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Abstract

Trajectory or behavior prediction of traffic agents is

an important component of autonomous driving and robot

planning in general. It can be framed as a probabilistic fu-

ture sequence generation problem and recent literature has

studied the applicability of generative models in this con-

text. The variety or Minimum over N (MoN) loss, which

tries to minimize the error between the ground truth and

the closest of N output predictions, has been used in these

recent learning models to improve the diversity of predic-

tions. In this work, we present a proof to show that the MoN

loss does not lead to the ground truth probability density

function, but approximately to its square root instead. We

validate this finding with extensive experiments on both sim-

ulated toy as well as real world datasets. We also propose

multiple solutions to compensate for the dilation to show

improvement of log likelihood of the ground truth samples

in the corrected probability density function.

1. Introduction

Trajectory prediction is an important problem with many

applications. It can be used for tracking [30], anomaly

detection [38], video games [20] or safety simulation [32].

Arguably, the most safety critical application is to use

trajectory prediction to help robots navigate environments

that they share with other people, for example in the case of

self driving cars. While driving, humans have an intuitive

anticipation of what other traffic participants are likely to

do and react accordingly. This is remarkable since future

trajectories are non-deterministic and multimodal (See

Figure 1). For this reason, a recent line of research takes

the approach to model the natural probability distribu-

tion of recorded data, for example with mixture density

networks [4, 10], occupancy grids [22] or generative mod-

els [39, 18, 13, 25]. One of the recent works, Social–GAN
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Figure 1: Trajectory prediction is a multimodal problem. In

order to learn this distribution, the variety loss can be used.

It is computed as the distance between the groundtruth

(green) trajectory and its closest prediction.

[18], trained their generative model with a combination

of the adversarial loss [16] and the variety loss (hereafter

referred to as Minimum over N or MoN). They, and many

other recently published works [37, 36, 25, 28, 40], used

the same MoN loss as a metric to benchmark their model

against others, arguing that it is better suited to measure

performance on multimodal data as compared to the widely

used average displacement error [34]. Additionally we

noticed that researchers in other fields apart from trajectory

prediction used variations of the MoN loss/metric as well

[12, 15, 17, 44, 9, 5, 29]. However, we could not find any

theoretical analysis of the MoN loss/metric.

In this work, we present a proof in section 3 that the

optimal solution of the MoN loss is not the ground truth

PDF but its square root instead. In section 4, we discuss

if MoN can be used as a viable metric nonetheless. Then,

in section 5, we propose various algorithms to recover the
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true PDF from the learned one. We verify these results

experimentally on simulated low–dimensional datasets in

section 6. We also validate our hypotheses on a highway

vehicles and a pedestrian trajectory prediction datasets by

applying a compensating transformation on the distribution

learned by MoN loss based generative model and show

an improvement of ground truth samples in the sense of

average marginalized log likelihood.

2. Related work

Trajectory prediction of traffic participants is a difficult

problem. The model has to capture the many possible out-

comes as well as the interactions of the person/vehicle to

be predicted with other traffic participants and the envi-

ronment. Early attempts of predicting the trajectories of

humans under consideration of social interactions used a

model of attractive and repulsive social forces [19, 31, 8, 26,

34] with promising results. Other approaches include using

Gaussian processes [42] and continuum dynamics [43].

Newer works are more data driven. Some [4, 10] use data to

teach a network to predict the parameters of base distribu-

tions (Mixture Density Networks) [6, 10]. Others discretize

the prediction space into a grid and predict the probabil-

ity that one of these grid cells is occupied [22, 33]. While

these models show promising results, it is difficult to sam-

ple trajectories with a longer time horizon. This limitation

is overcome by modeling longer trajectories directly using

generative models. Generally these models learn to trans-

form samples from a latent space into samples from a data

distribution. The best known representatives for generative

models are variational autoencoders (VAE) [23, 13, 17] and

generative adversarial networks (GANs) [16, 18, 39]. VAEs

are trained by auto-encoding samples and optimizing a vari-

ational lower bound on the data distribution. GANs, on the

other side, learn a discriminator jointly with the generator.

The discriminator has the task to separate real data sam-

ples from generated ones while the generator has to produce

samples that fool the discriminator. It was shown that this

training procedure reaches the optimum if and only if the

generator has learned the true data distribution [16]. Both

models have seen successful applications on a wide array

of tasks like texture synthesis [27], super resolution [24],

text to image synthesis [35] or image synthesis from a mask

[45]. MoN was originally introduced by [12] in the context

of 3d point cloud generation and adopted by [18, 11, 9] for

trajectory prediction. Other works used MoN loss/metric

or similar concepts for depth map prediction [29], 3d re-

construction [15], activity prediction [17], to improve the

optimization of the variational lower bound in VAE [5] or

for pixel flow prediction [44].

All Sample

Target

Closest Sample

MoN

Ground truth PDF

Learned PDF

Figure 2: An illustration of the MoN loss in one dimension.

Only the error of the sample with the smallest distance to

the target sample is considered. This leads a model to learn

the square root of the true PDF.

3. The Minimum over N loss

Given is a generative model P (X|I), where X ∈ Rn

for some n ∈ N (for example n = 2T for 2 dimensional

trajectories of length T ) is the output to be generated and I

is a set of inputs. Then the MoN loss is defined as

MoNP (x
∗) =

min
x1,...,xN

iid
∼P

(d(x∗,x1), d(x
∗,x2), ..., d(x

∗,xN )) (1)

where x∗ is a ground truth sample and x1 . . .xN ∼
P (X|I) are samples generated from the model. The func-

tion d(·, ·) is some distance metric. One natural choice is

the l2 distance d(x,y) = ||x − y||2. An illustration in the

one dimensional case is shown in Figure 2.

In this paper we consider the question: given some

ground truth probability distribution PT (x
∗), does a model

that was learned with the MoN loss converge towards this

PT (x
∗)? To get a better theoretical grasp, we consider the

expectation value of the MoN loss:

Definition 1. EMoN: Given a probability density P (x) :
Rn → [0, 1] and some point x∗ ∈ Rn. Then we define the

Expected-Minimum-over-N function

EMoNP (x
∗) =

∫

min (||x∗ − x1||2, ||x∗ − x2||2, ..., ||x∗ − xN ||2)

P (x1)P (x2) . . . P (xN ) dx1 dx2 . . . dxN (2)
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We can estimate EMoNP (x
∗) with

ÊMoNP (x
∗) =

1

R

R
∑

min
x1,...,xN

iid
∼P

(||x∗ − x1||2, ||x∗ − x2||2, ..., ||x∗ − xN ||2)

(3)

where R is the sample size for the expectation value. In

the referenced literature R in equation (3) is set to R = 1.

Since the variance of 3 is O( 1
R
) one could question, if our

theoretical results that are based on equation 2 still hold.

The experiments show though, that this is indeed the case.

Next, we can consider the expected MoN loss (MoN loss

for short):

Definition 2. MoN loss: Given some target probability

PT (x) : Rn → [0, 1] we define the Minimum-over-N loss

as

LN (PT , P ) =

∫

PT (x
∗)EMoNP (x

∗) dx∗ (4)

In a practical context, we would estimate this with sam-

ples from our dataset D:

L̂N (PT , P ) =
1

|D|
∑

xT∈D

ÊMoNP (x
∗) (5)

The following theorem answers the question, whether a

model trained with the MoN loss converges towards the true

data distribution PT :

Theorem 1. For N big enough and PT differentiable with fi-

nite support, the differentiable PDF that minimizes the MoN

loss is

argmin
P

L̂N (PT , P ) ≈
√
PT

C
(6)

with some normalization constant C.

A proof is presented in the supplementary material.

It is remarkable that this means that the MoN loss is a

likelihood free loss (similar to the adversarial loss), that is,

it does not assume any parametric form of the target distri-

bution and can therefore be used to train a generative model.

If N = 1, there is a high chance that a model learns the

mean of the known PDF. However with a large number of

tries, it has the tendency to put more probability mass into

regions with low ground truth probability. This is because

putting more samples in areas with high probability will de-

crease the expected error only a little bit if there are already

many samples, while, even if not likely, the prospect of a

high error in the low probability area out weighs this de-

crease. This leads us to the following proposition:

Proposition 1. Given N1 < N2, a ground truth PDF P (x)
and the family of PDFs

Pk(x) :=
1

Ck

P (x)k (7)

Let Pki
(x) be the PDF out of this family, that minimizes

MoNi. Then

k2 ≤ k1 (8)

We verify this proposition in section 6 experimentally.

Proposition 1 means, that only considering the family

Pk(x), the exponent k(N) that minimizes MoN is mono-

tonically falling with N . Because of Theorem 1, k = 0.5
is a strict lower bound. Note, that this does not guarantee

that a learner actually converges towards Pk(x) (in fact it

is easily seen that this is not the case for a multimodal dis-

tribution and N = 1). We assume that the transformation

that recovers the ground truth PDF from the PDF that min-

imizes MoN (we call this the compensation transformation

from now on) belongs to the following family of transfor-

mations:

Tk̄(P (x)) =
1

∫

P (x)k̄ dx
P (x)k̄ (9)

For some practical N (where k̄ = 1
k

), proposition 1 gives

us the intuition that k̄ is going to be less than 2.

4. MoN as a metric

The ideal metric to compare probabilistic models

would be a statistical divergence like the Kullback–Leibler

divergence or the Jensen-Shannon divergence between

the learned and the ground truth distribution. Comparing

the KL divergence is equivalent to comparing the log

likelihood of the ground truth samples under the models.

Since two dimensional trajectories with T time steps in the

future is 2T dimensional, estimating this log likelihood

with generative models, where we do not have direct access

to the likelihood of samples, is unfeasible for anything but

very small T (for small T the learned PDF can be estimated

by sampling from the model).

Recent work [18] in trajectory prediction used MoN

as a metric to compare their results against previous ones

(e.g. [4]). This can be problematic though (particularly if

one of the models was trained with the MoN loss while the

others were not), as it rewards a model that learned a less

sharp distribution. Therefore, following [10] we advocate

to use additionally to the MoN a second metric: The aver-

age log likelihood of the ground truth from the test set DTest
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under the marginalized learned distribution for every time

step t:

Lt
DTest

(P ) =

1

|DTest|
∑

(x∗

i,t
,y∗

i,t
)∈DTest

log

∫

P (x1, y1, ..., x
∗

i,t, y
∗

i,t, ..., xT , yT )

dx1 dy1, ..., dxt−1, dyt−1, dxt+1, dyt+1, ..., dxT , dyT
(10)

Since the marginalized distribution is only two dimensional,

it can easily be estimated by sampling from the learned

generative model and subsequently using some simple den-

sity estimation technique like kernel density estimation

(KDE) [41].

Using this metric has two advantages. Firstly, when com-

bined with MoN, it gives a better estimation of how well the

model really learned the underlying PDF as the marginal-

ized log likelihood favours a model with sharper probability

but ignores inter-time step dependencies. The MoN metric,

on the other hand, can give a decent estimate of the joint

probability of prediction for all time steps even for large T .

Secondly, it is useful to have the per time step probability

distribution to generate the grid based cost map in order to

do ego path planning [14] in autonomous driving. We will

elaborate further in section 5.2.

5. Recovering the ground truth PDF

5.1. Sample from squared distribution

Assuming a learner P (x) converged towards
√

PT (x),
we now want to recover the ground truth PDF PT (x). For

low–dimensional tasks, we show here a simple way to sam-

ple from P (x)2 thereby cancelling the square root. For this

consider a PDF P (x) and bin it in bins of width ǫ. Then the

probability that two iid samples fall in the same bin bi is

∫

bi

∫

bi

P (x1,x2) dx1 dx2 =

∫

bi

∫

bi

P (x1) · P (x2) dx1 dx2

=

∫

bi

P (x1) dx1 ·
∫

bi

P (x2) dx2

= P (bi) · P (bi) = P (bi)
2

(11)

This can be realized by two different algorithms:

• Bin the sample space in bins of width ǫ. Sample from

P (x), and count in which bin the sample falls. Repeat

this until there are two samples in one bin, and choose

one of those samples.

• Sample two times from P (x). If the samples have a

distance of less then |x1 − x2| < ǫ, choose one of

those samples. Otherwise repeat.

4 2 0 2 4
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6
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(0, 1)
(0, 0.5)

(a) Histogram of the Normal

Gaussian (blue) and the ana-

lytically squared Gaussian (or-

ange).
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(b) Histogram of the analyti-

cally squared Gaussian (blue)

and the estimated squared

Gaussian (orange).

Figure 3: (a) Histogram of samples from the Normal

Gaussian N (0, 1) and the analytically squared Gaussian

N (0,
√
0.5). (b) Histogram of samples from N (0,

√
0.5)

and samples from N̂ (0,
√
0.5) that was obtained by apply-

ing the squaring compensation on N (0, 1). It is clearly vis-

ible, that N̂ (0,
√
0.5) matches N (0,

√
0.5) very closely.

The two variations are a trade-off of speed vs memory, with

the first one being faster but more memory intensive. Pri-

marily, these two can be used during inference time, to gen-

erate samples that come from the target distribution. With-

out testing this, for unconditional problems one could also

think of using it during training with stochastic gradient de-

scent [21] to sample the data point shown to the network.

However, due to the curse of dimensionality, this is only

possible in relatively low dimensions (or in higher dimen-

sions, if the distribution has a very small support), since

otherwise it is too unlikely to generate two samples with

|x1 − x2| < ǫ for small enough ǫ.

To validate the algorithm, we sampled from N (0, 1) and

from 1
C
N 2(0, 1) = N (0,

√
0.5) and with the proposed

algorithm from N (0, 1) which gives us an estimate of
1
C
N 2(0, 1) that we denote as N̂ (0,

√
0.5). The results are

depicted in Figure 3.

5.2. Maximum likelihood based recovery

In the previous section, we assumed that the learner con-

verged to
√

PT (x). However, there are several reasons,

why this might not be exactly the case: the model is not ex-

pressive enough, the training got stuck in a local minima, N

was too small or MoN was used in addition to other losses,

like the adversarial loss, that does converge to PT (x). In

those cases, squaring the learned distribution could actually

move it farther away from the ground truth distribution. At

least for some very specific applications, there is still a pos-

sibility to compensate for the dilating effect of MoN. One of

these applications is trajectory prediction for path planning

in autonomous cars. A possible approach to path planning

is to create a cost map [14], and then run a path finding al-

gorithm that minimizes these costs under the physical con-

strains of the vehicle dynamics. In this framework, one can
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imagine that the probability of a traffic participant being at

a certain point in time can simply be framed as costs on the

cost map. Finding a path that minimizes these costs then

is equivalent to minimizing the probability of crashing with

another traffic participant. Since these algorithms only care

about whether there will likely be a traffic participant at a

certain point in time at a certain point in space, and not how

it got there, we only care about the marginalized probability

distribution per time step. Since this distribution is only two

dimensional, we can easily estimate it by sampling from the

trained model and using a kernel density estimator [41] to

recover the PDF. The bandwidth of the KDE can be selected

via cross validation on a left out set of generated samples

[7]. Subsequently, the KDE can be evaluated on a grid and

a transformation as defined in (9) can be applied for vari-

ous k̄. At the end the k̄ is selected, that maximizes the log

likelihood of the ground truth sample for each of these sam-

ples. Algorithm 1 makes these steps precise. The parameter

Algorithm 1 Algorithm to find the best compensation pa-

rameter k̄ for transformation Tk̄(P ) of model P (X|I) un-

der the inputs {Ii}i=0,...,K so that the marginalized log

likelihood of the ground truth sample {(x∗

i , y
∗

i )}i=0,...,K is

maximized. Here, {k̄}search is the search space and (x,y)
are grid points. nsample is an sufficiently big integer and

αsplit ∈ (0, 1).

1: procedure FINDBESTCOMPENSATIONPARAMETER(

P (X|I), {Ii}i=0,...,K , {(x∗

i , y
∗

i )}i=0,...,K , nsample,

αsplit, {k̄}search, (x,y))
2: Lmax ← −∞
3: k̄best ← 0
4: for k̄ in {k̄}search do

5: Lrun ← 0
6: for Ii in {Ii}i=0,...,K do

7: {sji}j=0,...,nsample

iid∼ P (Xt|Ii)

8: Use {sji}j=0,...,αsplitnsample
to fit a KDE and

{sji}j=αsplitnsample,...,nsample
to find best bandwidth for the

KDE [7]

9: L(x,y)← evaluate KDE on grid (x,y)

10: L(x,y)← L(x,y)k̄
∑

x,y
L(x,y)k̄

11: Lrun ← Lrun + logL(x∗

i , y
∗

i )
12: end for

13: if Lrun > Lmax then

14: Lmax ← Lrun

15: k̄best ← k̄

16: end if

17: end for

18: return k̄best

19: end procedure

k̄opt can then be found to improve the estimated PDF during

inference time by doing the steps of the innermost loop in

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Exponent k

0.0095

0.0100

0.0105

0.0110

0.0115

0.0120

0.0125

M
oN

Figure 4: MoN values for different k by using samples from

f1 as the groundtruth distribution and fk
1 as the test distri-

bution with N = 256

algorithm 1 with the found k̄. Note that this compensation

is very lightweight, once k̄opt is found, for tasks where the

KDE reconstruction has to be done anyway.

6. Experiments

6.1. MoN minimum of Mixture of Gaussians

We verify our result on two toy experiments:

For the first experiment we sample M = 50000 times from

{x1,i}i=1,...,M
iid∼ f1 := N (0, 1) (12)

We then consider the family of PDFs

{xk
1,i}i=1,...,256

iid∼ fk
1 :=

1

Cf1,k

N (0, 1)k (13)

and sample 256 data points. Subsequently we calculate for

each of the M sample from the original distribution the min-

imum distance from the 256 samples. All of this is averaged

over R = 100 tries. Note, that we do not learn a model here,

but merely search for the k, that minimizes the MoN loss

for the respective PDFs. The results are reported in Figure

4. As expected, the minimum value is within our search

resolution exactly k = 0.5, which means the PDF that min-

imizes the MoN loss is the square root of the ground truth

PDF. This validates Theorem 1.

6.2. Learn Mixture of Gaussians

Theorem 1 and the previous experiment show that the

PDF that minimizes the MoN loss for big N is actually the

square root of the ground truth PDF. It is not clear though,

if a generative model, trained with the MoN loss actually

converges towards this solution or if it gets stuck in local

minima. We test this with another toy dataset and a very
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(a) Color coded input samples
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(b) Color coded target samples

from (16) (blue) and (17) (or-

ange)
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(c) The learned distribution

Plearned
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(d) The learned distribution

squared P
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learned

Figure 5: The input distribution and corresponding targets

distribution are shown in (a) and (b) respectively. In (c),

samples from the learned distribution Plearned are plotted and

(d) shows P 2
learned which is square of the learned distribution.

Obviously P 2
learned matches the ground truth distribution bet-

ter.

simplistic generative model: the dataset consist of inputs,

which are randomly sampled either from

f2 = N (−1.5, 0.1) (14)

or

f3 = N (+1.5, 0.1) (15)

and of targets, which are randomly sampled from

f2,target =
1

Cf2,target

(N (−2, 1) +N (−4, 1)) (16)

or

f3,target =
1

Cf3,target

(N (2, 1) +N (4, 1)) (17)

respectively. The inputs and targets are illustrated and color

coded in Figure 5a and 5b.

For the generative model, we used a very simple neural

network consisting of an encoder that predicts the mean and

variance of a Gaussian by encoding the samples from dis-

tribution 14 or 15 to predict parameter of a Gaussian, and a

decoder that takes N samples from the Gaussian and trans-

forms them to minimize the MoN loss (for architecture de-

tails we refer to the supplementary details). Note that the

model would not be able to learn the correct distribution

Metric Plearned P 2
learned

Jensen–Shannon divergence 0.1282 0.0191

Table 1: The JS divergence between the ground truth PDF

and the learned PDF Plearned is worse than that between the

ground truth and the compensated version P 2
learned.

with a simple mean squared error loss, as it would only learn

to generate the mean of the distribution.

We train the model with the MoN loss with N = 128. How-

ever we noticed that this consistently led to poor local min-

ima, where the modes that are farther away from the center

were poorly predicted. We found it vastly helpful to start

with a low N , and then slowly increase it during training

till the final N is reached. The resulting learned PDF is

depicted in Figure 5c. As one can see, the learned PDF

looks dilated. However, since theorem 1 tells us that this

should be approximately the square root of the ground truth

PDF, we can simply square and normalize over the bins, to

recover the ground truth. This is shown in 5d. The quali-

tative superiority of the compensated PDF is obvious. Also

the numerically estimated Jensen–Shannon divergence be-

comes almost an order of magnitude smaller (See Table 1).

6.3. Dependence of minimizing exponent on N

Next we want to verify proposition 1 experimentally, by

repeating the experiment from section 6.1. This time how-

ever we search for the MoN minimizing exponent k for dif-

ferent N . The results are plotted in Figure 6. It is obvious

that Proposition 1 holds at least for this particular PDF. The

same experiment is repeated with a 10 dimensional version

of the PDF (See Figure 6). Surprisingly, the results imply

that for higher dimensional PDF, the MON loss prefers k

close to 0.5 even for small N . This is especially important

in the context of using MoN as a metric.

7. Application to trajectory prediction in au-

tonomous vehicles

The problem considered here is to find a

model P (Y |I), where Y is a trajectory with

Y = {(x1, y1), (x2, y2), ..., (xT , yT )} of length T

and I is the input. We experiment with the prediction of

highway vehicles and pedestrian trajectories.

7.1. NGSIM Dataset

In this section, we will train a generative model using

MoN on the Next Generation Simulation (NGSIM) dataset

and show that compensating the learned probability dis-

tribution using Algorithm 1 will improve the average log

likelihood of ground truth samples.
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N
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0.65
0.52
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1 dim
10 dim

Figure 6: The variation of the k that minimizes the MoN

loss is plotted with respect to N for PDFs with dimension-

ality 1 and 10. Note that the 10 dimensional one converges

much faster. This implies that a widespread PDF is pre-

ferred by MoN in higher dimensions even for small N .

(a) Overview of the NGSIM dataset [3]

(b) Close up of the highway and tracking of the vehicle [2].

Figure 7: (a) An overview of the highway section the

NGSIM dataset was recorded on [3]. (b) Close up of the

I-80 with a visualization of the tracking the vehicle.

The NGSIM dataset consists of 45 minutes of vehicles

tracked along a section of the I-80 highway which is

approximately 0.5 kilometer long (see Fig 7).

Our generative model consists of an LSTM with 128 units
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Figure 8: The average log likelihood in dependency of the

k̄ used for the transformation in (9).

that encodes the trajectory of a vehicle and predicts the

parameters of a 12 dimensional Gaussian distribution. Then

we sample N = 100 times from this distribution. These

samples are encoded by 2 dense layers, each with 128 units

and ReLu activations. Finally, a decoder LSTM with 128

units predicts the ∆xt and ∆yt, so that xt−1 + ∆xt = xt

and yt−1+∆yt = yt respectively. We downsample the data

by a factor of 16 and consider 3 time steps, which amounts

to a time horizon of 4.8 seconds. Since the vehicle moves

much faster in x direction than in y direction resulting

in higher errors in x direction, we weight the error in y

direction with a factor of 20 during training (not during test

time).

As described in 5.2, for the problem of trajectory predic-

tion in the context of path planning with a cost map, it is

enough to only consider the marginalized distribution (See

the supplementary materials for plots of the uncompensated

marginalized PDF, reconstructed with a KDE as described

in 5.2).

Since we are using the MoN loss, the learned PDF has to be

compensated for the dilation effect. We apply algorithm 1

for this purpose. We set nsample to 1000 and αsplit to 0.7. As

the set of possible compensation parameter {k̄search}, we use

25 values between 0.001 and 3. Our experiments showed

k̄opt,t=1 = 1.88, k̄opt,t=2 = 2.12 and k̄opt,t=3 = 2.12 which

are close to the expected value of 2. A plot of the aver-

age log likelihood dependency from the chosen k̄ is shown

in Figure 8. The supplementary material shows the com-

pensated reconstructed PDFs. Furthermore, if we use Algo-

rithm 1 to find the k̄opt that is optimal for all 3 time steps

simultaneously, the algorithm yields k̄opt = 2.00 withing

the search resolution, which is exactly the theoretically ex-

pected value. After obtaining the k̄opt, we applied the com-

pensation on a left out test dataset and observed an improve-

ment in the average log likelihood of ground truth trajecto-
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PDF L1
DTest

(P ) L2
DTest

(P ) L3
DTest

(P )

Original PDF -5.48 -5.46 -5.50

Compensated PDF -5.28 -5.13 -5.12

Table 2: The results for the marginalized log likelihood as

defined in (10) on the NGSIM dataset for the first 3 time

steps (4.8 seconds). The compensated PDF consistently

outperforms the uncompensated one.

Figure 9: Illustration of the Zara dataset with ground truth

trajectories.

ries. The results (see table 2) show that our compensated

PDF clearly outperforms the uncompensated one.

7.2. Social–GAN

Next, we experiment on pedestrian trajectory data with

Social–GAN [18] to show that even a state–of–the–art

model can be improved by using our proposed compensa-

tion. Here, the authors use a combination of the MoN loss

and the adversarial loss. They also designed a social pool-

ing mechanism for efficient modelling of the social inter-

actions of the pedestrians. We consider the Zara 1 dataset

[1] and use the best performing model provided by the au-

thors of [18] (https://github.com/agrimgupta92/sgan). The

Zara dataset consists of 489 trajectories extracted from 13

minutes of videos on the corner of a sidewalk in a city (See

Figure 9). In the supplementary materials, a few plots of

the uncompensated PDFs are shown. We use algorithm 1

with the same settings as in 7.1. The resulting optimal com-

pensation parameters are k̄opt,t = 1 = 2.50 and k̄opt,2 = 1.63.

The variation of the average log likelihood with respect to

the chosen k̄ is shown in Figure 10. The supplementary ma-

terials show the compensated reconstructed PDFs. The final

results of the marginalized log likelihoods are presented in

Table 3 where we clearly see an advantage over the uncom-

pensated version. For t ≥ 3 and more difficult pedestrian

datasets, this compensation however does not work. This is

probably because too many samples fall in the low proba-

Figure 10: The average log likelihood in dependence of the

k̄ used for the transformation in (9).

PDF L1
DTest

(P ) L2
DTest

(P )

Original PDF -5.57 -5.87

Compensated PDF -5.24 -5.77

Table 3: The results for the marginalized log likelihood

as defined in (10) on the Zara1 dataset for the first 2 time

steps. The compensated PDF outperforms the uncompen-

sated one. For t = 3 the compensation parameter k̄opt is

however smaller than 1, which means that it has not learned

the PDF well enough and our compensation does not make

sense.

bility regions of the PDF that was learned by Social–GAN.

Therefore, sharpening the learned distribution moves it even

farther away from the ground truth distribution.

8. Conclusion

In this paper, we proved that the minimum of the MoN

loss is not the ground truth PDF, but instead its square root.

We validated this result using different experiments on toy

and real world datasets. This means that the PDF that min-

imizes the MoN is a dilated version of the true one. Re-

stricted to a certain class of PDFs, we also showed empir-

ically that the MoN minimizing PDF becomes monotoni-

cally further stretched out with bigger N. This leads us to

the conclusion that MoN should not be trusted as the only

metric to compare models. For trajectory prediction, we in-

stead advocate to also use the log likelihood of the marginal-

ized PDF. Furthermore, we verify empirically that a learner

trained with MoN loss can indeed converge to the square

root of the PDF. Finally, we show that for certain low–

dimensional applications, it is possible to compensate for

the dilating effect of MoN and show that the ground truth

dataset is more likely in the compensated distribution.
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