

validation set of Polyvore Outfits.

mance gap between SCE-Net and the average or random

embeddings demonstrate that our dynamic weighing mech-

anism is integral to achieving good performance. We also

show how the number of similarity conditions affect perfor-

mance in Table 2, where we find that optimal performance

can be obtained using only a few similarity conditions (e.g.,

5 for Polyvore Outfits).

To evaluate the capability of our model to generalize to

unseen categories based on visual features alone, we re-

move fashion items that belong to scarves and accessories

categories from the training set. We selected these two cat-

egories because they are generally not an essential part of
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Unseen Categories (FITB Accuracy)

Method Scarves Accessories

Number of questions 144 248

Siamese Net 46.62 50.82

SCE-Net 59.46 56.55

Table 3: Comparison of different methods on a subset of

FITB questions from the Polyvore-Outfits test set where the

candidate choices belong to categories that are unseen dur-

ing training.

Variants of Condition Weight Branch

Number of Conditions Compat AUC FITB Accuracy

Labels 0.90 60.8

Visuals 0.91 61.6

Visual-Labels 0.90 61.5

,

Table 4: Results on the Polyvore-Outfit test set obtained

by variants of the SCE-Net model with input features of

different modalities into the condition weight branch.

outfits and appear in fewer outfits than other categories in

the training set. For evaluation purposes, we extract FITB

questions from the test set where the candidate choices be-

long to the removed categories. As a baseline comparison,

we train a Siamese network based off the model used by

Vasileva et al. on the modified training set. The results

for both models are reported in Table 3. Our model out-

performs Siamese Net by a significant margin in both cate-

gories, demonstrating the ability of our model to generalize

well to novel categories and attributes.

The performance of our multimodal variants are shown

in Table 4. Surprisingly, using the language features of the

items’ labels alone leads to results that are comparable to

those obtained by using the visual features of the items. Us-

ing a combination of visual and language features does not

lead to a performance gain. However, this could be due to

that fact that the language features of item labels do not con-

tain much semantic information. It is possible that we can

observe a larger improvement if the language features for

the items’ descriptions are used instead. However, not all

items in this dataset contain a corresponding description.

4.3.2 UT-Zappos50K

We evaluate the effectiveness of our approach on the task

of triplet prediction against the strongly-supervised CSN

model of Veit et al. [36]. Recall that the test set is di-

vided into 4 similarity conditions. In particular, during

inference, Veit et al. evaluates each triplet with the query

{xi, xj , xk, c} to determine if the distance between xi and

xk is smaller than that of xi and xk under the similarity con-

Method Error Rate
Test-time

Supervision

(a) CSN fixed disjoint masks [36] 10.79% Strong

CSN learned masks [36] 10.73% Strong

(b) SCE-Net (2) 11.12% None

SCE-Net (3) 8.48% None

SCE-Net (4) 7.53% None

Table 5: Results on the UT-Zappos50K test set. (a) contains

the results reported in prior work [36] and (b) reports the

results of our model. Numbers in parenthesis indicate the

number of similarity condition masks used.

dition c. Such explicit supervision during evaluation pro-

vides their model with an unfair advantage as compared to

our proposed SCE-Net which isn’t provided the similarity

condition being compared.

Table 5 shows that when using the concept weight branch

to combine our weakly supervised conditions SCE-net out-

performs the CSN model, which is provided the exact con-

dition being compared, by approximately 3.2% when using

the same number of learned conditions (i.e., 4). Reducing

the number of learned conditions by 1 for our model, we

still outperform the CSN model by 2%. This suggests that it

is beneficial to not limit the learning of a notion of similarity

to a single subspace. Instead, using a weighted combination

of semantic subspaces encourages a model to learn better

representations for a similarity condition. In addition, the

number of similarity condition masks required for optimal

learning increases with the number of similarity conditions

present in the dataset.

4.4. Visualizations of Learned Subspaces

To gain insights into the conditions learned by our

model, we provide t-SNE [23] visualizations for all sim-

ilarity condition masks of learned subspaces for the UT-

Zappos50k dataset in Figure 4. The first similarity condi-

tion mask learns to differentiate shoes based on their class

(e.g. boots and high-heels). As we move from the top of the

visualization in Figure 4b to the bottom, we can clearly see

that the closing mechanism of the shoes gradually changes

from laces to slip-ons. Figure 4c displays a subspace that

learns the differences in the heel height. In this case, the

heel height of the shoes is decreasing from the top of the

embedding space to the bottom. From Figure 4d, we see

the fourth similarity condition mask has learned to differ-

entiate shoes based on the targeted gender. Women’s shoes

are embedded at the top of the subspace while men’s shoes

are mostly embedded at the bottom. This demonstrates that

even with just weak supervision during training time, our

approach is capable of learning visually-relevant similarity

conditions that are explicitly defined in the dataset.
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Similarity Condition 1

Class

(a) The visualization suggests that shoes are differentiated by

class (e.g. boots and slippers) in this subspace.

Similarity Condition 2

Laces to 
Slip-ons

(b) Shoes at the top of this subspace generally have laces while

the shoes at the bottom are generally slip-ons, demonstrating

that this similarity condition has learned to differentiate be-

tween closing mechanisms.

Similarity Condition 3

Decreasing 
heel height

(c) The visualization suggests that shoes are differentiated by

heel height in this subspace. The heel height of the shoes de-

creases as we go from the top to the bottom of the subspace.

Similarity Condition 4

Gender
(from 
female to 
male)

(d) The visualization suggests that shoes are differentiated by

gender in this subspace. Women’s shoes are embedded at the

top of the subspace, and men’s shoes at the bottom.

Figure 4: Visualizations of the semantic subspaces encoded by our 4 similarity condition masks on the UT-Zappos50k dataset.

5. Conclusion

In this work, we propose an approach that treats the dif-

ferent similarity conditions and their contributions as a la-

tent variable and attempts to learn them in a weakly super-

vised manner. SCE-Net removes the need for strong su-

pervision via pre-defined similarity conditions by using a

condition weight branch conditioned on visual representa-

tions of images to determine the context relevance of each

similarity condition mask. We demonstrate that our model

not only outperforms strongly supervised methods but also

generalizes well to novel image categories and attributes.

We show that a dynamic weighting mechanism is essen-

tial in training a weakly supervised model to learn different

notions of similarity. In particular, our results indicate that

restricting the learning of a similarity condition to a single

subspace can be disadvantageous to the learning capabil-

ity of the model. Finally, we demonstrate that a weighted

combination of semantic subspaces can learn better repre-

sentations for a similarity condition. One exciting avenue

for future work is to learn to determine the optimal number

of similarity condition masks in an unsupervised manner.
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