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Figure 1: We propose Descriptor Vector Exchange (DVE), a mechanism that enables unsupervised learning of robust high-

dimensional dense embeddings with equivariance losses. The embeddings learned for the category of faces are visualised

in the figure above with the help of a query image [8], shown in the centre of the figure. (Left): We colour the locations

of pixel embeddings that form the nearest neighbours of the query reference points. (Right): The same reference points are

used to retrieve patches amongst a collection of face images. The result is an approximate face mosaic, matching parts across

different identities despite the fact that no landmark annotations of any kind were used during learning.

Abstract

Equivariance to random image transformations is an ef-

fective method to learn landmarks of object categories, such

as the eyes and the nose in faces, without manual supervi-

sion. However, this method does not explicitly guarantee

that the learned landmarks are consistent with changes be-

tween different instances of the same object, such as differ-

ent facial identities. In this paper, we develop a new per-

spective on the equivariance approach by noting that dense

landmark detectors can be interpreted as local image de-

scriptors equipped with invariance to intra-category varia-

tions. We then propose a direct method to enforce such an

invariance in the standard equivariant loss. We do so by

exchanging descriptor vectors between images of different

object instances prior to matching them geometrically. In

this manner, the same vectors must work regardless of the

specific object identity considered. We use this approach to

learn vectors that can simultaneously be interpreted as lo-

cal descriptors and dense landmarks, combining the advan-

∗Equal Contribution. James was with the VGG during part of this work.

tages of both. Experiments on standard benchmarks show

that this approach can match, and in some cases surpass

state-of-the-art performance amongst existing methods that

learn landmarks without supervision. Code is available at

www.robots.ox.ac.uk/˜vgg/research/DVE/.

1. Introduction

Learning without manual supervision remains an open

problem in machine learning and computer vision. Even

recent advances in self-supervision [15, 17] are often lim-

ited to learning generic feature extractors and still require

some manually annotated data to solve a concrete task such

as landmark detection. In this paper, we thus consider the

problem of learning the landmarks of an object category,

such as the eyes and nose in faces, without any manual an-

notation. Namely, given as input a collection of images of a

certain object, such as images of faces, the goal is to learn

what landmarks exist and how to detect them.

In the absence of manual annotations, an alternative su-

pervisory signal is required. Recently, [46] proposed to

16361



build on the fact that landmark detectors are equivariant to

image transformations. For example, if one translates or ro-

tates a face, then the locations of the eyes and nose follow

suit. Equivariance can be used as a learning signal by ap-

plying random synthetic warps to images of an object and

then requiring the landmark detector to be consistent with

these transformations.

The main weakness of this approach is that equivariance

can only be imposed for transformations of specific images.

This means that a landmark detector can be perfectly consis-

tent with transformation applied to a specific face and still

match an eye in a person and the nose in another. In this ap-

proach, achieving consistency across object instances is left

to the generalisation capabilities of the underlying learning

algorithm.

In this paper, we offer a new perspective on the prob-

lem of learning landmarks, generalising prior work and ad-

dressing its shortcomings. We start by establishing a link

between two apparently distinct concepts: landmarks and

local image descriptors (fig. 2). Recall that a descriptor,

such as SIFT, is a vector describing the appearance of the

image around a given point. Descriptors can establish cor-

respondences between images because they are invariant to

viewing effects such as viewpoint changes. However, sim-

ilar to descriptors, landmarks can also establish image cor-

respondences by matching concepts such as eyes or noses

detected in different images.

Thus invariant descriptors and landmark detectors are

similar, but landmarks are invariant to intra-class varia-

tions in addition to viewing effects. We can make this

analogy precise if we consider dense descriptors and land-

marks [45, 9, 42]. A dense descriptor associates to each

image pixel a C-dimensional vector, whereas a dense land-

mark detector associates to each pixel a 2D vector, which is

the index of the landmark in a (u, v) parameterisation of the

object surface. Thus we can interpret a landmark as a tiny

2D descriptor. Due to its small dimensionality, a landmark

loses the ability to encode instance-specific details of the

appearance, but gains robustness to intra-class variations.

Generalising this idea, we note that any invariant de-

scriptor can be turned into a landmark detector by equipping

it with robustness to intra-class variations. Here we pro-

pose a new method that can do so without reducing the di-

mensionality of the descriptor vectors. The formulation still

considers pairs of synthetically-transformed images as [45]

do, but this time landmarks are represented by arbitrary C-

dimensional vectors. Then, before geometric consistency

(equivariance) is enforced, the landmark vectors extracted

from one image are exchanged with similar vectors ex-

tracted from other random images of the object. This way

geometric consistency between an image and its transfor-

mations can only be achieved if vectors have an intra-class

validity, and thus effectively characterise landmarks.

invariant

descriptor

vectors

dense

landmark

vectors

C

Figure 2: Descriptor-landmark hierarchy. A local invari-

ant descriptor maps image pixels to distinctive vectors that

are invariant to viewing conditions such as a viewpoint. A

dense landmark detector maps pixels to unique points of the

object’s surface, such as eyes and nose in faces, to points on

the surface of a sphere. Both produce invariant and distinc-

tive vectors, but landmarks are also invariant to intra-class

variations. Taken together, they represent a hierarchy of dis-

tinctive pixel embeddings of increasing invariance.

Empirically (section 4), we show that the key advantage

of this formulation, which we term Descriptor Vector Ex-

change (DVE), is that it produces embedding vectors that si-

multaneously work well as instance-specific image descrip-

tors and landmarks, capturing in a single representation the

advantages of both, and validating our intuition.

2. Related work

General image matching. Image matching based on lo-

cal features has been an extensively studied problem in the

literature with applications to wide-baseline stereo match-

ing [38] and image retrieval [48]. The generic pipeline con-

tains the following steps: i) detecting a sparse set of in-

terest points [28] that are covariant with a class of trans-

formations, ii) extracting local descriptors (e.g. [27, 47]) at

these points that are invariant to viewpoint and illumina-

tion changes, and iii) matching the nearest neighbour de-

scriptors across images with an optional geometric verifi-

cation. While the majority of the image matching meth-

ods rely on hand-crafted detectors and descriptors, recent

work show that CNN-based models can successfully be

trained to detect covariant detectors [23] and invariant de-

scriptors [52, 36]. We build our method on similar princi-

ples, covariance and invariance, but with an important dif-

ference that it can learn intrinsic features for object cate-

gories in contrast to generic ones.

Cross-instance object matching. The SIFT Flow
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method [24] extends the problem of finding dense corre-

spondences between same object instances to different in-

stances by matching their SIFT features [27] in a vari-

ational framework. This work is further improved by

using multi-scale patches [11], establishing region corre-

spondences [10] and replacing SIFT features with CNN

ones [26]. In addition, Learned-Miller [21] generalises

the dense correspondences between image pairs to an arbi-

trary number of images by continuously warping each im-

age via a parametric transformation. RSA [37], Collection

Flow [18] and Mobahi et al. [29] project a collection of im-

ages into a lower dimensional subspace and perform a joint

alignment among the projected images. AnchorNet [34]

learns semantically meaningful parts across categories, al-

though is trained with image labels.

Transitivity. The use of transitivity to regularise structured

data has been proposed by several authors [44, 51, 57, 58]

in the literature. Earlier examples [44, 51] employ this

principle to achieve forward-backward consistency in ob-

ject tracking and to identify inconsistent geometric relations

in structure from motion respectively. Zhou et al. [57, 58]

enforce a geometric consistency to jointly align image sets

or supervise deep neural networks in dense semantic align-

ment by establishing a cycle between each image pair and

a 3D CAD model. DVE also builds on the same general

principle of transitivity, however, it operates in the space of

appearance embeddings in contrast to verification of subse-

quent image warps to a composition.

Unsupervised learning of object structure. Visual object

characterisation (e.g. [3, 7, 22, 4, 5]) has a long history in

computer vision with extensive work in facial landmark de-

tection and human body pose estimation. A recent unsu-

pervised method that can learn geometric transformations

to optimise classification accuracy is the spatial transformer

network [12]. However, this method does not learn any ex-

plicit object geometry. Similarly, WarpNet [16] and geo-

metric matching networks [39] train neural networks to pre-

dict relative transformations between image pairs. These

methods are limited to perform only on image pairs and

do not learn an invariant geometric embedding for the ob-

ject. Most related to our work, [46] characterises objects by

learning landmarks that are consistent with geometric trans-

formations without any manual supervision, while [33] sim-

ilarly use such transformations for semantic matching. The

authors of [46] extended their approach to extract a dense

set of landmarks by projecting the raw pixels on a surface

of a sphere in [45]. Similar work [41] leverages frame-to-

frame correspondence using Dynamic Fusion [31] as super-

vision to learn a dense labelling for human images. We

build our method, DVE, on these approaches and further

extend them in significant ways. First, we learn more ver-

satile descriptors that can encode both generic and object-

specific landmarks and show that we can gradually learn

to move from generic to specific ones. Second, we im-

prove the cross-instance generalisation ability by better reg-

ularising the embedding space with the use of transitivity.

Finally, we show that DVE both qualitatively and quanti-

tatively outperforms [46, 45] in facial landmark detection

(section 4). Recent work [54, 13, 49, 42] proposes to dis-

entangle appearance from pose by estimating dense defor-

mation field [49, 42] and by learning landmark positions to

reconstruct one sample from another. We compare DVE to

these approaches in section 4.

3. Method

We first summarise the method of [45] and then intro-

duce DVE, our extension to their approach.

3.1. Learning dense landmarks using equivariance

Denote by x ∈ R
3×H×W an image of an object, by

Ω = {0, . . . , H − 1} × {0, . . . ,W − 1} its domain, and

by u ∈ Ω an image pixel. Consider as in [45] a spherical

parameterisation of the object surface, where each point on

the sphere indexes a different characteristic point of the ob-

ject, i.e. a landmark. Our goal is to learn a function Φ that

maps pixels u ∈ Ω to their corresponding landmark indices

Φu(x) ∈ S
2.

The authors of [45] showed that Φ can be learned with-

out manual supervision by requiring it to be invariant with

transformations of the image. Namely, consider a random

warp g : Ω → Ω and denote with gx the result of apply-

ing the warp to the image.1 Then, if the map assigns label

Φu(x) to pixel u of image x, it must assign the same label

Φgu(gx) to pixel gu of the deformed image gx. This is be-

cause, by construction, pixels u and gu land on the same

object point, and thus contain the same landmark. Hence,

we obtain the equivariance constraint Φu(x) = Φgu(gx).
This version of the equivariance constraint is not quite

sufficient to learn meaningful landmarks. In fact, the con-

straint can be satisfied trivially by mapping all pixels to

some fixed point on the sphere. Instead, we must also re-

quire landmarks to be distinctive, i.e. to identify a unique

point in the object. This is captured by the equation:

∀u, v ∈ Ω : v = gu ⇔ Φu(x) = Φv(gx). (1)

Probabilistic formulation. For learning, eq. (1) is re-

laxed probabilistically (fig. 3). Given images x and x
′,

define the probability of pixel u in image x matching

pixel v in image x
′ by normalising the cosine similarity

〈Φu(x),Φv(x
′)〉 of the corresponding landmark vectors:

p(v|u; Φ,x,x′) =
e〈Φu(x),Φv(x

′)〉

∫
Ω
e〈Φu(x),Φt(x′)〉 dt

. (2)

1I.e. (gx)u = x
g−1u

.
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Figure 3: We learn a dense embedding Φu(x) ∈ R
C of image pixels. The embedding is learned from pairs of images

(x,x′) related by a known warp v = g(u). Note that in practice, we do not have access to pairs of pairs of images with a

known correspondence—thus, throughout this work the warps are generated synthetically. Left: the approach of [45] directly

matches embedding Φu(x) from the left image to embeddings Φv(x
′) in the right image. Right: DVE replaces Φu(x) from

its reconstruction Φ̂u(x|xα) obtained from the embeddings in a third auxiliary image xα. Importantly, the correspondence

with xα does not need to be known.

Given a warp g, and image x and its deformation x
′ = gx,

constraint eq. (1) is captured by the loss:

L(Φ;x,x′, g) =
1

|Ω|2

∫

Ω

∫

Ω

‖v−gu‖ p(v|u; Φ,x,x′) du dv

(3)

where ‖v−gu‖ is a distance between pixels. In order to un-

derstand this loss, note that L(Φ;x,x′, g) = 0 if, and only

if, for each pixel u ∈ Ω, the probability p(v|u; Φ,x,x′) puts

all its mass on the corresponding pixel gu. Thus minimis-

ing this loss encourages p(v|u; Φ,x,x′) to establish correct

deterministic correspondences.

Note that the spread of probability (2) only depends on

the angle between landmark vectors. In order to allow the

model to modulate this spread directly, the range of func-

tion Φ is relaxed to be R3. In this manner, estimating longer

landmark vectors causes (2) to become more concentrated,

and this allows the model to express the confidence of de-

tecting a particular landmark at a certain image location.2

Siamese learning with random warps. We now explain

how (3) can be used to learn the landmark detector function

Φ given only an unlabelled collection X = {x1, . . . ,xn}
of images of the object. The idea is to synthesise for each

image a corresponding random warp from a distribution G.

Denote with P the empirical distribution over the training

images; then this amounts to optimising the energy

E(Φ) = Ex∼P,g∼G [L(Φ;x, gx, g)] . (4)

Implemented as a neural network, this is a Siamese learning

formulation because the network Φ is evaluated on both x

and gx.

2The landmark identity is recovered by normalising the vectors to unit

length.

3.2. From landmarks to descriptors

Equation (1) says that landmark vectors must be invari-

ant to image transformations and distinctive. Remarkably,

exactly the same criterion is often used to define and learn

local invariant feature descriptors instead [1]. In fact, if we

relax the function Φ to produce embeddings in some high-

dimensional vector space R
C , then the formulation above

can be used out-of-the-box to learn descriptors instead of

landmarks.

Thus the only difference is that landmarks are con-

strained to be tiny vectors (just points on the sphere),

whereas descriptors are usually much higher-dimensional.

As argued in section 1, the low dimensionality of the land-

mark vectors forgets instance-specific details and promotes

intra-class generalisation of these descriptors.

The opposite is also true: we can start from any descrip-

tor and turn it into a landmark detector by promoting intra-

class generalisation. Using a low-dimensional embedding

space is a way to do so, but not the only one, nor the most

direct. We propose in the next section an alternative ap-

proach.

3.3. Vector exchangeability

We now propose our method, Descriptor Vector Ex-

change, to learn embedding vectors that are distinctive,

transformation invariant, and insensitive to intra-class vari-

ations, and thus identify object landmarks. The idea is to

encourage the sets of embedding vectors extracted from an

image to be exchangeable with the ones extracted from an-

other while retaining matching accuracy.

In more detail, let (x,x′, g) be a warped image pair

(hence x
′ = gx). Furthermore, let xα be an auxiliary im-

age, containing an object of the same category as the pair

(x,x′), but possibly a different instance. If the embed-
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ding function Φu(x) is insensitive to intra-class variations,

then the set of embedding vectors {Φu(x) : u ∈ Ω} and

{Φu(xα) : u ∈ Ω} extracted from any two images should

be approximately the same. This means that, in loss (3),

we can exchange the vectors Φu(x) extracted from image

x with corresponding vectors extracted from the auxiliary

image xα.

Next, we integrate this idea in the probabilistic learning

formulation given above (fig. 3). We start by matching pix-

els in the source image x to pixels in the auxiliary image xα

by using the probability p(w|u; Φ,x,xα) computed accord-

ing to eq. (2). Then, we reconstruct the source embedding

Φu(x) as the weighted average of the embeddings Φw(xα)
in the auxiliary image, as follows:

Φ̂u(x|xα) =

∫
Φw(xα)p(w|u; Φ,x,xα) dw. (5)

Once Φ̂u is computed, we use it to establish correspon-

dences between x and x
′, using eq. (2). This results in the

matching probability:

p(v|u; Φ,x,x′,xα) =
e〈Φ̂u(x|xα),Φv(x

′)〉

∫
Ω
e〈Φ̂u(x|xα),Φt(x′)〉 dt

. (6)

This matching probability can be used in the same loss func-

tion (3) as before, with the only difference that now each

sample depends on x,x′ as well as the auxiliary image xα.

Discussion. While this may seem a round-about way of

learning correspondences, it has two key benefits: as eq. (3)

encourages vectors to be invariant and distinctive; in addi-

tion to eq. (3), DVE also requires vectors to be compatible

between different object instances. In fact, without such a

compatibility, the reconstruction (5) would result in a dis-

torted, unmatchable embedding vector. Note that the origi-

nal formulation of [45] lacks the ability to enforce this com-

patibility directly.

3.4. Using multiple auxiliary images

A potential issue with eq. (6) is that, while image x
′ can

be obtained from x by a synthetic warp so that all pixels can

be matched, image xα is only weakly related to the two. For

example, partial occlusions or out of plane rotations may

cause some of the pixels in x to not have corresponding

pixels in xα.

In order to overcome this issue, we take inspiration from

the recent method of [59] and consider not one, but a small

set {xα : α ∈ A} of auxiliary images. Then, the summation

in eq. (5) is extended not just over spatial locations, but also

over images in this set. The intuition for this approach is

that as long as at least one image in the auxiliary image set

matches x sufficiently well, then the reconstruction will be

reliable.

4. Experiments

Using datasets of human faces (section 4.1), animal faces

(section 4.3) and a toy robotic arm (section 4.4), we demon-

strate the effectiveness of the proposed Descriptor Vector

Exchange technique in two ways. First, we show that the

learned embeddings work well as visual descriptors, match-

ing reliably different views of an object instance. Second,

we show that they also identify a dense family of object

landmarks, valid not for one, but for all object instances

in the same category. Note that, while the first property

is in common with traditional and learned descriptors in

the spirit of SIFT, the second clearly sets DVE embeddings

apart from these.

Implementation details. In order to allow for a compar-

ison with the literature, we perform experiments with the

deep neural network architecture of [45] (which we refer

to as SmallNet). Inspired by the success of the Hourglass

model in [54], we also experiment with a more powerful

hourglass design (we use the “Stacked Hourglass” design

of [32] with a single stack). The weights of both models

are learned from scratch using the Adam optimiser [19] for

100 epochs with an initial learning rate of 0.001 and with-

out weight decay. Further details of the architectures are

provided in the supplementary material.

4.1. Human faces

First, we consider two standard benchmark datasets of

human faces: CelebA [25] and MAFL [56], which is a sub-

set of the former. The CelebA [25] dataset contains over

200k faces of celebrities; we use the former for training

and evaluate embedding quality on the smaller MAFL [56]

(19,000 train images, 1,000 test images). Annotations are

provided for the eyes, nose and mouth corners. For train-

ing, we follow the same procedure used by [45] and exclude

any image in the CelebA training set that is also contained

in the MAFL test set. Note that we use MAFL annotations

only for evaluation and never for training of the embedding

function.

We use formulation (6) to learn a dense embedding func-

tion Φ mapping an image x to C-dimensional pixel em-

beddings, as explained above. Note that loss (3) requires

sampling transformations g ∈ G; in order to allow a di-

rect comparison with [45], we use the same random Thin

Plate Spline (TPS) warps as they use, obtaining warped

pairs (x,x′ = gx). We also sample at random one or more

auxiliary images xα from the training set in order to imple-

ment DVE.

We consider several cases; in the first, we set C = 3
and sample no auxiliary images, using formulation (2),

which is the same as [45]. In the second case, we set

C = 16, 32, 64 ≫ 3 but still do not use DVE; in the last

case, we use C = 3, 16, 32, 64 and also use DVE.
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Embedding Same identity Different identity

dimension [45] + DVE [45] + DVE

3 1.33 1.36 2.89 3.03

16 1.25 1.28 5.65 2.79

32 1.26 1.29 5.81 2.79

64 1.25 1.28 5.68 2.77

Table 1: Pixel error when matching annotated landmarks

across 1000 pairs of images from CelebA (MAFL test set).

Qualitative results. In fig. 4 we compute 64D embed-

dings with SmallNet models trained with or without DVE

on AFLWM images, visualising as in fig. 1 (left). With

DVE, matches are accurate despite large intra-class varia-

tions. Without DVE, embedding quality degrades signifi-

cantly. This shows that, by having a category-wide validity,

embeddings learned with DVE identify object landmarks

rather than mere visual descriptors of local appearance.

Figure 4: Learning 64D descriptors without/with DVE

Matching results. Next, we explore the ability of the em-

beddings learned with SmallNet to match face images. We

sample pairs of different identities using MAFL test (1000

pairs total) and consider two cases: First, we match images

x,x′ of the same identity; since multiple images of the same

identity are not provided, we generate them with warps as

before, so that the ground-truth correspondence field g is

known. We extract embeddings at the annotated keypoint

positions from x and match them to their closest neighbour

embedding in image x
′ (searching all pixels in the target).

Second, we match images of different identities, again us-

ing the annotations. In both cases, we report the mean pixel

matching error from the ground truth.

Examining the results in table 1 we note several facts.

When matching the same identities, higher dimensional em-

beddings work better than lower (i.e. 3D), including in par-

ticular [45]. This is expected as high dimensional embed-

dings more easily capture instance-specific details; also as

expected, DVE does not change the results much as here

there are no intra-class variations. When matching dif-

ferent identities, high-dimensional embeddings are rather

poor: these descriptors are too sensitive to instance-specific

Method Unsup. MAFL AFLWM AFLWR 300W

TCDCN [56] × 7.95 7.65 – 5.54

RAR [50] × 7.23 – 4.94

MTCNN [55, 54] × 5.39 6.90 – –

Wing Loss [6]∗ × - - - 4.04

Sparse [46] X 6.67 10.53 – 7.97

Structural Repr. [54] X 3.15 – 6.58 –

FAb-Net [49]‡ X 3.44 – – 5.71

Def. AE [42] X 5.45 – – –

Cond. ImGen. [13] X 2.54 – 6.31 –

UDIT [14]† X - - - 5.37

Dense 3D [45] X 4.02 10.99 10.14 8.23

DVE SmallNet-64D X 3.42 8.60 7.79 5.75

DVE Hourglass-64D X 2.86 7.53 6.54 4.65

Table 2: Landmark detection results on the MAFL, 300W

and AFLW (AFLWM and ALFWR splits—see section 4.1

for details). The results are reported as percentage of inter-

ocular distance. ∗ report a more conservative evaluation

metric (see [6]), † and ‡ use different training data: Vox-

Celeb [30] and VoxCeleb+ (the union of VoxCeleb and Vox-

Celeb2 [2]) respectively.

details and cannot bridge intra-class variations correctly.

This justifies the choice of a low dimensional embedding

in [45] as the latter clearly generalises better across in-

stances. However, once DVE is applied, the performance of

the high-dimensional embeddings is much improved, and is

in fact better than the low-dimensional descriptors even for

intra-class matching [45].

Overall, the embeddings learned with DVE have both

better intra-class and intra-instance matching performance

than [45], validating our hypothesis and demonstrating that

our method for regularising the embedding is preferable to

simply constraining the embedding dimensionality.

Landmark regression. Next, as in [45] and other recent

papers, we assess quantitatively how well our embeddings

correspond to manually-annotated landmarks in faces. For

this, we follow the approach of [45] and add on top of our

embedding 50 filters of dimension 1 × 1 × C, converting

them into the heatmaps of 50 intermediate virtual points;

these heatmaps are in turn converted using a softargmax

layer to 2C x-y pairs which are finally fed to a linear re-

gressor to estimate manually annotated landmarks. The pa-

rameters of the intermediate points and linear regressor are

learned using a certain number of manual annotations, but

the signal is not back-propagated further so the embeddings

remain fully unsupervised.

In detail, after pretraining both the SmallNet and Hour-

glass networks on the CelebA dataset in a unsupervised
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manner, we freeze its parameters and only learn the regres-

sors for MAFL [56]. We then follow the same methodology

for the 68-landmark 300-W dataset [40], with 3148 train-

ing and 689 testing images. We also evaluate on the chal-

lenging AFLW [20] dataset, under the 5 landmark setting.

Two slightly different evaluation splits for have been used in

prior work: one is the train/test partition of AFLW used in

the works of [46], [45] which used the existing crops from

MTFL [55] and provides 2,995 faces for testing and 10,122

AFLW faces for training (we refer to this split as AFLWM ).

The second is a set of re-cropped faces released by [54],

which comprises 2991 test faces with 10,122 train faces

(we refer to this split as AFLWR). For both AFLW parti-

tions, and similarly to [45], after training for on CelebA we

continue with unsupervised pretraining on 10,122 training

images from AFLW for 50 epochs (we provide an ablation

study to assess the effect of this choice in section 4.2). We

report the errors in percentage of inter-ocular distance in ta-

ble 2 and compare our results to state-of-the-art supervised

and unsupervised methods, following the protocol and data

selection used in [45] to allow for a direct comparison.

We first see that the proposed DVE method outperforms

the prior work that either learns sparse landmarks [46] or

3D dense feature descriptors [45], which is consistent with

the results in table 1. Encouragingly, we also see that our

method is competitive with the state-of-the-art unsupervised

learning techniques across the different benchmarks, indi-

cating that our unsupervised formulation can learn useful

information for this task.

4.2. Ablations

In addition to the study evaluating DVE presented

in table 1, we conduct two additional experiments to

investigate: (i) The sensitivity of the landmark regressor

to a reduction in training annotations; (ii) the influence of

additional unsupervised pretraining on a target dataset.

Limited annotation: We evaluate how many image anno-

tations our method requires to learn landmark localisation

in the AFLW dataset, comparing to Dense3D [45] (which

shares the SmallNet backbone architecture). To do so, we

vary the number of training images across the following

range: 1, 5, 10, 20 and up to the whole training set (10,122

in total) and report the errors for each setting in fig. 5. For

reference, we also include the supervised CNN baseline

from [46] (suppl. material), which consists of a slightly

modified SmallNet (denoted SmallNet+ in fig. 5) to make

it better suited for landmark regression. Where available,

we report the mean and std. deviation over three randomly

seeded runs. Further details of this experiment and the

SmallNet+ architecture are provided in the suppl. material.

While there is considerable variance for very small numbers

of annotations, the results indicate that DVE can produce
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Figure 5: The effect of varying the number of annotated im-

ages used for different methods on AFLWM , incorporating

the Supervised CNN baseline from [46] (suppl. material).

Backbone Embed. dim AFLWM 300W

SmallNet 3 11.82 / 11.12 7.66 / 7.20

SmallNet 16 10.22 / 9.15 6.29 / 5.90

SmallNet 32 9.80 / 9.17 6.13 / 5.75

SmallNet 64 9.28 / 8.60 5.75 / 5.58

Hourglass 64 8.15 /7.53 4.65 / 4.65

Table 3: The effect of unsupervised finetuning on landmark

regression performance (errors reported as percentage of

inter-ocular distance). Each table entry describes perfor-

mance without/with finetuning. All methods use DVE.

effective landmark detectors with few manual annotations.

Unsupervised finetuning: Next we assess the influence of

using unsupervised finetuning of the embeddings on a given

target dataset, immediately prior to learning to regress land-

marks. To do so, we report the performance of several mod-

els with and without finetuning on both the AFLWM and

300W benchmarks in table 3. We see that for AFLWM ,

this approach (which can be achieved “for free” i.e. without

collecting additional annotations) brings a boost in perfor-

mance. However, it is less effective for 300W, particularly

at higher dimensions, having no influence on the perfor-

mance of the stronger hourglass model.

4.3. Animal faces

To investigate the generalisation capabilities of our

method, we consider learning landmarks in an unsupervised

manner not just for humans, but for animal faces. To do this,

we simply extend the set X of example image to contain im-

ages of animals as well.

In more detail, we consider the Animal Faces

dataset [43] with images of 20 animal classes and about
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Figure 6: Top: Five landmarks are manually annotated in the top-left image (human) and matched using our unsupervised

embedding to a number of animals. Bottom: same process, but using a cat image (bottom left) as query.

100 images per class. We exclude birds and elephants since

these images have a significantly different appearance on

average (birds profile, elephants include whole body). We

then add additional 8609 additional cat faces from [53],

3506 cat and dog faces from [35], and 160k human faces

from CelebA (but keep roughly the same distribution of an-

imal classes per batch as the original dataset). We train

SmallNet descriptors using DVE on this data. Here we also

found it necessary to use the grouped attention mechanism

(section 3.4) which relaxes DVE to project embeddings on

a set of auxiliary images rather than just one. In order to do

so, we include 16 pairs of images (x,x′) in each batch and

we randomly choose a set of 5 auxiliary images for each pair

from a separate pool of 16 images. Note that these images

have also undergone synthetic warps. Results matching hu-

man and cat landmarks to other animals are shown in fig. 6.

DVE achieves localisation of semantically-analogous parts

across species, with excellent results particularly for the

eyes and general facial region.

4.4. Roboarm

Query Dense3D Dense20D Dense20D DVEexchg

Figure 7: An example of descriptor matching on a pair from

the roboarm dataset, using blob centres in the first image to

locate them in a second image. We show 3D/20D descrip-

tors (columns 2/3) learned with the loss from [45]. The high

error of the 20D case is corrected by DVE (last column).

Lastly, we experimented on the animated robotic arm

dataset (fig. 7) introduced in [45] to demonstrate the appli-

cability of the approach to diverse data. This dataset con-

tains around 24k images of resolution 90× 90 with ground

truth optical flow between frames for training. We use the

same matching evaluation of section 4.1 using the centre of

the robot’s segments as keypoints for assessing correspon-

dences. We compare models using 3D and 20D embeddings

Dimensionality [45] + DVE - transformations

3 1.42 1.41 1.69

20 10.34 1.25 1.42

Table 4: Results on Roboarm, including an experiment ig-

noring optical flow (right).

using the formulation of [45] with and without DVE, and fi-

nally removing transformation equivariance from the latter

(by setting g = 1 in eq. (6)).

In this case there are no intra-class variations, but the

high-degree of articulation makes matching non-trivial.

Without DVE, 20D descriptors are poor (10.34 error)

whereas 3D are able to generalise (1.42). With DVE, how-

ever, the 20D descriptors (at 1.25 error) outperform the 3D

ones (1.41). Interestingly, DVE is effective enough that

even removing transformations altogether (by learning from

pairs of identical images using g = 1) still results in good

performance (1.42) – this is possible because matches must

hop through the auxiliary image set xα which contains dif-

ferent frames.

5. Conclusions

We presented a new method that can learn landmark

points in an unsupervised way. We formulated this problem

in terms of finding correspondences between objects from

the same or similar categories. Our method bridges the gap

between two seemingly independent concepts: landmarks

and local image descriptors. We showed that relatively

high dimensional embeddings can be used to simultane-

ously match and align points by capturing instance-specific

similarities as well as more abstract correspondences. We

also applied this method to predict facial landmarks in stan-

dard computer vision benchmarks as well as to find corre-

spondences across different animal species.

Acknowledgements. We thank Almut Sophia Koepke for

helpful discussions. We are grateful to ERC StG IDIU-

638009, EP/R03298X/1 and AWS Machine Learning Re-

search Awards (MLRA) for support.

6368



References

[1] Matthew Brown, Gang Hua, and Simon Winder. Dis-

criminative learning of local image descriptors. PAMI,

2010. 4

[2] Joon Son Chung, Arsha Nagrani, and Andrew Zisser-

man. Voxceleb2: Deep speaker recognition. In IN-

TERSPEECH, 2018. 6

[3] Timothy F. Cootes, Christopher J. Taylor, David H.

Cooper, and Jim Graham. Active shape models: their

training and application. CVIU, 1995. 3

[4] Navneet Dalal and Bill Triggs. Histograms of Ori-

ented Gradients for Human Detection. In CVPR, 2005.

3

[5] Pedro F. Felzenszwalb, Ross B. Girshick, David

McAllester, and Deva Ramanan. Object Detection

with Discriminatively Trained Part Based Models.

PAMI, 2010. 3

[6] Zhen-Hua Feng, Josef Kittler, Muhammad Awais, Pa-

trik Huber, and Xiao-Jun Wu. Wing loss for robust

facial landmark localisation with convolutional neural

networks. In CVPR, pages 2235–2245, 2018. 6

[7] Rob Fergus, Pietro Perona, and Andrew Zisser-

man. Object class recognition by unsupervised scale-

invariant learning. In CVPR, 2003. 3

[8] Martin Grundl. Average faces. http:

//www.beautycheck.de/cmsms/index.

php/durchschnittsgesichter. [Online;

accessed 2019]. 1
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