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Abstract

Data augmentation is widely used to increase data vari-

ance in training deep neural networks. However, previous

methods require either comprehensive domain knowledge

or high computational cost. Can we learn data transfor-

mation automatically and efficiently with limited domain

knowledge? Furthermore, can we leverage data transfor-

mation to improve not only network training but also net-

work testing? In this work, we propose adaptive data trans-

formation to achieve the two goals. The AdaTransform can

increase data variance in training and decrease data vari-

ance in testing. Experiments on different tasks prove that it

can improve generalization performance.

1. Introduction

The remarkable success of deep learning, from the data

perspective, benefits from the capability of optimizing mil-

lions of free parameters [10, 11] to capture extensive data

variance. Yet, sufficient data varieties are not always avail-

able in practice due to data scarcity and annotation cost [33].

The technique of perturbing data without changing class

labels, also known as data augmentation, is widely used to

address this issue. Generally speaking, data augmentation

can be either sampled from predefined distributions or gen-

erated by learnable agents. The former, known as random

augmentation [5, 8], usually relies on hand-craft rules with-

out optimization, yielding insufficient training. The latter,

known as auto or adversarial augmentation [19, 27, 16],

also suffers from various limitations.

Auto augmentation [19] explores a huge solution space

to achieve an optimal solution on the validation set, which

is extremely time-consuming. The network training has to

be repeated 15, 000 times to get the final policy. Adver-

sarial augmentation, on the other hand, follows a greedy

design to speed up learning. However, the current designs

[27, 16] rely on comprehensive domain knowledge to spec-

ify the transformation types and boundaries. This inevitably

results in restricted transformation space. Moreover, previ-

ous methods mainly focus on network training, neglecting

the potential to apply data transformation in testing.

This raises research questions: 1) Can we learn data

transformation more efficiently? 2) Can we explore the

transformation space (types and boundaries) without com-

prehensive domain knowledge? 3) Can data transformation

also help improve network deploying?

In this paper, we answer the questions by proposing Ada-

Transform: adaptive data transformation. We leverage rein-

forcement learning in conjunction with adversarial training

to compose meta-transformations (discrete transformation

operations). This enables us to efficiently explore a large

transformation space with limited domain knowledge.

Specifically, we learn data transformation in bi-direction:

At the training stage, AdaTransform performs a competitive

task to increase data variance, reducing over-fitting; at the

testing stage, AdaTransform performs a cooperative task to

decrease data variance, yielding improved deploying. The

two tasks are learned through optimizing a triplet: a trans-

former, a discriminator, and a target network, as illustrated

in Figure 1. To summarize, our key contributions are:

• To the best of our knowledge, we are the first to inves-

tigate adaptive data transformation in order to improve

both network training and testing.

• We propose to learn a competitive task (for training)

and a cooperative task (for testing) simultaneously by

jointly optimizing a triplet online.

• AdaTransform can automatically and efficiently ex-

plore the data transformation space, yielding a highly

flexible and versatile solution for broad applications.

• Extensive experiments on image classification, human

pose estimation, and face alignment prove the favor-

able performance of AdaTransform especially when

testing perturbations exist.
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Figure 1: Overview of the adaptive data transformation. It consists of two tasks: competitive training and cooperative testing,

and three components: a transformer T , a discriminator D, and a target network N . T increases the training data variance by

competing with both D and N . It also cooperates with N in testing to reduce the data variance.

2. Related Work

We provide a brief overview of related works in the cat-

egories of data transformation, adversarial learning, rein-

forcement learning, hard example mining, human pose esti-

mation, and face alignment.

Data transformation. Data transformations are com-

monly used to augment the training data [10, 8]. Recently,

the adversarial data augmentations [27, 16] are proposed.

But they heavily rely on human knowledge and can only

handle limited transformations. Some works [4, 19] try to

learn the data augmentation policy automatically. However,

either they suffer from severe efficiency issue [4] or the pol-

icy learning is isolated with the target network training [19].

The high computational cost is due to the optimization of

validation accuracy. The lack of joint optimization with the

target network prevents it from dynamically increasing the

data variance based on the individual images and target net-

work state. Others [21, 2] learn to transfer the data transfor-

mations from large datasets to augment few-shot examples.

The above methods are only to augment training data but

cannot reduce the testing data variance. The Spatial Trans-

former Network (STN) [12] is designed to reduce the spatial

variance of data. However, it can only handle differentiable

spatial transformations, largely restricting its applications.

Besides, it is only for the variance reduction but cannot in-

crease the training data variance.

Adversarial learning. Generative Adversarial Net-

works (GANs) [9] includes two networks: generator and

discriminator which compete against each other to improve

generation performance. GANs are widely used in the im-

age generations [9, 37] and translations [36]. Here we use

the transformer to transform input images. It competes with

the discriminator to make the transformed images still real-

istic but different from the original ones.

Reinforcement learning. In reinforcement learning

(RL), an agent takes actions and then receives feedback

from the environment, which may reward or penalize it.

The agent learns to maximize its reward by taking appro-

priate actions. Reinforcement learning has been used with

deep learning to play the Go game [23], search the neural

network architecture [17], etc. In this paper, we use it to

learn the transformer to handle data transformations.

Hard example mining. Hard example mining usually

alternates between optimizing models and updating training

data. Once a model is optimized on the current training set,

it is used to collect more hard data for further training. This

method was used in training SVM models for object detec-

tion [26]. Recently, Shrivastava et al. [22] adapted it into

the neural network based object detector. The hard example

mining focuses on selecting hard examples from existing

data, the adaptive data transformation actively transforms

the data to either increase or reduce their variance.

Human pose estimation. With recent advances in Deep

Neural Networks (DNNs), image-based human pose esti-

mation has achieved significant progress in the past few

years [25, 24, 3]. DeepPose [25] is one of the first attempts

of using DNNs for human pose estimation. Recently, multi-

stage human pose prediction methods such as Convolutional

Pose Machine [28] and stacked hourglasses [15] have be-

come popular. The prediction results could be refined state-

by-stage. Instead of designing a new pose estimator, we im-

prove pose estimation performance by increasing the train-

ing data variance and reducing the testing data variance.

Face alignment. Similarly, DNNs have largely reshaped

the field of face alignment. Traditional methods like [29]

could be easily outperformed by the DNNs based [34, 14].

In the recent Menpo Facial Landmark Localization Chal-

lenge [31], stacked hourglasses [15] achieves state-of-the-

art performance. Given an off-the-shelf face alignment

DNN, the adaptive data transformation can be used to im-

prove its performance.
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Figure 2: Incremental transformation. The transformer,

conditioning on the input, outputs the distribution over the

meta-transformations. A meta-transformation is sampled

and transforms the input. Then the transformed data be-

come the input and continue to be transformed.

3. Problem Definition and Task Modeling

Given a target network, e.g. an image classifier [10] or

a human pose estimator [24], etc, the adaptive data trans-

formation, named as AdaTransform, aims to improve both

training and testing of the target network. More specifi-

cally, the agent performs two different tasks: (1) At the

training stage, it performs a competitive task to increase

data variance, improving the training of the target network.

(2) At the testing stage, it performs a cooperative task to

reduce data variance, boosting its testing performance. The

two tasks are learned simultaneously by jointly optimizing

a triplet: a transformer T , a discriminator D, and a target

network N . An illustration is given in Figure 1.

3.1. Transformer T

The transformer T is designed to increase the data vari-

ance in the competitive task, while it learns to decrease the

data variance in the cooperative task.

Transformation Definition. Transformation is domain-

specific. It relies on both the data type and the target prob-

lem. Data of different modalities have dissimilar transfor-

mations. For example, images can utilize scale and rotation,

while word replacement and switch may happen in text data.

Further, a transformation must preserve the data property

of interest in the target problem. For instance, the shear op-

eration can be applied in image classification since it does

not change the image class labels. However, it is not a

good choice for face recognition as it may alter the identity.

The AdaTransform only needs limited domain knowledge

to specify some meta-transformations. Then T learns to

compose them for both competitive and cooperative tasks.

Competitive task. T learns to enlarge the data variance

in training through increasing the loss of target network N .

At the same time, it tries to fool the discriminator D by

making the transformed data realistic. Thus, T must learn

to satisfy the constraints from both N and D:

max
θT

E
(x,y)∼Ω

E
τ∼T (x,0)

[L(N(τ(x)),y) + λ log(D(τ(x)))],

(1)

where Ω is the training data, and τ is the transformation

operation sampled from T (x, 0) in the competitive mode.

L(·, ·) is a predefined target loss function. λ balances the

weight of two losses. T competes with both N and D in the

competitive task. The competitive T is trained and applied

to the training data.

Cooperative task. T also learns to reduce the data vari-

ance by lowering the loss of target network N :

min
θT

E
(x,y)∼Ω

E
τ∼T (x,1)

[L(N(τ(x)),y)]. (2)

where 1 indicates the cooperative mode of T . The discrim-

inator D is not used in the cooperative task. Because the

transformed data of reduced variance can hardly fall out of

the real data distribution. T cooperates with N in the co-

operative task. The cooperative T is trained on the training

data and generalized to the testing data.

3.2. Discriminator D

The discriminator D aims to control the variance of

transformed data. It learns to assign low scores to out-

of-distribution transformed data and high scores to in-

distribution data. To this end, D learns from both the origi-

nal and transformed data as follows:

max
θD

E
x∼Ω

E
τ∼T (x)

[log(1−D(τ(x)))]+ E
x′∼Ω

[log(D(x′))].

(3)

D competes with the transformer T in the competitive task.

It is a critical design to automate competitive training. Hu-

man users can be saved from the heavy burden of specifying

the transformation boundaries, especially when multi-types

of transformations are available. Without D, T would prob-

ably produce out-of-distribution transformations.

3.3. Target Network N

The goal of target network N is to generalize well on the

testing data. The training data usually have some distribu-

tion shift from the testing data. The current neural networks

are so powerful that they can easily overfit the training data.

The transformer T can reduce the overfitting by adaptively

increasing the training data variance. N learns from both

the original and the transformed training data as follows:

min
θN

E
(x,y)∼Ω

E
τ∼T (x)

[L(N(τ(x)),y)+L(N(x),y)], (4)

The target network N competes with the transformer T

through learning from its transformed data.
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Algorithm 1: Mini batch training of transformer T

Input: Mini-batch B, triplet T , D, and N .

Output: Transformer T

1 Replicate B s times to get X of size M ;

2 Apply T on X to get X̂ and polices {πi
t} ∈ R

M×K ;

3 Compute rewards {rit} ∈ R
M×K of X̂ by Eq. 5 and 6;

4 Get accumulated rewards {Ri
t} ∈ R

M×K by Eq. 8;

5 Normalize {Ri
t} to {R̄i

t} by Eq. 9 and Eq. 10;

6 Call the gradient ascent on the sum of {R̄i
t log π

i
t};

4. Learning Strategy

The triplet T , D, and N are jointly learned in the adap-

tive data transformation. The main challenge comes from

learning T since many transformation operations are not

differentiable. The gradients cannot flow to T directly from

D and N . To deal with this issue, we use reinforcement

learning with meta-transformations to train T .

4.1. Meta­transformation

The meta-transformations define the small transforma-

tion operations [19]. Table 1 lists examples of meta-

transformations in natural images. A large transformation

can be decomposed as a combination of multiple meta-

transformations. Despite some precision loss, it barely

affects the target network training. Specifying the meta-

transformations requires much less domain knowledge than

tuning the boundaries of multi-type transformations and

choosing their combinations [27, 16].

The meta-transformation offers flexibility and scalability

to achieve complex transformations. We can efficiently ex-

plore an ample transformation space by traversing the com-

binations of meta-transforms. More importantly, the meta-

transformations make it possible to train T in a tractable

manner via reinforcement learning.

4.2. Reinforcement Learning Formulation

The transformer T incrementally transforms the data us-

ing meta-transformations. An illustration is shown in Fig-

ure 2. Let x and x̂ denote the original and transformed data

points. At step t, T conditioning on x̂t−1 outputs the dis-

tribution T (x̂t−1) over all the meta-transformations. Then

the meta-transformation τt is sampled from it. The loss of

transformed data x̂t = τt(x̂t−1) is computed as:

ℓ(x̂t) =

{

L(N(x̂t), y) + λ log(D(x̂t)), competitive case.

−L(N(x̂t), y), cooperative case.

(5)

where L denotes the loss function for the target task and λ

is the weight of the discriminator loss. In the competitive

mode, the transformer learns to expand the data variance by

Algorithm 2: Joint training scheme of T , D, and N

Input: Training data X , triplet T , D, and N .

Output: Triplet T , D, and N .

1 while not end do

2 for mini batch B in X do

3 Apply T on B with probability p to get B̂;

4 Train N with the mixed data B̂;

5 end

6 for mini batch B in X do

7 Train competitive T with D, N by Alg. 1;

8 Train cooperative T with N by Alg. 1;

9 end

10 end

increasing the target network loss. On the other hand, it also

tries to keep high probabilities of transformed data being

realistic. In the cooperative mode, the transformer learns

to reduce the data variance by increasing the negative target

loss, i.e., decreasing the target loss.

The reward rt for meta-transformation τt is the incre-

mental loss:

rt = ℓ(x̂t)− ℓ(x̂t−1). (6)

Suppose the transformer T is applied K steps, a reward se-

quence {r1, r2, · · · , rK} is produced, where reward r1 is

r1 = ℓ(x̂1)− ℓ(x). Summing up these rewards results in

K
∑

t=1

rt = ℓ(x̂K)− ℓ(x). (7)

The discriminator and target network are fixed when train-

ing the transformer. Given an original data point x, ℓ(x) is a

constant, which can be ignored. ℓ(x̂K) is the objective in ei-

ther Equations 1 or 2 since x̂K is the final transformed data

point. Therefore, optimizing the objectives in Equations 1

or 2 can be converted into maximizing the sum of rewards.

We apply the policy gradients to maximize the sum of

rewards. Two common techniques are used to reduce the

variance in estimating the rewards. First, we compute the

reward for transformation τt′ as the accumulated future re-

ward
∑K

t>=t′ rt rather than rt′ only. A discounting factor

γ is used to model the delaying effects of future rewards.

Therefore, the accumulated discounted reward Rt′ is:

Rt′ =

K
∑

t>=t′

γt−t′rt, (8)

where we set γ = 0.5 in the experiments.

Also, the raw value of reward Rt′ may not be meaning-

ful. Positive values do not necessarily mean rewards. We

only push up the probability of a meta-transformation, if its

reward is higher than the expectation. Here we use the mean

3001
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Figure 3: Meta-movements. AdaCutout/AdaErasing first

samples a random mask, then moves it up, right, down, left.

of reward Rt′ within each mini-batch of h training samples

as the reference. For each original data point, we sample s

different rewards Rt′ . Thus, the mean of Rt′ is:

bt′ =
1

h× s

h×s
∑

i=1

Ri
t′ (9)

Note that it is important to compute the reward mean online

within the mini-batches instead of using the moving aver-

ages of all history rewards. Because the discriminator and

target network become more and more powerful in training.

The history rewards cannot reflect their current states well.

At step t′, each reward Rt′ is normalized by subtracting

its mean bt′ . A positive normalized value means reward,

whereas a negative normalized one means penalty. Accord-

ing to the policy gradients formula, we compute the gradient

of transformer T at step t′:

∇θT T (x̂t′) =
h×s
∑

i=1

(Ri
t′ − bt′)∇θT log πθT (τt′ |x̂t′), (10)

where πθT (τt′ |x̂t′) is the policy, i.e., the probability of tak-

ing meta-transformation τt′ given the input x̂t′ . Updat-

ing transformer T with the gradient ascent can push up

or pull down the probabilities if the corresponding meta-

transformations yield rewards or penalties at step t′.

Finally, we sum up the gradients of T from all K steps:

∇θT T (·) =
K
∑

t′=1

∇θT T (x̂t′). (11)

Basically, the transformer T is updated each time using the

accumulated gradients from K steps and h × s samples.

Algorithm 1 summarizes the training scheme of T .

4.3. Joint learning of T, D, and N

The transformer T is jointly optimized with the discrimi-

nator D and target network N during the training. The train-

ing procedure is described in Algorithm 2. More specifi-

cally, we train N for several epochs and then update T and

Table 1: Examples of meta-transformations in natural im-

ages. A meta-transformation defines a small operation. A

combination of multiple meta-transformations can approxi-

mate a large transformation space.

Type Meta-values

Rotation 2.5◦, −2.5◦, 5◦, −5◦

Zoom 0.9x, 1.1x, , 0.75x, 1.25x

Shear/Swirl 0.1◦, −0.1◦, 0.25◦, −0.25◦

Hue Shift 0.1, -0.1, 0.25, -0.25

Brightness/Color 0.75, 1.25, 0.5, 1.5

Sharpness/Contrast 0.75, 1.25, 0.5, 1.5

Horizontal Flip -

D once. N needs to learn from both the transformed and

original data. To this end, we apply T with some probabil-

ity p(0 < p < 1) on the training data of N .

T and D are updated alternately inside each iteration.

Given a mini-batch of data, D is updated on both the origi-

nal (real) and transformed (fake) data of T . Then we update

T separately in the competitive and cooperative modes. T

receives the feedback from N in the cooperative case while

it requires the additional feedback from D in the competi-

tive case. We add a zero or one map to the input of T as the

condition of competitive or cooperative modes.

5. Applications of AdaTransform

AdaTransform provides a versatile solution for general

data analytic tasks with proper domain knowledge. In this

paper, we focus on its application to visual tasks.

AdaImgTransform. For natural images, there are many

available transformation types such as scale, rotation, trans-

lation, flipping, swirl, shear, contrast enhancement, color

enhancement, brightness enhancement, sharpness enhance-

ment, and hue shift. Table 1 lists the corresponding meta-

transformations. We can adjust the meta-transformation

pool according to domain knowledge of a specific task.

We apply adaptive data transformation to learning to com-

bine the proper meta-transformations conditioning on the

input image, target network state, and the transformer mode.

They can be used to either increase or reduce data variance.

AdaCutout/AdaErasing. Occlusions are quite common

in natural images where the object of interest is partially oc-

cluded. The cutout [6] and random erasing [35] are recently

proposed to simulate the occlusions on the images. To be

specific, a fixed-size square mask (cutout) or a flexible one

(erasing) are used to occlude the image region centered at a

randomly chosen position. We apply the adaptive transfor-

mation to control cutout or erasing. More specifically, we

use random cutout or erasing for the initialization. Then the

transformer learns to move the cutout mask progressively.

Each step it can be moved up, right, down, left, or stay still.

Figure 3 illustrates the five meta-movements.
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6. Experiment

The experiments include three parts: ablation study, ro-

bustness test, and comparison with state-of-the-art methods.

We evaluate AdaTransform on three different tasks: image

classification, human pose estimation, and face alignment.

We apply meta-transformations given in Table 1 for image

classification. For the other two tasks, we remove shear and

swirl due to the shifting of ground truth.

6.1. Experimental Settings

Transformer T and discriminator D. The transformer

and discriminator use the common networks. More specif-

ically, the transformer has the architecture of ResNet-18

[10]. Besides, we add the dropout layers after each 3 × 3
convolution layer and before the fully connected layer. The

discriminator is the same as the one in DCGAN [18].

Target network N . Different tasks have their target net-

works. In image classificatin, we use the 32-layer ResNet

(ResNet32) [10] in the ablation study. The comparisons

with state-of-the-art data augmentation method AutoAug-

Table 2: Evaluation of AdaCutout and AdaErasing using

10% training data of CIFAR-10 and CIFAR-100.

Method CIFAR-10 CIFAR-100

Cutout [6] 77.21 40.41

AdaCutout 78.02 41.02

Erasing [35] 77.25 40.53

AdaErasing 78.12 41.21

ment [4] are based on more complex models: Wide-ResNet-

28-10 [32], Shake-Shake [7] and ShakeDrop [30]. For hu-

man pose estimation and face alignment, we use the two

stacked hourglasses [15] in all the experiments.

Hyperparameters. We use two transformers for adap-

tive cutout (AdaCuout) and adaptive image transformation

(AdaImgTransform). The AdaCutout transformer is trained

with learning rate 3e-5 and weight decay 1e-5 whereas the

AdaImgTransform transformer has learning rate 1e-4 and

weight decay 1e-4. AdaCutout moves the occlusion mask

2 pixels each step. We set step number K = 3 for Ada-

Cutout and K = 8 for the AdaImgTransform. Besides,

AdaCutout is applied with probability 0.3 on each mini-

batch when training the target network. On the other hand,

we use AdaImgTransform on all the training data but stop it

for the last ten epochs.

Datasets. We use the benchmark datasets: CIFAR-10

and CIFAR-100 for image classification; MPII Human Pose

[1] and Leeds Sports Pose (LSP) [13] for human pose es-

timation; 300-W challenge [20] for face alignment. The

300-W test set consists of easy and challenging subsets. We

use the classification accuracy/error, Percentage of Correct

Key points (PCK), and normalized mean error (NME) as

the measurements of image classification, human pose es-

timation, and face alignment. In particular, MPII and LSP

use PCKh@0.5 and PCK@0.2.

3003



0.7x 0.8x 0.9x 1.0x 1.1x 1.2x 1.3x
0.77

0.81

0.85

0.89

3

3.5

0.7x 0.8x 0.9x 1.0x 1.1x 1.2x 1.3x
0

5

10

15

25

T
es

ti
n

g
 P

C
K

h

T
es

ti
n

g
 P

C
K

h

T
es

ti
n

g
 R

M
S

E

T
es

ti
n

g
 R

M
S

E

Human Scale Human Rotation Face Scale Face Rotation

N + Adaptive Scale and RotationN + Random Scale and Rotation

0.81

0.83

0.85

0.87

0.89

20

30

4

4.5

5.5

6.5

6

5

−60o
−40o

−20o 20o
60o

40o0o
−60o

−40o
−20o 20o

60o
40o0o

Figure 6: Robustness against rotations and scale perturbations. We investigate human pose estimation (left two, the higher

the better) and face alignment (right two, the lower the better). Network (N ) trained using adaptive data transformation
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perturbations, indicating the effectiveness in learning more robust models.

Table 3: Effect of different types of adaptive transformation

in human pose estimation. We report per-joint PCKh (%).

A single kind of adaptive transformation would improve the

performance compared with randomly performed. Jointly

applying all transformations has the best performance.

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean

RandomAugment. 95.7 95.0 89.1 83.4 88.2 84.0 80.2 88.1

AdaImgTexture 95.3 95.3 89.7 84.8 89.0 84.9 80.9 88.7

AdaCutout 95.5 95.2 89.7 84.6 88.5 84.7 80.9 88.6

AdaScaleRotation 95.5 95.6 89.8 85.0 89.4 84.7 80.8 88.9

AdaAll 95.8 96.0 90.1 85.4 89.8 85.7 81.3 89.3

6.2. Ablation Study

Effect of transformation steps. The transformer incre-

mentally transforms an image for several steps. It is inter-

esting to observe how test accuracy changes with the step

number. We train 6 models for each step number using 10%

CIFAR-10 training data. Figure 5 shows the mean and std of

the testing accuracy. A modest increase of step number can

produce more complex transformations, increasing testing

accuracy. However, more transformation steps are difficult

to learn and result in high model variance.

Validation of competitive and cooperative tasks. We

incrementally add each component and observe the changes

in test accuracy. Figure 4 gives the comparison of four vari-

ants. They all use eight transformation steps and the same

meta-transformation pool in Table 1. The competitive train-

ing and cooperative testing can both increase test accuracy

with different percentages of training data. In the case of

only 1% training data, the competitive training can improve

∼5% accuracy on both CIFAR-10 and CIFAR-100 over the

pre-trained transformer, indicating the importance of joint

training with the target network. The cooperative testing,

on the other hand, further brings ∼2% gain for the two

datasets. Even with 100% training data, they can separately

Table 4: Robustness against texture (color, brightness, con-

trast, sharpness, and hue) perturbations. We investigate

standard (top two rows) and perturbed (bottom two rows)

testing. In particular, AdaImgTexture is more robust against

texture perturbations.

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean

RandomAugment. 95.7 95.0 89.1 83.4 88.2 84.0 80.2 88.1

AdaImgTexture 95.3 95.3 89.7 84.8 89.0 84.9 80.9 88.7

RandomAugment. 94.4 93.9 86.9 81.5 86.7 82.0 77.0 86.3

AdaImgTexture 94.9 94.9 88.5 83.2 88.2 83.6 79.7 87.8

get ∼1% improvements on both datasets.

Evaluation of AdaCutout and AdaErasing. Apart

from the above AdaImgTransform, we also evaluate Ada-

Cutout and AdaErasing. The results are given in Table 2.

Cutout and random erasing obtain similar accuracy. Ada-

Cutout and AdaErasing can both improve the baselines.

Effect of different types of adaptive transformation.

We categorize the transformations into three groups: spatial

variations (scale and rotation), occlusion (Cutout [6]), and

texture changes (image color, brightness, contrast, sharp-

ness, and hue). It may be interesting to study their separate

contributions. AdaTransform can utilize them both inde-

pendently and jointly. Table 3 gives the results on human

pose estimation. The spatial transformations bring more

improvement (0.8%) than the other two (0.5% and 0.6%),

indicating its importance in human pose estimation.

6.3. Robustness Test

In the traditional test, testing images are usually static

with no perturbations. However, in practice, an image may

be affected by many factors, such as scale and rotation. A

robust model should handle well not only the original image

but also its variants under reasonable perturbations. In this

experiment, we test models under the condition of different

scales, rotations, and texture variations of testing data. To
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Table 5: Comparison with AutoAugment [4] in terms of

image classification errors. AdaTransform has comparable

performance with all the three classifiers. However, it is

much more efficient than AutoAugment.

Model CIFAR-10 CIFAR-100

AutoAug. Ours AutoAug. Ours

Wide-ResNet [32] 2.68 2.95 17.09 17.42

Shake-Shake[7] 1.99 2.11 14.28 15.01

ShakeDrop[30] 1.48 1.72 10.67 11.21

Table 6: Comparison with adversarial data augmentation

[16] in human pose estimation. We use two stacked hour-

glasses and report PCKh@0.5 on MPII validation set (top)

and PCK@0.2 on LSP test set (bottom).

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean

AdvAug. [16] 96.5 95.5 89.8 84.5 89.4 85.0 80.7 88.9

AdaTransform 95.8 96.0 90.1 85.4 89.8 85.7 81.3 89.3

AdvAug. [16] 96.8 93.7 90.9 88.0 92.0 93.7 92.4 92.5

AdaTransform 96.9 94.1 91.0 87.8 93.0 94.5 93.3 92.9

Table 7: Comparison with adversarial data augmentation

[16] in face alignment (NME) on 300-W dataset.

Method Easy Subset Hard Subset Full Set

AdvAug. [16] 2.87 4.98 3.28

AdaTransform 2.82 4.96 3.24

evaluate the robustness of AdaTransform, we compare the

models trained with it and random augmentation.

Robustness against scale and rotation perturbations.

Figure 6 shows the robustness comparisons in two tasks.

AdaTransform can consistently improve testing perfor-

mance over a range of scales and rotations, especially at the

ends. In human pose estimation, we observe ∼3% accuracy

increase for scales 0.7/1.3 and ∼5% increase for rotations

−60◦/60◦. For face alignment, the large error drops ∼12%

and ∼2% happen at scale 0.7 and rotations −60◦/60◦.

Robustness against texture perturbations. To get rea-

sonable texture perturbations, we train transformer with

only discriminator using CIFAR-10. During testing, we use

15 trained transformer models to perturb the testing images.

Table 4 gives the robustness comparisons with random aug-

mentation. AdaTransform can get higher PCKh on both the

standard test and test with texture perturbations. Moreover,

the PCKh gap 1.5% in the perturbed test is much larger than

the 0.6% in the standard test.

6.4. Comparison with State­of­the­art Methods

Image classification. We first compare AdaTransform

(AdaImgTransform + AdaCutout) with state-of-the-art Au-

toAugment [4]. Table 5 shows the comparisons on both

Figure 7: Cooperative zoom-out (left) and zoom-in (right)

in human pose estimation. False positives, marked by red

circles, are detected on the original scales (top). Zoom-

out (bottom) can help detect the joints, such as head, wrist,

and ankle, falling out of scope in the original scale. Zoom-

in (bottom), on the other hand, can reduce the ambiguity

sometimes caused by the background noise.

CIFAR-10 and CIFAR-100. AdaTransform obtains compa-

rable performance as the AutoAugment. However, it needs

to train only three models. In contrast, the AutoAugment

requires to train fifteen thousand models to search the final

augmentation policy. Although each model in AdaTrans-

form may take longer to train, it is still much more efficient.

Please note that the AutoAugment cannot work if only

training several models. It is a purely reinforcement-based

method, optimizing the validation error. The trained model

number represents its search space. AdaTransform, on the

other hand, integrates the adversarial training with rein-

forcement learning, optimizing the training loss.

Human pose estimation. We also compare AdaTrans-

form with state-of-the-art adversarial data augmentation

[16] on human pose estimation. Table 6 gives the compar-

isons based on two stacked hourglasses [15]. AdaTrans-

form obtains %0.4 mean improvements on both datasets.

AdaTrasnform can search a larger transformation space by

composing multi-type meta-transformations.

Face alignment. AdaTransform and state-of-the-art ad-

versarial data augmentation [16] can both apply to face

alignment. We use two stacked hourglasses as the target

network. The results are shown in Table 7. AdaTransform

obtains %0.05 and %0.02 lower errors on the easy and chal-

lenging subsets respectively.

7. Conclusion

We have proposed AdaTransform to manipulate data

variance in bi-direction at the training and testing stages.

It can be learned efficiently by jointly optimizing a triplet

online. Experimental results on three different tasks: image

classification, human pose estimation, and face alignment

demonstrate its superior performance in network training

and testing especially when perturbations exist.
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