
Video Face Clustering with Unknown Number of Clusters

Makarand Tapaswi1,2,3 Marc T. Law2,3,4 Sanja Fidler2,3,4

1Inria 2University of Toronto 3Vector Institute 4NVIDIA

makarand.tapaswi@inria.fr, {makarand,law,fidler}@cs.toronto.edu

https://github.com/makarandtapaswi/BallClustering_ICCV2019

Abstract

Understanding videos such as TV series and movies re-

quires analyzing who the characters are and what they are

doing. We address the challenging problem of clustering

face tracks based on their identity. Different from previous

work in this area, we choose to operate in a realistic and

difficult setting where: (i) the number of characters is not

known a priori; and (ii) face tracks belonging to minor or

background characters are not discarded.

To this end, we propose Ball Cluster Learning (BCL),

a supervised approach to carve the embedding space into

balls of equal size, one for each cluster. The learned ball

radius is easily translated to a stopping criterion for iter-

ative merging algorithms. This gives BCL the ability to

estimate the number of clusters as well as their assignment,

achieving promising results on commonly used datasets. We

also present a thorough discussion of how existing metric

learning literature can be adapted for this task.

1. Introduction

Characters are a central aspect of any story. While video

streaming platforms such as Netflix provide the ability to

find a movie based on metadata, searching a video collection

to find the right clip when “Jack Sparrow first meets Will”

requires analyzing the content of the video. Understanding

characters also has a direct influence on important research

such as video captioning [34, 35], question-answering [22,

44], studying social situations [45] and 4D effects [56].

Characters are often studied by analyzing face tracks

(sequences of temporally related detections) in videos. A

significant part of this analysis is identification - labeling

face tracks with their names, and typically employs super-

vision from web images [1, 29], transcripts [3, 9], or even

dialogs [7, 15]. We are interested in an equally popular alter-

native - clustering face tracks based on identity. Note that

clustering is complementary to identification, and if achieved

successfully can dramatically reduce the amount of required

labeling effort. Clustering is also an interesting problem in

itself as it can answer questions such as who are the main

characters, or what are their social interaction groups.

Figure 1. Video face clustering is a challenging problem that is

further accentuated by a large portion of characters that play small

roles. Can you guess how many characters are in this montage and

which faces belong to them? See Fig. 2 for our solution.

While there exists a large body of work in video face

clustering (e.g. [6, 18, 55]), most of it addresses a simplified

setup where background characters1 are ignored and the total

number of characters is known. With recent advances in face

representations [4], their application towards clustering [38],

and the ability to learn cast-specific metrics by looking at

overlapping face tracks [6], we encourage the community to

address the challenging problem of estimating the number

of characters and not ignoring background cast (see Fig. 1).

In this paper, we propose Ball Cluster Learning (BCL)

- a supervised approach to carve the embedding space into

equal-sized balls such that samples within a ball belong to

one cluster. In particular, we formulate learning constraints

that create such a space and show how the ball radius (also

learned) can be associated with the stopping criterion for

agglomerative clustering to estimate both the number of

clusters and assignment (Sec. 3). We demonstrate BCL on

video face clustering in a setup where we are unaware of

the number of characters, and all face tracks, main charac-

ter or otherwise, are included (Sec. 4). Thus, BCL is truly

applicable to all videos as it does not place assumptions on

availability of cast lists (to determine number of clusters) or

track labels (to discard background characters). To evaluate

our approach, we augment standard datasets used in video

1We consider three types of characters based on their roles: primary

or recurring characters have major roles in several episodes; secondary or

minor characters are named and play an important role in some episodes;

and background or unknown (Unk) characters are unnamed and uncredited.
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face clustering by resolving labels between all background

characters. Our approach achieves promising results in es-

timating the number of clusters and the cluster assignment.

We also present a thorough analysis of commonly used loss

functions in verification (e.g. contrastive loss), compare them

against BCL, and discuss how and when they may be suit-

able for clustering. To the best of our knowledge, BCL is the

first approach that learns a threshold to estimate the number

of clusters at test time. Code and data are available at Github.

2. Related Work

We survey work on identifying and clustering characters

in videos. We also review metric learning approaches, some

of which are adopted for clustering in this work (Sec. 3.4).

Character identification in videos. Over a decade ear-

lier, the availability of transcripts (speaker names and di-

alogs) and their alignment with subtitles (dialogs and times-

tamps) opened exciting avenues for fully automatic identi-

fication [3, 9, 33, 40]. Dialog-based supervision proved to

be a harder but scalable approach [7, 15]. Face track repre-

sentations (e.g. [23, 30, 31, 48, 53]) further improved perfor-

mance. Recently, the source of supervision moved towards

web images from IMDb [1, 45] or image search [29], and

a combination of modalities such as hair [29], speech [28]

and clothing [42]. However, these advances are limited to

identifying named characters and grouping all remaining

characters in a common “others” label.

Video face clustering. A common idea adopted by many

clustering approaches is to use unsupervised constraints that

arise from the video to learn cast-specific metrics [6]. Pairs

of face images within tracks are considered similar; and

faces that appear simultaneously in the video are assumed

dissimilar. These constraints are used with Hidden Markov

Random Fields [49, 50], or to learn low-rank block-sparse

representations [51]. They also see use in conjunction with

the video editing structure (shots, threads, and scenes) [43].

The constraints are also used to fine-tune CNNs and learn

clustering jointly [55], or to learn an embedding using an

improved triplet loss [54].

Ignoring tracks, metrics are learned by ranking a batch

of frames and creating hard positive and negative pairs [39].

However, all of the above methods require knowledge of the

number of clusters K that is difficult to estimate beforehand;

and only consider primary characters (tracks for background

characters are ignored). In online face clustering spatio-

temporal constraints along with CNN representations are

used to assign a new track to existing or new cluster [19].

However, only primary characters in the video are targeted.

Recently, an end-to-end detection and clustering approach

considers false positive and missed detections [18].

In this paper, we consider a setup where all face tracks

are to be clustered into an unknown number of characters.

Ball Cluster

Learning

Similar case

d 𝑓𝑖 , 𝜇𝑘 < 𝑟 Dissimilar case

d 𝑓𝑖 , 𝜇𝑣 > 3𝑟

Figure 2. The face tracks in Fig. 1 can be clustered into 5 characters.

Ball Cluster Learning carves the feature space into balls of equal

radius. The number of samples in the cluster does not affect the

ball radius or minimum separation to other balls.

Metric learning. Early examples of state-of-the-art ap-

proaches in face recognition adopt metric learning [5, 12].

The learning task is often posed as verification - are two face

images of the same person. The main difficulty is ensuring

that the model generalizes to test images of people that are

not seen during training. When working with videos, this is

mitigated by obtaining positive and negative pairs through

tracking and training on the video itself.

Other loss functions involving triplets [37] are also pro-

posed for face verification [36]. While FaceNet [36] claims

to be good at clustering, performance is only evaluated qual-

itatively. Training with the triplet loss is cumbersome as it

requires creation of all possible triplets that is computation-

ally expensive. Sampling strategies become crucial to ensure

fast convergence while avoiding degenerate solutions.

Centroid-based losses [20, 21, 26, 41] are also proposed

for face verification [46]. Here, models are trained to make

each sample closer to the representative of its category than

to the representative of any other category resulting in sam-

ples of the same category being grouped into a single cluster.

These methods are ideal when the number of clusters is

known at test time. However, there is neither a constraint

on the size/radius of the clusters, nor is there a threshold to

predict whether two samples are similar, e.g. NormFace [46]

trains a classifier to determine whether pairs are similar.

Joint Unsupervised LEarning (JULE) [52] learns repre-

sentations while performing hierarchical clustering. How-

ever, as JULE has to learn both the cluster assignments and

representations, it is hard to scale [10, 11, 27] and its com-

putational cost and memory complexity are extremely high.

Moreover, JULE is only tested in cases where the number of

clusters is known at test time.

We propose a model that groups similar samples into non-

overlapping balls. The radius of the ball clusters is learned

and is directly related to the threshold used as a stopping

criterion of our clustering algorithm (Sec. 3.3). In addition,

our training algorithm has very low algorithmic complexity:

it is linear in the batch size and in the number of clusters.
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3. Ball Cluster Learning (BCL)

The main goal of our supervised learning approach is to

carve the embedding space into balls with a shared but train-

able radius for each cluster, while simultaneously creating

a well-defined separation between balls of different cluster

labels (Fig. 2). We first define the constraints that achieve the

above goal (Sec. 3.1), formulate the learning problem with

loss functions (Sec. 3.2), and then explain how to perform

clustering at test time (Sec. 3.3). Finally, we review several

losses from the metric learning literature that may be suitable

for clustering (Sec. 3.4).

Notation. Let B = {(xi, yi)}Ni=1, yi ∈ {1, · · · ,K} be a

mini-batch containing N samples that we wish to group into

K clusters. We learn a mapping ϕθ : X → F (e.g. a neural

network) parameterized by θ. The embedding space can

either be F = R
D or F = S

D−1 = {f ∈ R
D : ‖f‖2 = 1}

inspired by recent work [46] that shows benefits of ℓ2 normal-

ization for face recognition. The i-th sample is represented

by the output of the mapping fi = ϕθ(xi).

“Ball” terminology: We define samples of our clusters

as lying in a ball. However, when F = S
D−1, our clusters

technically lie on the hypersurface of hyperspherical cones.

3.1. Constraints

We analyze similar and dissimilar samples separately. Let

Ck be the k-th set of similar samples (i.e. samples xi that

satisfy yi = k). A pair of samples (xi, xj) is similar iff

yi = yj , and it is dissimiliar otherwise.

Similar case. We define µk ∈ F as the centroid of all the

samples in Ck w.r.t. the squared Euclidean distance:

µk =
1

νF

∑

xi∈Ck

fi ∈ argmin
µ∈F

∑

xi∈Ck

d
2(fi,µ), (1)

where d : F × F → R is the Euclidean distance (i.e.

d
2(fi,µk) = ‖fi−µk‖22). The factor νF is N if F = R

D, or

‖∑xi∈Ck
fi‖2 (we assume for simplicity that it is non-zero)

if F = S
D−1 since µk is constrained to be in F (on the unit-

norm hypersphere). For any sample xi that belongs to Ck, we

would like to learn a representation fi such that its squared

distance to µk is smaller than some learned threshold b > 0.

Our goal is to satisfy the constraints:

∀xi ∈ Ck, d2(fi,µk) ≤ b. (2)

Note that b is trained as a model parameter. We consider that

the radius r of the balls is r =
√
b ≥ maxxi∈Ck

d(fi,µk).
By using the triangle inequality, similar samples satisfy the

following constraint:

∀xi ∈ Ck, xj ∈ Ck, d(fi, fj) ≤ 2r = 2
√
b. (3)

We choose 2r as the threshold to determine whether two

samples are similar or not.

d 𝑓𝑖 , 𝜇𝑘 ≤ r
d 𝑓𝑖 , 𝜇𝑣 < 3r

𝑓𝑖𝑓𝑗 𝑓𝑢𝜇𝑘 𝜇𝑣
d 𝑓𝑖 , 𝜇𝑘 ≤ r

d 𝑓𝑖 , 𝜇𝑣 > 3r
𝑓𝑖𝑓𝑗 𝑓𝑢𝜇𝑘 𝜇𝑣

Figure 3. Consider a toy scenario with 4 samples (2 green, 2

blue in each cluster) in F = R
2. We illustrate the constraints

derived in Eq. (2) and Eq. (4). Each grid square in this 2D-space

corresponds to the ball radius r. Top: When d(fi, µv) < 3r, we

see that fi and fu are the closest samples and will be merged by

hierarchical agglomerative clustering (HAC) in the first iteration.

Bottom: When d(fi, µv) > 3r, the distance between fi and fu is

larger than either the green or blue pair of samples. Additionally,

by adopting the max linkage and choosing the stopping criterion

for HAC as τ = 2r (in Euclidean distance), iterative merging stops

after the green and blue samples are grouped. Best seen in color.

Dissimilar case. From the above discussion, two dissimi-

lar samples (xi, xu) should satisfy d(fi, fu) > 2r. Further-

more, as the distance between xu ∈ Cv and its centroid µv is

at most r, the Euclidean distance between fi and µv should

be greater than 3r to ensure that all the clusters are separated

(see Fig. 3). This implies d
2(fi,µv) > (3r)2 = 9b. We

denote γ = 9b+ ε where ε ≥ 0 is a small fixed margin and

formulate the constraint:

∀xi ∈ Ck 6= Cv, d
2(fi,µv) ≥ γ. (4)

A major difference to existing metric learning approaches

is that we enforce an upper bound on the distance between

each example and its desired centroid (Eq. (2)), which in

turn enforces samples of each cluster to be within a ball of

radius r. We also enforce different clusters to be separated

by a margin that is a function of the radius (Eq. (4)).

Computational complexity. Formulating our constraints

on the distances between samples and cluster centroids sig-

nificantly lowers the number of computations in contrast to

pairwise distances that yield quadratic constraints.

A fixed radius for all balls allows us to use it as a threshold

to delimit clusters. In addition, it has the potential to address

the long-tail since each identity gets the same volume of

embedding-space, agnostic to the number of tracks.

3.2. Problem Formulation

Based on the desired constraints in Sec. 3.1, we now

formulate an optimization problem that tries to satisfy them.

Our goal is to learn the squared radius b > 0 of the cluster

5029



balls and parameters θ of the model ϕθ that minimize the

objective problem Lball defined as the sum of the two losses:

Lball = αLsim + Ldis, (5)

where α ≥ 0 is a hyperparameter to balance the losses. We

present details of the loss terms in the following.

The goal of the loss Lsim is to satisfy the similar pairs

constraint in Eq. (2), and is formulated as:

Lsim =
1

N

∑

xi∈Ck

[

d
2(fi,µk)− b

]

+
, (6)

where [x]+ = max(0, x). In the context of metric learning,

this often corresponds to the positive loss as it brings together

samples of the same cluster.

The goal of the dissimilar loss Ldis is to satisfy dissimilar

pairs constraints in Eq. (4) and is formulated as:

Ldis =
1

N

∑

xi∈Ck

max
v 6=k

[

γ − d
2(fi,µv)

]

+
. (7)

This loss aims to push away from the most offending cluster

centroid by employing maxv 6=k, and is equivalent to hard

negative mining in metric learning [36].

3.3. Clustering Algorithm

We now describe how to perform clustering and predict

the number of clusters on some given (test) dataset. Recall

that we are interested in solving problems where the number

of clusters is unknown at test time.

As explained in Sec. 3.1, our constraints are formulated

so that similar samples should satisfy d
2(fi, fj) ≤ 4b and

dissimilar samples should have larger distances. We apply

a clustering algorithm which groups pairs of examples that

satisfy those constraints into a single cluster.

Even when the number of clusters is known, finding the

partitions that minimize some clustering energy function is

an NP-hard problem [2]. Thus, methods that find a good

local minimum solution with reasonable complexity are of-

ten used (e.g. K-means [24]). For this reason, we adopt the

Hierarchical Agglomerative Clustering (HAC) method [8]:

each sample starts in its own cluster, and pairs of clusters are

iteratively merged until some specific stopping criterion. In

the context of complete linkage, two clusters U and V are

merged into a single cluster if they minimize:

ℓcomplete(U, V ) = max
xu∈U,xv∈V

d
2(fu, fv). (8)

Let us denote τ > 0 the threshold chosen such that the HAC

algorithm stops when there are no two clusters U and V
that satisfy ℓcomplete(U, V ) ≤ τ . Once the HAC algorithm

stops, all the examples assigned to a same cluster U satisfy

∀xa ∈ U, xb ∈ U, d2(fa, fb) ≤ τ by definition of the com-

plete linkage. Thus, we choose τ = 4b. With this value of

τ , when the (ideal) global minimum of Eq. (5) is obtained,

applying the HAC with linkage in Eq. (8) groups similar

examples in the same clusters and separates dissimilar exam-

ples since both Eq. (3) and Eq. (4) are satisfied.

3.4. Extending related work to our task

We compare BCL with various metric learning ap-

proaches commonly used in face verification tasks.

Triplet Loss [36] tries to preserve the order of distances

between similar pairs (xi, xj) and dissimilar pairs (xi, xu):
Ltriplet =

∑

yi=yj

yi 6=yu

[

d
2(fi, fj)− d

2(fi, fu) +m
]

+
. While

the loss ensures that positives are closer than negatives by

a margin m, there is no constraint on the distance between

positive samples. Thus, we are unable to directly use the

margin as a threshold for stopping the HAC algorithm.

Threshold strategy. We choose a threshold based on a

validation set: we apply the HAC algorithm and pick the

threshold that predicts the ground truth number of valida-

tion clusters. Even for the baselines that learn a threshold,

this strategy worked better than using the learned threshold.

Thus, we report scores using this strategy for all baselines.

Contrastive Loss [5] considers pairwise constraints. For

any pair of samples (xi, xj), and yij = 1 when they are

similar and 0 otherwise, the contrastive loss between them

is Lcont =
yij

2
d
2(fi, fj)+

1
2
(1− yij) [m− d(fi, fj)]

2

+
. This

aims to make dissimilar samples at least m distance apart.

While m is usually a fixed hyperparameter, we treat it as a

trainable value in the same way as b in BCL.

Logistic Discriminant Metric Learning (LDML) [12]

maps distances to a probability score via the sigmoid func-

tion σ(·). It can be written as pij = p(yi = yj |fi, fj , β) =
σ
(

β − d
2(fi, fj)

)

, where β is a threshold trained to dis-

tinguish similar from dissimilar pairs. The loss is formu-

lated as binary cross-entropy and is minimized: Lldml =
−∑

yi=yj
log pij −

∑

yi 6=yj
log(1− pij).

Prototypical Networks [41] If both Eq. (2) and Eq. (4)

are satisfied, the following order is obtained: ∀xi ∈ Ck,

v 6= k, d2(fi,µk) − b ≤ d
2(fi,µv) − γ. To satisfy this

relative constraint, we formulate the cross entropy loss:

Lproto = − 1

N

∑

i∈Ck

1

|Ck|
log (p(yi = k|fi)) (9)

where p(yi = k|fi) is the posterior probability:

exp(−d
2(fi,µk) + b)

exp(−d2(fi,µk) + b) +
∑

v 6=k exp(−d2(fi,µv) + γ)
.

(10)

The vanilla Prototypical Networks [41] correspond to Lproto

when b = γ = 0. NormFace [46] is similar to [41], with one

main difference that representations are ℓ2-normalized. We

report scores for b = γ = 0 since we experimentally found

that it returns the best results with our threshold strategy.
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4. Video Face Track Clustering with BCL

We discuss how BCL can be applied to face track cluster-

ing. Each sample represents a face track and is associated

with a specific identity. Our goal is to create clusters such

that tracks with the same identity are grouped together.

During training, we create mini-batches by uniformly

sampling a fixed number of tracks. As the training data

contains several identities with very few (1-2) tracks, and

many others with hundreds or thousands of tracks, uniform

random sampling preserves the skewed distribution of cluster

membership within the mini-batch (see Fig. 4). From each

track, we randomly choose one face image (which serves

as data augmentation) and use a pre-trained and fixed CNN

to extract a face representation xi. We will refer to this

as the base CNN representation. At test time, we average

the base representations of all face images in the track and

apply HAC after computing embeddings. This makes the

track feature robust, while keeping it in the same space as

the training samples. Other track-level representations such

as [23, 30, 48, 53] are out of scope of this work.

Base CNN is a 50-layer ResNet [16] with squeeze-and-

excitation (SE) blocks [17]. The model is pre-trained on

the MS-1M dataset [13], and fine-tuned on the VGGFace2

dataset [4] with cross-entropy loss to predict over 8000 iden-

tities. We obtain features in R
256 from the last layer (before

the classifier). This model is named SE-ResNet50-256.2 We

will show that our methods work equally well when using a

different base CNN. We do not fine-tune the CNN.

Model. Our model ϕθ is a stack of 4 linear layers with

ReLU non-linearity (MLP) in between and is applied on top

of the base CNN representation. When not stated otherwise,

the hidden layers have 256, 128, and 64 nodes, and the final

embedding dimension D = 64.

Our constraints require that b > 0. To this end, we use

the softplus operator defined as b = log(1 + eb̂), and

train b̂ ∈ R as a model parameter. We balance the similar

and dissimilar losses with α = 4 based on the performance

on a validation set.

Learning. We find that the loss for our model can be re-

duced dramatically (to ǫ) by mapping all samples to the same

point and learning the squared radius to be close to 0. We

prevent the learning process from reducing the radius to 0,

by freezing it for the first 5 epochs. Subsequently, the loss

parameter b̂ updates slowly, 0.1 times the learning rate used

for MLP weights. We employ SGD with 0.9 momentum at

a learning rate of 0.003, and a 0.9× decay every 10 epochs

to update the weights of the MLP. We use mini-batches of

2000 samples (tracks) when not stated otherwise.

2We use the pre-trained PyTorch model provided by https://

github.com/ox-vgg/vgg_face2.
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Figure 4. Number of tracks in clusters. Orange lines in BBT and

BUFFY indicate track counts for unknown/background characters.

5. Evaluation

We first present the datasets and metrics used in our exper-

iments. Then, we perform ablation studies on the validation

split and finally show and discuss our results on the test set.

5.1. Datasets and metrics

We use face tracks from several movies and TV series as

part of training and evaluation.

Train and validation splits consist of face tracks and

ground-truth identity labels provided for 51 movies from

the MovieGraphs dataset [45]. Like most previous work,

the dataset contains annotations for main characters only,

and does not disambiguate between background characters.

Nevertheless, it is suitable for training, and we obtain 65,076

tracks that are mapped to 1,280 unique actors using IMDb.

As Fig. 4 indicates, many actors have few (and even one)

tracks making the training distribution similar to test.

We reserve 5% of the actors for validation and ensure that

actors appearing in the test data are not seen during train or

validation. This results in 61,774 tracks (1,214 actors) for

the train split and 3,302 tracks (66 actors) for validation.

Test split. Our evaluation is on six episodes each of two

TV series: The Big Bang Theory (BBT) and Buffy the Vam-

pire Slayer (BUFFY). Both have been actively used in person

identification and clustering [3, 18, 39, 55].3 We wish to em-

phasize that most previous approaches for face clustering

only consider primary (recurring) characters and know the

number of clusters. We adopt a more practical setting where

the number of characters is not known, and tracks for all

(secondary as well as background characters) are included.

We painstakingly resolve faces of background characters

and assign unique identifiers to them. This is difficult even

for humans, but is achieved through a combination of facial

(hair) and non-facial (clothing, spatial location) cues. Finally,

we also evaluate on combined tracks from several episodes

3We use an updated version of the tracks that does not discard back-

ground characters and small/profile faces.
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One N Base Ours

cluster clusters K known τ = 4b

#Cl 1 3302 66 69

NMI 0 0 68.91 77.09

WCP 14.75 100.0 76.53 85.65

Table 1. Performance on the validation set showing the impact of

putting all samples in the same or their own clusters. We also

present performance of base CNN features when the number of

clusters is known. The validation set has 66 ground-truth clusters.

Base CNN Dim #P #Cl NMI WCP

SE-ResNet50-256 256 26.5M 69 77.09 85.65

ResNet50 2048 41.1M 80 76.74 87.67

Table 2. Performance on validation set for different base CNN

models. The 4-layer MLP used for the ResNet50 model is

2048→512→256→128→64.

Dim 256 128 64 32 16 8

#P 263K 132K 111K 109K 108K 107K

#Cl 45 62 69 68 72 29

NMI 76.68 76.89 77.09 75.48 68.72 47.62

WCP 81.98 85.52 85.65 85.89 79.35 50.79

Table 3. Performance on the validation set for varying embedding

dimension. #P indicates the number of parameters in the MLPs.

(and series) to mimic additional challenging scenarios. Each

face in Fig. 1 represents a different track from BBT-S1E1.

Metrics. We adopt three primary metrics to evaluate per-

formance: (i) #Cl: is the number of predicted clusters, and

should be close to the ground-truth number of identities.

(ii) Normalized Mutual Information (NMI) [25]: for a given

set of class labels Y and cluster predictions C, NMI is calcu-

lated as 2I(Y ;C)/(H(Y ) +H(C)), where H(·) is entropy,

and I(·; ·) is mutual information. NMI is a balanced metric

and scores 0 when all samples are either in one cluster or

their own clusters (see Table 1). All model checkpoints are

chosen to maximize NMI on the validation set.

(iii) Weighted Clustering Purity (WCP) [43]: Also called

clustering accuracy [55], WCP combines purity (fraction of

samples that belong to the same class) of the clustering by

weighting with the number of samples in the cluster.

5.2. Ablation Studies

We make several design choices that are motivated in

the following. Table 1 provides insights into the validation

split by showing the extreme ends of the clustering. We

also demonstrate that our model outperforms the base CNN

descriptors even when the base model is assumed to know

the actual number of clusters (Base K known). Throughout

this section, the ideal number of clusters on validation is 66.

Base CNN model. We demonstrate that the choice of the

CNN model does not directly influence performance. In fact,

our base model SE-ResNet50-256 has an output space xi ∈

Batch size 500 1000 2000 4000

#Cl in batch 220 330 450 600

(approx) > 5 samples 15 45 90 150

Performance #Cl 88 91 69 29

on NMI 72.13 74.63 77.09 76.55

Validation WCP 83.77 87.28 85.65 79.68

Table 4. Ablation studies on mini-batch size. The first half of the

table reports the number of the clusters in the batch, and those

that have more than 5 samples. In the second half, we report

performance on validation.

R
256 while the ResNet50 base model produces xi ∈ R

2048.

Table 2 shows that both models exhibit similar performance.

Embedding dimension. From the results in Table 3, we

can infer that choosing too small an embedding dimension

reduces performance dramatically. However, setting D ≥ 32
achieves comparable similar performance.

Batch size. Our model learns to satisfy the constraints and

perform clustering on data within each mini-batch. When

batches are small (e.g. less than 50) it is likely that most

clusters have only one sample. This automatically satisfies

positive constraints and gradients are 0. Making the mini-

batches too large incurs a computational cost and reduces

the number of parameter updates; the model requires many

more epochs to reach a similar performance. In Table 4, we

first report the approximate number of clusters in a batch,

and the number of clusters with more than 5 samples that

can be assumed to have meaningful centroids (> 5). Notice

how this can be quite small even for a batch of 500 samples.

We find that a batch of 2000 samples is a decent trade off

that achieves good performance.

ℓ2 normalized embeddings fi (i.e. F = S
D−1) help im-

prove performance and are used in our model. Without the

ℓ2 normalization, our method creates 71 clusters with NMI:

74.57 and WCP: 83.07 (∼2.5% lower).

Single face image at training. We average base CNN rep-

resentations of face images in a track at test time, while

at training, we feed single images. This seems conflicting.

However, when we choose to average a random half subset

of track images during training, the performance is much

worse with 124 clusters and a 7% lower NMI (absolute).

Complexity. During BCL training, each sample is com-

pared only to the centers of clusters/categories. Thus, BCL

has complexity linear in the number of samples and number

of categories. This is much lower than most baselines that

compare samples with samples. We report the wall clock

time (average of 3 runs) taken to compute various losses for

one epoch – Prototypical: 12.3s; Contrastive: 15.5s; LDML:

15.5s; Triplet: 50.8s; and BCL: 9.9s.

5.3. Evaluation on Test Set

We present statistics of the test set episodes in Table 5,

rows 1-6. In particular, note how some episodes have a large
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BBT BUFFY BBT BUFFY BOTH

S1E1 S1E2 S1E3 S1E4 S1E5 S1E6 S5E1 S5E2 S5E3 S5E4 S5E5 S5E6 6 ep. 6 ep. 12 ep.

1 #Ch 8 6 26 28 25 37 13 22 15 32 38 45 103 109 212

2 #Named Ch 6 5 7 8 6 6 11 12 13 14 13 17 11 26 37

3 #Unk Ch 2 1 19 20 19 31 2 10 2 18 25 28 92 83 175

4 #T 656 615 660 613 524 840 795 993 1194 898 840 1112 3908 5832 9740

5 #Named T 647 613 562 568 463 651 786 866 1185 852 733 1055 3504 5477 8981

6 #Unk T 9 2 98 45 61 189 9 127 9 46 107 57 404 355 759

CrossEntropy Loss

7 #Cl 23 24 37 38 26 37 43 39 58 56 49 52 130 194 323

8 NMI 67.42 64.57 64.87 69.73 72.52 63.02 63.14 59.58 59.07 61.44 60.52 61.78 57.91 55.58 60.33

9 WCP 96.80 90.57 86.36 87.93 86.83 73.81 86.67 69.99 78.48 79.73 78.10 70.68 86.59 74.57 76.05

Logistic Discriminant Metric Learning [12]

10 #Cl 14 15 19 25 20 30 25 31 28 29 31 30 62 82 116

11 NMI 66.42 53.21 66.59 65.33 73.06 55.77 63.57 53.38 58.54 59.52 52.68 56.50 53.15 50.65 51.97

12 WCP 92.23 82.28 74.70 79.61 86.07 62.86 83.02 58.71 71.69 67.59 59.17 59.80 74.33 61.01 58.14

Contrastive Loss [5]

13 #Cl 14 13 17 22 19 32 22 30 26 29 29 27 60 71 110

14 NMI 62.45 63.69 61.77 65.55 71.38 55.68 61.00 53.94 58.15 53.42 53.59 52.01 58.94 49.15 51.53

15 WCP 90.70 86.99 64.85 76.35 75.57 65.95 77.86 56.09 67.59 60.80 62.02 50.36 77.53 57.30 48.81

Triplet Loss [36]

16 #Cl 9 12 15 16 13 23 23 24 25 22 23 26 51 73 111

17 NMI 88.13 71.23 79.83 76.71 85.77 69.34 73.60 64.22 66.24 63.61 67.88 65.49 67.94 59.74 64.79

18 WCP 98.48 95.28 90.15 83.69 89.69 76.67 88.68 67.77 81.99 69.71 77.74 68.71 87.31 68.69 71.34

Prototypical Loss [41]

19 #Cl 12 15 22 28 18 41 32 32 20 35 40 36 87 123 197

20 NMI 82.29 75.12 83.74 80.29 91.36 74.32 74.23 71.02 76.16 70.46 76.63 73.47 70.43 64.99 70.23

21 WCP 96.19 97.56 93.79 91.03 94.66 86.67 90.19 80.16 82.50 81.85 88.69 78.24 90.56 80.52 82.80

Ball Cluster Learning (Ours)

22 #Cl 7 8 16 18 11 23 17 16 18 22 26 22 47 71 116

23 NMI 95.81 87.25 88.38 76.59 92.21 74.19 81.78 77.60 77.64 78.13 79.72 78.15 73.22 71.23 75.32

24 WCP 98.63 98.54 90.61 86.95 89.12 81.07 92.08 79.76 84.00 84.97 89.05 80.58 89.36 83.62 82.81

Ball Cluster Learning (Ours) + Fine-tune with automatically obtained positive/negative pairs

25 #Cl 9 8 24 24 21 36 23 27 25 36 38 40 69 78 126

26 NMI 97.34 97.80 94.00 90.42 95.83 83.32 84.59 82.59 78.76 77.58 81.71 79.51 88.26 77.05 80.42

27 WCP 99.24 99.67 96.06 96.08 97.71 90.36 94.97 88.12 90.28 86.19 90.24 88.13 94.11 86.64 85.84

Table 5. Clustering performance on episodes of the test set. S1E2 corresponds to season 1 and episode 2. The last three columns show

results on datasets created by combining tracks from several episodes. Name refers to primary and secondary named characters; Unk refers

to background characters; #Ch is number of characters; #T is number of tracks; and #Cl is number of predicted clusters and should be

close to the number of characters (row 1). Read this table by looking at each column, and seeing which method is able to predict the number

of clusters and has high NMI and WCP scores.

BBT BUFFY ALL

6 ep. 6 ep. 12 ep.

BCL K-means 60.5 (92.0) 66.7 (87.3) 68.7 (88.0)

BCL HAC 70.6 (93.0) 69.1 (85.3) 72.5 (86.2)

PRO K-means 60.7 (91.3) 64.5 (85.4) 66.8 (85.6)

PRO HAC 68.3 (91.1) 65.8 (80.0) 70.3 (83.3)

Table 6. NMI and WCP performances of our approach (BCL) and

prototypical loss (PRO) when the number of clusters is known.
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Figure 5. NMI and WCP vs. number of clusters on Buffy S5E1.

Circles indicate operating points (i.e. number of predicted clusters

for the methods), our method uses the HAC threshold 4b, while

all others are using the threshold tuned to give 66 clusters on the

validation set. Best seen in color.

number of background characters (e.g. 31 for BBT-S1E6)

while others do not (e.g. 2 for BUFFY-S5E1). The last three

columns refer to larger and arguably harder4 datasets created

by combining tracks of several episodes. In addition to

Table 5, we also plot NMI and WCP vs. number of clusters

in Fig. 5. Below, we discuss each loss in detail.

CrossEntropy loss (CE). CE can be seen as a (logistic)

regression problem that merges all the similar examples to a

single one-hot vector. We believe this is a reason why base

CNN representations are quite good at clustering (blue curve

in Fig. 5) when the number of characters is known. However,

using a threshold on validation to choose an operating point

results in much lower performance (76 clusters instead of 13).

To further test this hypothesis, we train an MLP ϕθ to classify

among our training set of actors, and use activations from the

last layer as embeddings. The orange curve in Fig. 5 is lower

than the base model (blue) indicating that training with more

characters may have helped the base model. Nevertheless,

choosing an operating point is difficult. Results in Table 5

4The combined episode datasets have many more background characters,

while tracks from recurring characters collapse onto each other. This further

skews cluster membership, with the largest cluster being several thousand

tracks, and the smallest still having one track.
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rows 7-9 show that the CE over-clusters (create many more

clusters than GT). Directly using base CNN representations

also results in many clusters (see supplementary).

Verification losses. Next, we analyze LDML, contrastive,

and triplet losses (Table 5 rows 10-18). While these losses

are often used to perform clustering, they are not designed

for it [47]. We see two major features: (i) unlike BCL,

estimating the number of clusters is not a built-in feature and

requires choosing a threshold on the validation set that may

be unreliable; and (ii) early errors in the iterative merging can

really harm the overall composition. We observe that triplet

loss consistently achieves higher NMI and better estimates

for number of clusters than contrastive and LDML.

Prototypical loss (PRO) vs. BCL. Similar to verification

losses (above), PRO works best when the number of clusters

is known (e.g. for few-shot learning). The loss has strong

ties with K-means, and optimizes the space to create well

separated K clusters [20]. Interestingly, in our experiments,

ℓ2 normalizing embeddings reduced the performance of PRO

by over 15% NMI. We report PRO scores for non-normalized

representations, that are also more stable when transferring a

threshold based on the validation set. In fact, by comparing

Table 5 row 19 with row 1, we see that PRO over-estimates

the number of clusters when there are few background char-

acters (BCL, row 22, works well here), but performs better

in episodes with several background characters.

While PRO estimates more clusters, that does not trans-

late to better assignments. For example, on BUFFY-S5E4,

PRO predicts 13 more clusters than BCL (35 vs. 22) and is

closer to the ground-truth 32 clusters, but attains 7.7% lower

NMI and 3% lower WCP. A lower purity while having more

clusters is a strong indicator of bad clustering.

We also compare performance between PRO and BCL

when the number of clusters K is known (see Table 6). BCL

is able to consistently outperform both K-means or HAC

clustering methods for the prototypical loss. We also tried

extensions of K-means that automatically determine the

number of clusters in an unsupervised way [14, 32] when the

representations are fixed. Their performance was worse than

our method of choosing a threshold on the validation set.

Additional comparisons are in the supplementary material.

Qualitative. Fig. 6 visualizes clusters created by BCL

(top) vs. those with PRO (bottom) on BBT-S1E1. BCL

predicts 7 clusters in comparison to the ground-truth 8, and

merges the singleton track of a background girl (C4 in PRO)

with Penny (C3 in BCL). Both methods find the other un-

named character - C4 in BCL, C6 in PRO. While BCL

merges few tracks of Sheldon and Kurt (C1), PRO is able

to find Kurt (C7). However, PRO splits clusters for Raj (C1,

C8), Penny (C3, C11), and Leonard (C2, C10).

Fine-tuning on each episode. Our model can be applied

directly to several different datasets by using the learned

threshold 4b without fine-tuning, this is a major advantage.

Figure 6. Visualizing clusters created by BCL (top) and PRO (bot-

tom) for BBT-S1E1. Refer to supp. material for other episodes.

Following previous work that uses positive and negative

pairs obtained automatically from each episode [6, 43, 54],

BCL can be easily modified to fine-tune our model and

make it cast-specific. Shots with background characters

are often crowded (multiple faces), and negative constraints

among them can help resolve confusion. Table 5 rows 25-27

show the overall performance improves after fine-tuning;

importantly, the estimated number of characters (row 25)

is much closer to the ground-truth (row 1). Details of the

fine-tuning procedure and comparison against fine-tuned

baselines is in the supplementary material.

6. Conclusion

We presented Ball Cluster Learning - a supervised ap-

proach to carve the representation space into balls of an equal

radius. We showed how the radius is related to the stopping

criterion used in agglomerative clustering methods, and eval-

uated this approach for clustering face tracks in videos. In

particular, we considered a realistic setup where the num-

ber of clusters is not known, and tracks from all characters

(main or otherwise) are included. We reviewed several met-

ric learning approaches and adapted them to this clustering

setup. BCL shows promising results, and to the best of our

knowledge is the first approach that learns a threshold that

can be used directly to estimate the number of clusters.
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