
Boundless: Generative Adversarial Networks for Image Extension

Piotr Teterwak Aaron Sarna Dilip Krishnan Aaron Maschinot

David Belanger Ce Liu William T. Freeman

Google Research
{pteterwak, sarna, dilipkay, amaschinot, dbelanger, celiu, wfreeman}@google.com

Abstract

Image extension models have broad applications in

image editing, computational photography and computer

graphics. While image inpainting has been extensively stud-

ied in the literature, it is challenging to directly apply the

state-of-the-art inpainting methods to image extension as

they tend to generate blurry or repetitive pixels with in-

consistent semantics. We introduce semantic conditioning

to the discriminator of a generative adversarial network

(GAN), and achieve strong results on image extension with

coherent semantics and visually pleasing colors and tex-

tures. We also show promising results in extreme extensions,

such as panorama generation.

1. Introduction

Across many disparate disciplines there exists a strong

need for high quality image extensions. In virtual reality,

for example, it is often necessary to simulate different cam-

era extrinsics than were actually used to capture an image,

which generally requires filling in content outside of the

original image bounds [19]. Panorama stitching generally

requires cropping the jagged edges of stitched projections

to achieve a rectangular panorama, but high quality image

extension could enable filling in the gaps instead [23]. Sim-

ilarly, extending videos has been shown to create more im-

mersive experiences for viewers [3]. As televisions tran-

sition to the 16:9 HDTV aspect ratio, it is appealing to dis-

play videos filmed at a different aspect ratio than the screen.

[22, 33].

We desire a seamless blending between the original

and extended image regions. Moreover, the extended re-

gion should match the original at the textural, structural

and semantic levels, while appearing a plausible extension.

Boundary conditions are only available on one side of the

extended region. This is in contrast to the image inpaint-

Input DeepFill PConv Ours

Figure 1. Some examples of image extension: Our method (right

column) generates better object shapes (top/middle rows) and pro-

duce good textures (middle/bottom rows), compared with two state

of the art inpainting methods: DeepFill [48] and PConv [26]. The

input image is extended onto the masked area (shown in gray).

ing problem [26, 48], where the region to be filled in is

surrounded in all directions by original image data, signif-

icantly constraining the problem. Therefore, inpainting al-

gorithms tend to have more predictable and higher quality

results than image extension algorithms. In fact, we demon-

strate in this paper that using inpainting algorithms with no

modifications leads to poor results for image extension.

In the literature, image extension has been studied using

both parametric and non-parametric methods [41, 50, 31, 7,

5]. While these methods generally do a good job of blend-

ing the extended and original regions, they have significant

drawbacks. They either require the use of a carefully cho-

sen guide image from which patches are borrowed, or they

mostly extend texture, without taking into account larger

scale structure or the semantics of an image. These models

are only applicable in a narrow range of use cases and can-

10521

not learn from a diverse data set. In practice, we would like

image extension models that work on diverse data and can

extend structure.

Fast progress in deep neural networks has brought the

advent of powerful new classes of image generation mod-

els, the most prominent of which are generative adversarial

networks (GANs) [14] and variational autoencoders [21].

GANs in particular have demonstrated the ability to gener-

ate high quality samples. In this paper, we use GANs, mod-

ified as described below, to learn plausible image extensions

from large datasets of natural images using self-supervision,

similar in spirit to the use of GANs in applications such as

inpainting [16] and image superresolution [24].

For the image extension problem, while state-of-the-art

inpainting models [48, 47] provide us a good starting point,

we find that the results quickly degrade as we extend fur-

ther from the image border. We start by pruning the compo-

nents that do not apply to our setting and then adopt some

techniques from the broader study of GANs. Finally, we

introduce a novel method, derived from [29], of providing

the model with semantic conditioning, that substantially im-

proves the results. In summary, our contributions are:

1. We are one of the first to use GAN’s effectively to learn

image extensions, and do so reliably for large extrapo-

lations (up to 3 times the width of the original).

2. We introduce a stabilization scheme for our train-

ing, based on using semantic information from a pre-

trained deep network to modulate the behavior of the

discriminator in a GAN. This stabilization scheme is

useful for any adversarial model which has a ground

truth sample for each generator input.

3. We show empirically that several architectural com-

ponents are important for good image extension. We

present ablation studies that show the effect of each of

these components.

2. Related Work

Prior work in image inpainting can be fairly neatly di-

vided into two subcategories: classical methods, which use

non-parametric computer vision and texture synthesis ap-

proaches to address the problem, and learning-based meth-

ods, which attack the problem using parametric machine

learning, generally in the form of deep convolutional neu-

ral networks. Classical methods, such as [6, 8, 13, 12]

typically rely on patch similarity and diffusion to borrow

information from the known regions of the image to fill

in the hole. These methods work best when inpainting

small holes in stationary textures and generally lack seman-

tic understanding of the image. Perhaps the most success-

ful of these methods are the Bidirectional Similarity [35]

and PatchMatch algorithms [7, 23]. Other non-parametric

approaches that specifically target image extension rely on

image patches from images other than the one to be extrap-

olated. [34, 41, 36] rely on having large databases of pho-

tos available during the extrapolation process, while others,

such as [50], depend on a carefully selected guide image.

In recent years, deep learning based approaches have

made great strides in overcoming the weaknesses of the

classical methods. The first significant learning-based ap-

proach to inpainting was the Context Encoder [30], which

trained an encoder-decoder model to fill in a central square

hole in an image, using a combination of ℓ2 regression on

pixel values, and an adversarial loss [14]. [45] minimizes

the difference of nearest neighbor activation patches in deep

layers of a pretrained ImageNet classification network, for

improved synthesis of highly textured content. [17] im-

prove on the results of [30] by adding a local discrimina-

tor loss to the original global discriminator loss; the local

discriminator focuses on the realism of the synthetic con-

tent, while the global discriminator encourages global se-

mantic coherence. [48] improves on [17] further by in-

troducing a coarse-to-fine approach. Their model has two

chained encoder-decoder sections, the second of which con-

tains a contextual attention layer, which learns the optimal

locations in the unmasked regions from which the model

should borrow texture patches. Other similar approaches in-

clude [26, 43, 47], while [46] train an unconditioned GAN

to generate complete images from the target distribution

and perform an inference-time optimization to search for

the latent code that would produce the closest match to the

known pixels of the masked image. The only previous fully-

parametric approach to image extension that we are aware

of is [40], which showed impressive results using an auto-

regressive model to extend 32x32 pixel images, including

the ability to output multiple plausible completions. These

are, however, too small for practical applications. Concur-

rent to our work is [44], which is similar to ours but does

not condition the discriminator with pre-trained features.

3. Model

Our model uses a Wasserstein GAN framework [28]

comprising a generator network that is trained with the as-

sistance of a concurrently-trained discriminator network.

Our generator network, G has an input consisting of the

image z with pixel values in the range [−1, 1], which is to be

extended, and a binary mask M . These are the same dimen-

sions spatially and are concatenated channel-wise. Both z

and M consist of a region of known pixels and a region of

unknown pixels. In contrast to inpainting frameworks, the

unknown region shares a boundary with the known region

on only one side. z is set to 0 in the unknown region, while

M is set to 1 in the unknown region and 0 in the known

region. At training time,

z = x⊙ (1−M) (1)

10522

Figure 2. Model Architecture: this architecture is used for all our models. See text for further details.

where x is sampled from a natural image distribution X and

⊙ is the element-wise multiplication operator.

The output G(z,M) of G has the same dimensions as z

and a pixel loss during training uses this full output. How-

ever, the last stage before feeding into the discriminator D

is to replace what G synthesized in the unmasked regions

with the known input pixels:

x̂ = G(z,M)⊙M + z (2)

D is also a deep network, which transforms a real sample

from X or a generated sample x̂ to a single scalar value.

3.1. Generator

G generally follows the same fully convolutional

encoder-decoder architecture as used by [47] (see Figure 2).

Each layer in the generator except the last one uses gated

convolutions [47] to enable the model to learn to select the

contributing features for each spatial location and channel.

Following the inpainting guidance in [48], each layer except

the last uses an ELU activation function [10], and the final

layer clips its outputs to the range [−1, 1]. As in [16, 47, 48],

the innermost layers utilize dilated convolutions to increase

their receptive field size.

To address the image extension problem, we deviated

from the generator architecture proposed by [47] in a few

crucial ways. We eliminated the refinement network, in-

cluding the contextual attention layer, since this layer is bi-

ased towards copying patches from the unmasked portion

of the input. While borrowing patches is a useful prop-

erty for inpainting of images [7], in the case of image ex-

tension, it is less likely that repeated patterns will result

in convincing extension. Figure 3 shows the effect of the

contextual attention layer of [48, 47]. We also compare to

Adobe Photoshop’s PatchMatch-based [7] Content Aware

Fill tool, which generates similar artifacts due to copying

patches. These copying artifacts occur on a large fraction of

the output images.

We also introduced skip connections [32] between the

non-dilated layers, since we found that they improved the

network’s ability to synthesize high frequency information.

In Figure 6, we show the typical benefit of using skip con-

nections. We additionally added instance normalization

[39] after every generator layer besides the output layer,

finding that it significantly reduces the number of artifacts

in the generated images.

Figure 3. The contextual attention layer from DeepFill [48, 47]

tends to repeat patches and structures. The original image (top

left) is extended to the right (top-middle and top-right). DeepFill

creates a copy of the door handle, whereas our extension extends

the structure in a semantically and geometrically more plausible

manner. Similarly, Photoshop’s Content Aware Fill (bottom row)

often creates artifacts since it is based on PatchMatch [7].

10523

3.2. Discriminator

The objective of the discriminator network (see Figure 2)

is determining whether an image is generator-produced or

real. In our problem setup, the concern is not just whether

the output of G appears real, but also that it is a plausible

extension of G’s inputs. To this end, we design our dis-

criminator to be conditioned on the specific generator inputs

when evaluating whether what is fed into the discriminator

is real or fake. We condition the discriminator in two ways.

First, when a generated image is input, we copy the

known pixels from z to overwrite the corresponding gen-

erated pixels, as described in eq. 2, and we additionally

input the mask M itself. This on its own provides a ma-

jor advantage to the discriminator in the adversarial game,

since it can focus in on the area right around the seam at the

edge of the real content and easily determine that an image

is fake if there is any abrupt change in image statistics along

that seam. We see this play out during training, as the gen-

erated image content close to the seam is the first to improve

and the quality improvement gradually spreads towards the

opposite edge of the image as training progresses. On its

own, this form of conditioning produces seamless results,

but the quality of generated content still deteriorates as it

moves further from the real content.

To address this, we add another form of conditioning,

which is a modified version of the conditional projection

discriminator (cGAN) [29]. In the original cGAN paper,

a one-hot class label y is passed into the discriminator in

addition to the image x∗ to be classified as real or fake.

The discriminator output is then

D (x∗,y) = fφ (φ (x∗)) + 〈φ (x∗) ,fy (y)〉 (3)

where φ is a learned function mapping an image to a vector,

fφ is a learned fully-connected layer that maps that vector

to a scalar, fy is a learned fully-connected layer mapping

y to a vector of the same size as the output of φ, and 〈·, ·〉
denotes an inner product. The cGAN paper shows that this

parameterization of the GAN objective enables the model

to simultaneously learn the distributions p(x) and p(y|x).
In our setting we don’t necessarily have class labels

available, and we also want our conditioning vectors to con-

tain more information than class labels would provide. To

this end, we were inspired by previous work on percep-

tual metrics [18, 49] to replace y with the activations of

a pretrained image classification network, C, when applied

to x (the ground truth image). We chose to instantiate C

as an InceptionV3 [37] network trained on ImageNet [11]

with the final softmax removed. We found that it helps to

normalize these activations by subtracting the mean activa-

tion over the dataset and then dividing the result by its ℓ2
norm. Note that since the discriminator is only used during

training, we can condition on the full unmasked image (x),

which also means that these activations can be precomputed

before training. This conditioning encourages the generated

content to semantically match the target image, which espe-

cially helps avoid semantic drift in larger extensions. For-

mally, we replace eq. 3 with

D (x∗,M ,x) =fφ (φ (x∗,M))

+ 〈φ (x∗,M) ,fC (C (x))〉
(4)

The architecture of φ is based on [47] and consists of six

strided convolutional layers, followed by a fully connected

layer. Each convolutional layer uses a leaky ReLU activa-

tion function [27] and all layers apply spectral normaliza-

tion [28] to satisfy the Lipschitz constraints of Wasserstein

GANs [4]. The output dimensions of φ and fC are both

256.

3.3. Training

The model is trained via a combination of a reconstruc-

tion loss and an adversarial loss. The reconstruction loss

optimizes for coarse image agreement and is implemented

as an ℓ1 loss imposed on the full output of G. The full

equation is below:

Lrec = ‖x−G (z,M)‖1 (5)

For the adversarial loss, which refines the coarse prediction,

we use a Wasserstein GAN hinge loss [25, 38]:

Ladv,D = Ex∼PX (x)[ReLU (1−D (x,M ,x))+

ReLU (1 +D (x̂,M ,x))]

Ladv,G = Ex∼PX (x)[−D (x̂,M ,x)]

(6)

where ReLU is the rectified linear unit function. The total

loss on the generator is

Ltotal = Lrec + λLadv,G (7)

In all our experiments we set λ = 10−2.

Our model is implemented in TensorFlow [1]. The gen-

erator and discriminator are trained jointly using the Adam

optimizer [20] with parameters α = 10−4, β1 = 0.5, β2 =
0.9; (the discriminator has a slightly larger α = 10−3, but

other parameters are the same). Unlike many previous pa-

pers, we did not see improvement from training the discrim-

inator for multiple steps per each generator step. Based on

the findings of [9] on the benefits of training GANs with

large batch sizes, we trained on 32 cores of a Google Cloud

TPUv3 Pod with batch size 256.

4. Experimental Results

For all experiments we train our model on a dataset com-

posed of the top 50 classes (measured by number of sam-

ples in the training set) of the Places365-Challenge dataset

[51], producing a training set of just under 2 million im-

ages, which we scaled to the spatial dimensions of 257x257

10524

FID PSNR FID PSNR FID PSNR FID PSNR

(25%) (25%) (50%) (50%) (75%) (75%) (Inp) (Inp)

DF 1.87 7.11 11.65 6.69 31.21 9.74 4.96 14.31

PC 1.40 11.10 11.20 6.63 31.83 8.94 3.70 13.78

NCnd 0.85 8.96 5.01 7.55 19.17 9.08 2.73 14.24

Ours 0.79 10.17 3.46 8.63 8.79 8.07 2.53 14.17

Table 1. Quantitative metrics on 500 test images.The mask types

are: 25% extension (3:1 ratio of context to mask), 50% exten-

sion (1:1 ratio), 75% (1:3 ratio) and inpainting a central square

mask comprising 25% of image pixels(Inp). We compare Deep-

Fill(DF), PartialConv(PC), ours without conditioning(NCnd), and

our model.

FID PSNR FID PSNR FID PSNR

(25%) (25%) (50%) (50%) (75%) (75%)

Prcptl 0.40 9.95 2.32 8.31 14.15 9.65

FM 0.75 9.42 3.14 8.97 14.74 8.87

Ours 0.79 10.17 3.46 8.63 8.79 8.07

Table 2. Comparisons with other methods for stabilizing GAN

training. We provide PSNR for reference, but found that FID cor-

relates with perceptual quality best. Based on FID on 25% and

50% extensions, feature matching and perceptual losses outper-

form our conditioning, but the difference is fairly small. On 75%

extensions, our conditioning provides the best results and the dif-

ference is large.

pixels. The use of 50 classes allows us to test how well

our model can generalize to multiple categories. We used a

held-out set of 500 images from the same set of classes in

the Places365 dataset, approximately 10 images per class,

to compute quantitative scores and to visualize the image

extension results.

4.1. Image Extension

We compare our model (which we call Ours) with

various baselines both qualitatively and quantitatively on

the task of image extension. Specifically, we evaluate each

algorithm’s ability to fill in masked out image content for

three different image extension tasks (where the rightmost

25%, 50% and 75% of pixels in the image are respectively

masked) and one inpainting task (a central square mask

comprising 25% of image pixels). For each experiment, our

model is retrained with masks of the appropriate position,

shape and size. The baselines we compare against are:

No-Cond: A model that is identical to “Ours,” but without

discriminator conditioning.

DeepFill: Our re-implementation of DeepFillv2 [47],

which is a state of the art inpainting model. We confirmed

that our reimplementation achieves inpainting results

nearly identical to that of the original papers (see Figure 6).

For each experiment, we retrain the model with the same

masks and data as ours. We follow the authors’ guidance

of training for 5 days on an NVIDIA P100 GPU. We note

that this results in the model being trained for many fewer

steps than “Ours” because it trains much more slowly (0.8

steps/sec vs 4.7 steps/sec for “Ours”). Comparison against

this model shows the benefits of our approach compared

to simply repurposing an architecture suited for inpainting

tasks.

PConv: The authors of another state of the art inpainting

work [26] generated results for us based on provided masks,

but the models were not retrained specifically for these

tasks. The model was trained on the full Places2 dataset,

which is a superset of our training set. They use a database

of free-form masks, some of which are very large (up to

50% of the image size), but are often non-contiguous and

non-convex, which means that at training time the model

may not have needed to generate pixels that were very far

from known context. While our comparisons to this paper

are not exactly apples-to-apples, we believe that this still

provides a strong baseline against which to compare our

performance.

CAF: Results from Adobe Photoshop’s content aware fill,

which is based on the PatchMatch algorithm [7]. Content

aware fill is a very powerful tool used for image extension,

and reprents a strong classical baseline. However, due to

the use of only patch level information, it does not provide

semantically meaningful extensions.

We provide quantitative performance metrics for each

mask-type and each algorithm in Table 1. We agree with

the authors of [48, 26] that there are really no good metrics

that capture the goals of these experiments, but we nonethe-

less report the best approximations. Specifically, we report

Fréchet Inception Distance (FID) [15] on the full output im-

age and PSNR of the masked regions only. For FID we

used a diagonal covariance matrix, due to having few sam-

ples. Based on our own qualitative evaluations, we feel that

FID of the entire output image best correlates with what we

perceive as quality image extension. We additionally per-

formed a qualitative analysis. We show results on a few

images from our test set in Figures 4 and 6. We show many

more results, including on free-form masks, in the Supple-

mentary Material. Overall we see that all methods, other

than “CAF,” perform admirably for inpainting. On the ex-

tension tasks, as we move towards larger extensions with

smaller context, “CAF” and “DeepFill” degrade into just

repeating textures, while “PConv” gets blurrier and more

artifact-filled the further away from the context it gets. The

“NoCond” version of our model maintains higher quality

for the larger extensions but does show some blurring and

semantic drift. Meanwhile, our full model remains seman-

tically consistent, with mostly photorealistic and seamless

synthesis.

Furthermore, we experiment with replacing our con-

ditioning with perceptual [18] and feature matching [42]

losses, see Table 2 and Figure 5. In the perceptual loss,

10525

Input NoCondDeepFill PConv OursCAF GT

(a) 25%

(b) 50%

(c) 75%

Input NoCondDeepFill PConv OursCAF GT

Figure 4. Extending images from masks of (a) 25%, (b) 50% and (c) 75% of the image width using multiple algorithms. From left to right:

DeepFill [48], PConv [26], Photoshop Content Aware Fill, our model with no conditioning, our full model and ground truth.

10526

