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Abstract

Pedestrian attribute recognition has been an emerging

research topic in the area of video surveillance. To pre-

dict the existence of a particular attribute, it is demanded

to localize the regions related to the attribute. However, in

this task, the region annotations are not available. How

to carve out these attribute-related regions remains chal-

lenging. Existing methods applied attribute-agnostic vi-

sual attention or heuristic body-part localization mecha-

nisms to enhance the local feature representations, while

neglecting to employ attributes to define local feature areas.

We propose a flexible Attribute Localization Module (ALM)

to adaptively discover the most discriminative regions and

learns the regional features for each attribute at multiple

levels. Moreover, a feature pyramid architecture is also

introduced to enhance the attribute-specific localization at

low-levels with high-level semantic guidance. The proposed

framework does not require additional region annotations

and can be trained end-to-end with multi-level deep su-

pervision. Extensive experiments show that the proposed

method achieves state-of-the-art results on three pedestrian

attribute datasets, including PETA, RAP, and PA-100K.

1. Introduction

Recognition of pedestrian attributes, e.g. gender, age,

and clothing style, has drawn extensive attention because of

its great potential in video surveillance applications, such as

face verification [10], person retrieval [2, 27], and person re-

identification [11, 22, 30]. Recently, methods based on the

Convolutional Neural Networks (CNN) [6, 8] achieve great

success in pedestrian attribute recognition by learning pow-

erful features from images. Some existing works [13, 28]
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Figure 1. Attentive regions generated by different methods when

recognizing the attribute Longhair. (a) The original input im-

age. (b) Attribute-specific region generated by our proposed

method, which is indeed localized into a head-related region. (c)

Attention mask generated by attribute-agnostic attention meth-

ods [20, 24, 37], which covers a broad region but not specific

to Longhair. (d) Body parts generated by part-based methods

[15, 19, 34, 35], which extract features from these body parts.

treat pedestrian attribute recognition as a multi-label clas-

sification problem and extract feature representations only

from the whole input images. These holistic methods usu-

ally rely on global features, but regional features are more

significant for fine-grained attribute classification.

Intuitively, attributes can be localized into some relevant

regions in a pedestrian image. As illustrated in Figure 1 (b),

when recognizing Longhair, it is reasonable to focus on the

head-related regions. Recent methods attempt to leverage

the attention localization to promote learning discrimina-

tive features for attribute recognition. A popular solution

[20, 24, 37] is to employ the visual attention mechanism to

capture the most relevant features. These methods usually

generate attention masks from certain layers and then mul-

tiply them to corresponded feature maps so as to extract the

attentive features. However, it is ambiguous which mask

encodes a given attribute’s location, and there is no specific

mechanism that guarantees the correspondences between

attributes and attention masks. As shown in Figure 1 (c),

the learned attention mask attends to a broad region which
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is not specific to the required attribute Longhair. An alter-

native way is to leverage predefined rigid parts [39] or exter-

nal part localization modules [15, 19, 34, 35]. Some works

apply body-parts detection [35], pose estimation [15, 34]

and region proposals [19] to learn part-based local features.

As shown in Figure 1 (d), these methods extract local fea-

tures from the localized body parts (e.g. head, torso, and

legs). However, most of them just fuse the part-based fea-

tures with global features, which still fail to indicate the

attribute-region correspondence but require extra computa-

tional resources for sophisticated part localization.

Different from these methods, we propose a flexible

Attribute Localization Module (ALM) that can automati-

cally discover the discriminative regions and extract region-

based feature representations in an attribute-specific man-

ner. Specifically, the ALM consists of a tiny channel-

attention sub-network to fully exploit the inter-channel de-

pendencies of the input features, followed by a spatial trans-

former [9] to localize the attribute-specific regions adap-

tively. Moreover, we embed multiple ALMs at different

feature levels and introduce a feature pyramid architecture

by integrating high-level semantics to reinforce the attribute

localization at low-levels. In addition, ALMs at different

feature levels are trained by the same set of attribute super-

visions, called deep supervision [12, 32], where the final

predictions are obtained through a voting scheme to out-

put the maximum responses across different feature levels.

This voting scheme will suggest a best prediction occurs in

one feature level that has the most accurate attribute region,

without interference of negative features from inappropriate

regions. The proposed framework is end-to-end trainable

and requires only image-level annotations. The contribu-

tions of this work can be summarized as follows:

• We propose an end-to-end trainable framework which

performs attribute-specific localization at multiple

scales to discover the most discriminative attribute re-

gions in a weakly-supervised manner.

• We propose a feature pyramid architecture by lever-

aging both low-level details and high-level semantics

to enhance the multi-scale attribute localization and

region-based feature learning in a mutually reinforc-

ing manner. The multi-scale attribute predictions are

further fused by an effective voting scheme.

• We conduct extensive experiments on three publicly

available pedestrian attribute datasets (PETA [1], RAP

[16], and PA-100K [20]) and achieve significant im-

provement over the previous state-of-the-art methods.

2. Related Works

Pedestrian Attribute Recognition. Earlier pedestrian

attribute recognition methods [1, 11, 38] rely on hand-

crafted features such as color and texture histograms, and

trained separately. However, the performance of these tradi-

tional methods is far from satisfactory. More recently, meth-

ods based on the Convolutional Neural Networks achieved

great success in pedestrian attribute recognition. Wang et

al. [31] give a brief review of these methods. Sudowe et al.

[28] propose a holistic CNN model to jointly learn differ-

ent attributes. Li et al. [13] formulate pedestrian attribute

recognition as a multi-label classification problem and pro-

pose an improved cross-entropy loss function. However, the

performance of these holistic methods is limited due to the

lack of consideration of the prior information in attributes.

Some recent approaches attempt to exploit the spatial rela-

tions and semantic relations among attributes to further im-

prove the recognition performance. These methods can be

classified into three basic categories: (1) Relation-based:

Some works [29, 36] exploit semantic relations to assist at-

tribute recognition. Wang et al. [29] propose a CNN-RNN

based framework to exploit the interdependency and corre-

lation among attributes. Zhao et al. [36] divide the attributes

into several groups and attempt to explore the intra-group

and inter-group relationships. However, these methods re-

quire manually defined rules, e.g. prediction order, attribute

group, which are hard to determine in real applications. (2)

Attention-based: Some researchers [20, 24, 25, 37] intro-

duce the visual attention mechanism in attribute recogni-

tion. Liu et al. [20] propose a multi-directional attention

model to learn multi-scale attentive features for pedestrian

analysis. Sarafianos et al. [24] extend the spatial regulariza-

tion module [37] to learn effective attention maps at mul-

tiple scales. Although recognition accuracy has been im-

proved, these methods are attribute-agnostic and fail to take

the attribute-specific information into consideration. (3)

Part-based: The part-based methods usually extract fea-

tures from some localized body-parts. Zhu et al. [39] divide

the whole image into 15 rigid patches and fuse features from

different patches. Yang et al. [34] and Li et al. [15] lever-

age external pose estimation module to localize body-parts.

Liu et al. [19] also explore attribute regions in a weakly su-

pervised manner while they assign attribute regions to some

fixed proposals generated by EdgeBoxes [41] in advance,

which is not fully-adaptive and end-to-end trainable. These

methods rely either on predefined rigid parts or on sophisti-

cated part localization mechanisms, which are less robust to

pose variances and require extra computational resources.

By contrast, the proposed method localizes the most dis-

criminative regions in an attribute-specific manner, which

is not considered in most of the existing works.

Weakly Supervised Attention Localization. In addi-

tion to pedestrian attribute recognition, the idea of perform-

ing attention localization without region annotations is also

extensively investigated in other visual tasks. Jaderberg et

al. [9] propose the well-known Spatial Transformer Net-

work (STN) which can extract attentional regions with any

spatial transformation in an end-to-end trainable manner.
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Figure 2. Overview of the proposed framework. The input pedestrian image is fed into the main network with both bottom-up and top-

down pathways. Features combined from different levels are fed into multiple Attribute Localization Modules (Figure 3), which perform

attribute-specific localization and region-based feature learning. Outputs from different branches are trained with deep supervision and

aggregated through an element-wise maximum operation for inference. M is the total number of attributes. Best viewed in color.
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Figure 3. Details of the proposed Attribute Localization Module

(ALM), which consists of a tiny channel-attention sub-network

and a simplified spatial transformer. The ALM takes the combined

features Xi as input and produces an attribute-specific prediction.

Each ALM only serves one attribute at a singe level.

Some recent works [14, 17] adopt STN to localize body-

parts for person re-identification. Fu et al. [3] attempt to

recursively learn discriminative region for fine-grained im-

age recognition. Wang et al. [33] search the discriminative

regions with STN and LSTM for multi-label classification,

while not in a label-specific manner. The proposed method

is inspired by these works but can adaptively localize the

individual informative regions for each attribute.

Feature Pyramid Architecture. There are several

works exploiting top-down or skip connections that incor-

porate features across levels, e.g. U-Net [23], Stacked hour-

glass network [21]. The proposed feature pyramid archi-

tecture is similar to Feature Pyramid Networks (FPN) [18],

which have been studied in various object detection and seg-

mentation models [26, 40]. To the best of our knowledge,

this work is the first attempt of employing these ideas to lo-

calize attentive regions for pedestrian attribute recognition.

3. Proposed Method

The overview of the proposed framework is illustrated

in Figure 2. As shown, the proposed framework consists

of a main network with feature pyramid structures, and a

group of Attribute Localization Modules (ALM) applied to

different feature levels. The input pedestrian image is first

fed into the main network without additional region anno-

tations, and a prediction vector is obtained at the end of

the bottom-up pathway. The details of ALM are shown in

Figure 3. Each ALM only perform attribute localization

and region-based feature learning for one attribute at a sin-

gle feature level. The ALMs at different feature levels are

trained in a deep supervision manner. Formally, given an

input pedestrian image I along with its corresponding at-

tribute labels y =
[

y1, y2, . . . , yM
]T

where M is ths total

number of attributes in the dataset and ym,m ∈ 1, . . . ,M
is a binary label that indicates the presence of the m-th at-

tribute if ym = 1, and ym = 0 otherwise. We adopt the

BN-Inception [8] architecture as the backbone network in

our framework. In principle, the backbone can be replaced

with any other CNN architecture. Implementation details

are shown in the Supplementary Material.

3.1. Network Architecture

The key idea of this work is to perform attribute-specific

localization for improving attribute recognition. It is well

known that features in deeper CNN layers have coarser res-

olutions. Even though we can precisely localize the at-

tribute regions based on semantically stronger features, it

is still difficult to extract region-based discriminative fea-

tures since some finer details may disappear. In contrast,
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features in lower layers always capture rich details but poor

contextual information, resulting in unreliable attribute lo-

calization. Obviously, low-level details and high-level se-

mantics are complementary to each other. Therefore, we

propose a feature pyramid architecture, inspired by the FPN

alike models [18, 40], to enhance the attribute localization

and region-based feature learning in a mutually reinforc-

ing manner. As illustrated in Figure 2, the proposed feature

pyramid architecture consists of a bottom-up pathway and a

top-down pathway.

The bottom-up pathway, implemented by BN-Inception

network, consists of multiple inception blocks with

different feature levels. In this paper, we conduct at-

tribute localization with bottom-up features generated from

three different levels: the incep_3b, incep_4d, and

incep_5b block respectively, where they have strides of

{8, 16, 32} pixels with respect to the input image. The

selected inception blocks are both at the end of their

corresponded stages, where blocks of the same stage keep

the same feature maps resolution, since we believe the last

block should have strongest features. Given an input im-

age I, we denote the bottom-up features generated from the

above blocks as φi(I) ∈ R
Hi×Wi×Ci , i ∈ {1, 2, 3}. For

256 × 128 RGB input images, the spatial size Hi × Wi

equal to 32× 16, 16× 8, and 8× 4 respectively.

In addition, the top-down pathway contains three lateral

connections and two top-down connections, as shown in

Figure 2. The lateral connections are simply used to re-

duce the dimensionalities of bottom-up features to d, where

d = 256 in our implementation. The higher level fea-

tures are transmitted through the top-down connections and

meanwhile go through an upsampling operation. After-

ward, features from adjacent levels are concatenated as fol-

lows:

Xi = {f(φi(I)), g(Xi+1)}, i ∈ {1, 2}, (1)

where f is a 1×1 convolutional layer for dimensionality re-

duction, g refers to upsampling with nearest neighbor inter-

polation. Since the highest level features have no top-down

connection, we only conduct dimensionality reduction for

φ3(I):

X3 = f(φ3(I)). (2)

The channel size of Xi equal to d, 2d, 3d for i ∈ {1, 2, 3}.

The combined features Xi are used for attribute-specific lo-

calization.

3.2. Attribute Localization Module

As mentioned in Section 1, several existing methods at-

tempt to extract local features through attribute-agnostic vi-

sual attention, predefined rigid parts or external part lo-

calization modules. However, these methods are not the

optimal solution since they overlook the significance of

attribute-specific localization. As shown in Figure 1 (c,d),

attentive regions belong to different attributes are mixed

together, which is inconsistent with the original intention

that narrowing the attentive region for improving attribute

recognition. We believe that attribute-specific localiza-

tion is a better choice since it can disentangle the con-

fused attention masks into several individual regions, where

each region for a specific attribute. Moreover, the learned

attribute-specific regions are more interpretable since we

can observe the attribute-region correspondence intuitively.

What we need is a mechanism that can learn an individ-

ual bounding box, representing the discriminative region,

in feature maps for a given attribute. The well-known RoI

pooling technique [4] is inappropriate since it requires re-

gion annotations, which are not available in pedestrian at-

tribute datasets. Inspired by the recent success of Spa-

tial Transformer Network (STN) [9], we propose a flexi-

ble Attribute Localization Module (ALM) to automatically

discover the discriminative regions for each attribute in a

weakly-supervised manner. The overview of the proposed

ALM is illustrated in Figure 3.

As shown, each ALM contains a spatial transformer

layer originates from STN. STN is a differentiable module

which is capable of applying a spatial transformation to a

feature map, e.g. cropping, translation, and scaling. In this

paper, we adopt a simplified version of STN since we treat

the attribute region as a simple bounding box, which can be

realized through the following transformation:

(

xs
i

ysi

)

=

[

sx 0 tx
0 sy ty

]





xt
i

yti
1



 , (3)

where sx, sy are scaling parameters, and tx, ty are transla-

tion parameters, the expected bounding box can be obtained

through these four parameters. (xs
i , y

s
i ) and (xt

i, y
t
i) are the

source coordinates and target coordinates of the i-th pixel.

To some extent, this simplified spatial transformer can be

viewed as a differentiable RoI pooling, which is end-to-end

trainable without region annotations. To accelerate the con-

vergence, we simply constrain sx,sy to (0, 1) and tx, ty to

(−1, 1) by a sigmoid and tanh activation, respectively.

In addition, we also introduce a tiny channel-attention

sub-network, as shown in Figure 3. As mentioned above,

the ALM takes the features combined from adjacent levels

as input, where both finer details and strong semantics take

the same proportion (both have d channels), which means

they equally contribute to attribute localization. However,

the expected proportion should vary from attribute to at-

tribute. For example, more details should be paid when

recognizing finer attributes. Therefore, we introduce this

channel-attention sub-network, similar to SE-Net [7], to

modulate the inter-channel dependencies.

Specifically, the input features Xi pass through a series
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of linear and nonlinear layers, producing a weight vector for

feature recalibration across channels. The reweighted fea-

tures are obtained by channel-wise multiplying the weight

vector with Xi, and an extra residual link is applied to

preserve the complementary information. Subsequently, a

fully-connected layer is applied to estimate the transforma-

tion matrix, denoted as R, and then the region-based fea-

tures sampled by bilinear interpolation are used for attribute

classification. We simply formulate the prediction belong to

m-th attribute at i-th level as:

ŷmi = ALMm
i (Xi). (4)

3.3. Deep Supervision

As illustrated in Figure 2, four individual prediction vec-

tors are obtained from three ALM groups and one global

branch. We apply the deep supervision [12, 32] mecha-

nism for training where the four individual predictions are

directly supervised by ground-truth labels. During infer-

ence, multiple prediction vectors are aggregated through an

effective voting scheme that producing the maximum re-

sponses across different feature levels. The intuition be-

hind this design is that each ALM should directly take the

feedback about whether the localized region is accurate. If

we only preserve the supervision of the fused predictions

(maximum or averaging), the gradients are not informa-

tive enough of how each level performs, such that some

branches are trained insufficiently. The maximum voting

scheme is applied to choose the best predictions from dif-

ferent levels with the most accurate attribute region.

Specifically, we adopt the weighted binary cross-entropy

loss function [13] at each stage, formulated as follow:

Li(ŷi, y) = −
1

M

M
∑

m=1

γm( ym log(σ(ŷmi ))

+(1− ym) log(1− σ(ŷmi )) ),

(5)

where γm = e−am is the loss weight for m-th attribute and

am is the prior class distribution of m-th attribute, M is

the number of attributes, i represents the i-th branch, where

i ∈ {1, 2, 3, 4}, and σ refers to the sigmoid activation. The

total training loss is calculated by summing over the four

individual loss: L =
∑4

i=1
Li.

4. Experiments

4.1. Datasets and Evaluation Metrics

The proposed method is evaluated on three publicly

available pedestrian attribute datasets: (1) The PETA

dataset [1] consists of 19,000 images with 61 binary at-

tributes and 4 multi-class attributes. Following the previ-

ous works [1, 25], the whole dataset is randomly partitioned

into three subsets: 9,500 for training, 1,900 for verifica-

tion and 7,600 for testing. We choose 35 attributes which

the positive ratio is higher than 5% for evaluation. (2) The

RAP dataset [16] contains 41,585 images which are col-

lected from 26 indoor surveillance cameras, where each im-

age is annotated with 72 fine-grained attributes. Following

the official protocol [16], we split the whole dataset into

33,268 training images and 8,317 test images. Only 51 bi-

nary attributes with the positive ratio higher than 1% are

selected for evaluation. (3) The PA-100K dataset [20] is

to-date the largest dataset for pedestrian attribute recogni-

tion, which contains 100,000 pedestrian images in total col-

lected from outdoor surveillance cameras. Each image is

annotated with 26 commonly used attributes. According to

the official setting [20], the whole dataset is randomly split

into 80,000 training images, 10,000 validation images and

10,000 test images.

We adopt two types of metrics for evaluation [16]: (1)

Label-based: we calculate the mean accuracy (mA) as the

mean of positive accuracy and negative accuracy for each

attribute. The mA criterion can be formulated as:

mA =
1

2N

M
∑

i=1

(

TPi

Pi

+
TNi

Ni

)

, (6)

where N is the number of examples and M is the number

of attributes; Pi and TPi are the number of positive exam-

ples and correctly predicted positive examples of the i-th at-

tribute respectively; Ni and TNi are defined similarly. (2)

Instance-based: we adopt four well-known criteria: accu-

racy, precision, recall and F1 score, details are omitted.

4.2. Effectiveness of Critical Components

As shown in Table 1, starting with the BN-Inception

baseline, we gradually append each component and mean-

while compare it with several variants. (1) Attribute Local-

ization Module: We first evaluate the contribution of the

simplified ALM (without channel-attention sub-network)

by embedding ALMs at the final layer (incep_5b). The

increased mA and F1 scores demonstrate the effective-

ness of attribute-specific localization. Based on this fact,

we further embed multiple ALMs at different feature lev-

els (incep_3b,4d,5b), and a greater improvement is

achieved (3.1% and 1.3% in mA and F1, respectively).

Considering the model complexity, we limit the number

of levels to three in our framework. (2) Top-down Guid-

ance: Secondly, we evaluate the impact of the proposed

feature pyramid architecture by comparing with three vari-

ants, which are different in how to combine features from

different levels. The first one is implemented by element-

wise adding the features from different levels, like the orig-

inal FPN [18], but the performance decreases. The poor

results suggest that some essential information may disap-

pear if we disregard the feature mismatching problem. The
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❵
❵
❵

❵
❵
❵
❵
❵
❵
❵
❵

Component

Metric
mA F1

Baseline 75.76 78.20

ALM at Single Level (5b) 77.45 79.14

ALM at Multiple Levels (3b,4d,5b) 78.89 79.50

Top-down (Addition) 78.51 79.42

Top-down (Concatenation) 79.93 79.91

Top-down (Channel Attention) 80.61 79.98

Deep Supervision (Averaging) 80.70 80.04

Deep Supervision (Maximum) (Ours) 81.87 80.16

Ours w/o ALMs 78.91 79.55

Table 1. Performance comparisons on RAP dataset when gradually

adding each proposed component to the baseline model (except the

last row). Variants of the same component lie in the same group.

Bold means the setting adopted in our final framework.

improved concatenation version achieves better results (im-

proves 1.0% in mA), which shows the success of high-level

top-down guidance. Moreover, the introduced channel-

attention sub-network further improves mA a lot to 80.61%
by modulating the inter-channel dependencies. (3) Deep

Supervision: As mentioned in Section 3.3, the obtained

gradients with only the supervision of fused predictions are

not informative enough of how each level performs, while

some branches are trained insufficiently. To address this

problem, ALMs at different levels are trained with deep

supervision mechanism. For inference, the experimental

results suggest that element-wise maximum is a superior

ensemble method than averaging since some weaker exis-

tences are ignored in averaging.

Removing all ALMs while keeping others unchanged re-

sults in a significant drop (last row in Table 1), which fur-

ther confirmed the effectiveness of ALMs. Compared with

the baseline, the final model achieves a remarkable perfor-

mance, improving 6.1% and 1.9% in mA and F1 metrics,

respectively. Figure 4 shows the attribute-wise mA com-

parison between the proposed method and baseline model

on RAP dataset. As shown, the proposed method achieves

significant improvement on a number of attributes, espe-

cially some fine-grained attributes, e.g. BaldHead(23.1%),

Hat(12.4%) and Muffler(13.5%). The accurate recognition

of these attributes shows the effectiveness of the proposed

attribute-specific localization module.

4.3. Visualization of Attribute Localization

Through the above quantitative evaluation, we can ob-

serve significant improvements on some fine-grained at-

tributes. In this subsection, we visualize the localized at-

tribute regions from different feature levels for qualitative

analysis. In our implementation, the attribute regions are

located within the feature maps, while the correspondence

between a feature map pixel and an image pixel is not

0.5

0.6

0.7

0.8

0.9

1

Baseline

Ours

Figure 4. Attribute-wise mA comparison on RAP dataset between

our proposed method and the baseline model. The bars are sorted

in descending order according to the larger mA between the two

models. We can observe significant improvements on some fine-

grained attributes, e.g. BaldHead, Hat and Muffler.

(e) Clerk (f) BodyFat

(c) Hat (d) BaldHead

(a) Backpack (b) PlasticBag

Level 1 Level 2 Level 3Input Level 1 Level 2 Level 3Input

Figure 5. Visualization of attribute localization results at different

feature levels. Best viewed in color.

unique. For a relatively coarse visualization, we simply map

a feature-level pixel to the center of the receptive field on the

input image, like SPPNet [5]. As shown in Figure 5, we dis-

play several examples belong to six different attributes, cov-

ering both abstract and concrete attributes. As we can see,

the proposed ALMs can successfully localize these concrete

attributes, e.g. Backpack, PlasticBag, and Hat, into the cor-

responded informative regions, despite the extreme occlu-

sions (a, c) or pose variances (e). While recognizing the

more abstract attributes Clerk and BodyFat, the ALMs tend

to explore the larger regions, since they often require high-

level semantics from the whole image. In addition, a fail-

ure case is also provided, as shown in Figure 5(d). The

ALMs fail to localize the expected regions at two lower lev-

els when recognizing BaldHead. We believe that this prob-
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lem originates from the highly imbalanced data distribution,

where only 0.4 percent of images are annotated with Bald-

Head in the RAP dataset. Although these localized attribute

regions are relatively coarse, it is still acceptable for rec-

ognizing attributes because they indeed capture these most

discriminative regions with large overlap.

4.4. Different AttributeSpecific Methods

The most significant contribution of this work is the idea

of localizing an individual informative region for each at-

tribute, which we called attribute-specific and was not well

investigated in previous works. In this subsection, we con-

duct experiments to demonstrate the advantages of our pro-

posed method by comparing with other attribute-specific lo-

calization methods, such as visual attention and predefined

parts. Different from the attribute-agnostic attention masks

and body-parts illustrated in Figure 1, we extend them to

an attribute-specific version for comparison. Firstly, we re-

place the proposed ALM with a spatial attention module

while keeping others unchanged for a fair comparison. In

detail, we generate individual attention masks for each at-

tribute through a global cross-channel averaging layer and

a 3 × 3 convolutional layer, like HA-CNN [17]. For an-

other comparison model, we divide the whole image into

three rigid parts (head, torso, and legs) and extract part-

based features with an RoI pooling layer, then manually

define the attribute-part relations, e.g. recognizing hat only

from the head part. More details about the compared meth-

ods are shown in the Supplementary Material. Experimen-

tal results are listed in Table 2. As expected, the proposed

method largely outperforms the other two methods (improv-

ing 5.3% and 3.5% in mA, respectively).

To better understanding the differences, we visualize

these localization results in Figure 6. As we can see, the

attribute regions generated by ALMs are the most accurate

and discriminative one. Although the attention-based model

achieves a not-bad result, the generated attention masks

may attend to the irrelevant or biased regions. While rec-

ognizing Box, the attention masks fail to cover the expected

regions, and we also observed that they tend to localize al-

most the same regions wherever the boxes are. By contrast,

the proposed method can successfully handle the location

uncertainties and pose variances. We provide more visual-

ization results in the Supplementary Material.

To some extent, the methods relying on attention masks

and rigid parts are at two extremes. The former attempts to

completely cover the informative pixels in a highly adap-

tive way, but mostly fails since we have only image-level

annotations. The latter one just totally discards the adaptive

factors, which are less robust to pose variances. Therefore,

the proposed method attempts to achieve a balance between

these two extremes, by constraining the attentional regions

to several bounding boxes, which relatively coarse but more

❳
❳
❳

❳
❳

❳
❳
❳
❳

Method

Metric
mA F1

Rigid Part 76.56 78.84

Attention Mask 78.35 79.51

Attribute Region 81.87 80.16

Table 2. Experimental results of different attribute-specific local-

ization methods evaluated on RAP dataset.

Input Rigid PartsAttribute Regions Attention Masks

Figure 6. Case studies of different attribute-specific localization

methods on three different attributes: Boots (Top), Glasses (Mid-

dle), and Box (Bottom). Different from Figure 1, the attention

masks and body-parts are applied in an attribute-specific manner.

interpretable and controllable.

4.5. Comparison with Stateoftheart Methods

In this subsection, we compare the performance of our

proposed method against several state-of-the-art methods.

As mentioned in Section 2, we divide these methods into

four categories: (1) Holistic methods including ACN [28]

and DeepMar [13], which first take CNN to jointly learn

multiple attributes. (2) Relation-based methods including

JRL [29] and GRL [36], which both exploit the semantic

relations by a CNN-RNN based model. (3) Attention-based

methods including HP-Net [20] and DIAA [19] relying on

multi-scale attention mechanism, and VeSPA [25] which

perform view-specific attribute prediction through a coarse

view predictor. (4) Part-based methods including recently

proposed PGDM [15] and LG-Net [19], which relying on

external pose estimation or region proposal module.

Table 3 and Table 4 show the comparison results on

three different datasets. The results suggest that our pro-

posed method achieves superior performances compared

with existing works under both label-based and instance-

based metrics on all three datasets. Compared with the pre-

vious methods relying on attribute-agnostic attention or ex-

tra part localization mechanism, the proposed method can

achieve a significant improvement across all datasets, which
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Dataset PETA RAP
❳
❳
❳
❳
❳
❳
❳
❳
❳

Method

Metric
mA Accu Prec Recall F1 mA Accu Prec Recall F1 #P GFLOPs

ACN [28] 81.15 73.66 84.06 81.26 82.64 69.66 62.61 80.12 72.26 75.98 - -

DeepMar [13] 82.89 75.07 83.68 83.14 83.41 73.79 62.02 74.92 76.21 75.56 58.5M 0.72

JRL [29] 85.67 - 86.03 85.34 85.42 77.81 - 78.11 78.98 78.58 - -

JRL* [29] 82.13 - 82.55 82.12 82.02 74.74 - 75.08 74.96 74.62 - -

GRL [36] 86.70 - 84.34 88.82 86.51 81.20 - 77.70 80.90 79.29 >50M >10

HP-Net [20] 81.77 76.13 84.92 83.24 84.07 76.12 65.39 77.33 78.79 78.05 - -

VeSPA [25] 83.45 77.73 86.18 84.81 85.49 77.70 67.35 79.51 79.67 79.59 17.0M > 3

DIAA [24] 84.59 78.56 86.79 86.12 86.46 - - - - - - -

PGDM [15] 82.97 78.08 86.86 84.68 85.76 74.31 64.57 78.86 75.90 77.35 87.2M ≈1

LG-Net [19] - - - - - 78.68 68.00 80.36 79.82 80.09 >20M > 4

BN-Inception 82.66 77.73 86.68 84.20 85.57 75.76 65.57 78.92 77.49 78.20 10.3M 1.78

Ours 86.30 79.52 85.65 88.09 86.85 81.87 68.17 74.71 86.48 80.16 17.1M 1.95

Table 3. Quantitative comparisons against previous methods on PETA and RAP datasets. We divide these methods into four groups: holistic

methods, relation-based methods, attention-based methods, and part-based methods, from top to bottom. JRL* is the single model version

of JRL. The precision and recall metrics are not so reliable in class-imbalanced datasets while the mA and F1 score are more convictive.

Best results are in bold. For RAP dataset, we further provide comparisons on the number of parameters (#P) and complexity (GFLOPs).

Dataset PA-100K

Method mA Accu Prec Recall F1

DeepMar [13] 72.70 70.39 82.24 80.42 81.32

HP-Net [20] 74.21 72.19 82.97 82.09 82.53

PGDM [15] 74.95 73.08 84.36 82.24 83.29

VeSPA [25] 76.32 73.00 84.99 81.49 83.20

LG-Net [19] 76.96 75.55 86.99 83.17 85.04

BN-Inception 77.47 75.05 86.61 85.34 85.97

Ours 80.68 77.08 84.21 88.84 86.46

Table 4. Quantitative comparisons on PA-100K dataset.

demonstrates the effectiveness of attribute-specific localiza-

tion. Although a slightly lower mA score is achieved than

the relation-based method GRL on PETA dataset, due to

their stronger Inception-v3 backbone network (with twice

as many parameters as ours), we can still outperform them

on other metrics and datasets. On the more challenging

dataset PA-100K, the proposed method largely outperforms

all previous works, improving 3.7% and 1.4% in mA and

F1, respectively, over the second best results. Notably, the

proposed method surpasses the baseline model with a sig-

nificant margin, especially on the label-based metric mA

(3.6%, 6.1%, and 3.2% on three datasets, respectively).

Note that the proposed method often achieve a lower pre-

cision but higher recall, while these two metrics are not so

reliable, especially in class-imbalanced datasets. Moreover,

the two metrics are inversely correlated, i.e., increase in one

metric always leads to decrease in another (e.g., by modulat-

ing the class weights in the loss function). The mA and F1

metrics are more appropriate in measuring the performance

of an attribute recognition model. Our method consistently

achieves the best results in these two metrics.

We provide a comparison of the computational cost for

different methods (rightmost columns in Table 3) on RAP

dataset. For the number of parameters, theoretically, there

are totally (C
2

8
+4C) trainable parameters in each ALM: 4C

from the STN module, C2

8
from the channel-attention mod-

ule, where C is the number of input channels. As shown,

the proposed model has much fewer trainable parameters

than previous models. In terms of model complexity, even

with 51 attributes, the proposed model is still light-weight

as only 0.17 GFLOPs are added to the backbone network.

The reason is that ALM contains only FC-layers (or 1×1

Conv), which involves much fewer FLOPs than 3×3 Conv-

layers. In general, the entire model is much more efficient

than previous models.

5. Conclusion

We propose an end-to-end framework for pedestrian at-

tribute recognition, which can automatically localize the

attribute-specific regions at multiple feature levels. More-

over, we apply a feature pyramid architecture to enhance

the attribute localization and region-based feature learning

in a mutually reinforcing manner. Experimental results on

PETA, RAP, and PA-100K datasets show that the proposed

method can significantly outperform most of the existing

methods. The extensive analysis suggests that the proposed

method can successfully localize the most informative re-

gion for each attribute in a weakly-supervised manner.
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