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Abstract

One of the key limitations of modern deep learning ap-

proaches lies in the amount of data required to train them.

Humans, by contrast, can learn to recognize novel cate-

gories from just a few examples. Instrumental to this rapid

learning ability is the compositional structure of concept

representations in the human brain — something that deep

learning models are lacking. In this work, we make a step

towards bridging this gap between human and machine

learning by introducing a simple regularization technique

that allows the learned representation to be decomposable

into parts. Our method uses category-level attribute anno-

tations to disentangle the feature space of a network into

subspaces corresponding to the attributes. These attributes

can be either purely visual, like object parts, or more ab-

stract, like openness and symmetry. We demonstrate the

value of compositional representations on three datasets:

CUB-200-2011, SUN397, and ImageNet, and show that

they require fewer examples to learn classifiers for novel

categories. Our code and trained models together with the

collected attribute annotations are available at https:

//sites.google.com/view/comprepr/home.

1. Introduction

Consider the images representing four categories from

the CUB-200-2011 dataset [41] in Figure 1. Given a repre-

sentation learned using the first three categories, shown in

red, can a classifier for the fourth category, shown in green,

be learned from just a few, or even a single example? This is

a problem known as few-shot learning [39, 21, 18, 44, 12].

Clearly, it depends on the properties of the representation.

Cognitive science identifies compositionality as a property

that is crucial to this task. Human representations of con-

cepts are decomposable into parts [5, 17], such as the ones

shown in the top right corners of the images in Figure 1,

allowing classifiers to be rapidly learned for novel concepts

through combinations of known primitives [13]. Taking the

novel bird category as an example, all of its discriminative

attributes have already been observed in the first three cate-

Figure 1. Images from four categories of the CUB-200-2011

dataset, together with some of their attribute annotations. We pro-

pose to learn image representations that are decomposable over

the attributes. These representations can thus be used to recognize

new categories from few examples.

gories. These ideas have been highly influential in computer

vision, with some of the first models for visual concepts be-

ing built as compositions of parts and relations [26, 27, 45].

However, state-of-the-art methods for virtually all visual

recognition tasks are based on deep learning [24, 20]. The

parameters of deep neural networks are optimized for the

end task with gradient-based methods, resulting in repre-

sentations that are not easily interpretable. There has been a

lot of effort on qualitative interpretation of these representa-

tions [47, 48], demonstrating that some of the neurons rep-

resent object parts. Very recently, a quantitative approach

to evaluating the compositionality of deep representations

has been proposed [3]. Nevertheless, these approaches do

not investigate the problem of improving the compositional

properties of neural networks. In this paper, we propose a

simple regularization technique that forces deep image rep-

resentations to be decomposable into parts, and we empiri-

cally demonstrate that such representations facilitate learn-

ing classifiers for novel concepts from fewer examples.

Our method takes as input a dataset of images together

with their class labels and category-level attribute annota-

tions. The attributes can be either purely visual, such as ob-

ject parts (beak shape) and scene elements (grass), or

more abstract, such as openness of a scene. In [3] a fea-
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ture encoding of an image is defined as compositional over

a set of attributes if it can be represented as a combination of

the encodings of these attributes. Following this definition,

we propose to use attribute annotations as constraints when

learning the image representation. This results in a method

that, given an image with its corresponding attribute annota-

tions, jointly learns a convolutional neural network (CNN)

for the image embedding and a linear layer for the attribute

embedding. The attribute embeddings are then used to con-

strain the image representation to be equal to the sum of the

attribute representations (see Figure 2(b)).

This constraint, however, implies that exhaustive at-

tribute annotations are available. Such an assumption is not

realistic for most of the image domains. To address this is-

sue, we propose a relaxed version of the compositionality

regularizer. Instead of requiring the image representation to

be exactly equal to the sum of the attribute embeddings, it

simply maximizes the sum of the individual similarities be-

tween the attribute and image embeddings (see Figure 2(c)).

This ensures that the image representation reflects the com-

positional structure of the categories, while allowing it to

model the remaining factors of variation which are not cap-

tured in the annotations. Finally, we observe that enforcing

orthogonality of the attribute embeddings leads to a better

disentanglement of the resulting image representation.

We evaluate our compositional representation in a few-

shot setting on three datasets of different sizes and domains:

CUB-200-2011 [41] for fine-grained recognition, SUN397

for scene classification [46], and ImageNet [9] for object

classification. When many training examples are available,

it performs on par with the baseline which trains a plain

classifier without attribute supervision, but in the few-shot

setting it shows a much better generalization behavior. In

particular, our model achieves an 8% top-5 accuracy im-

provement over the baseline in the most challenging 1-shot

scenario on SUN397.

An obvious limitation of our approach is that it requires

additional annotations. One might ask, how expensive it is

to collect the attribute labels, and more importantly, how

to even define the vocabulary of attributes for an arbitrary

dataset. To illustrate that collecting category-level attributes

is in fact relatively easy even for large-scale datasets, we

label 159 attributes for a subset of the ImageNet categories

defined in [15, 42]. A crucial detail is that the attributes have

to be labeled on the category, not on the image level, which

allowed us to collect the annotations in just three days. In

addition, note that our approach does not require attribute

annotations for novel classes.

Our contributions are three-fold. (1) We propose the

first approach for learning deep compositional representa-

tions in Section 3. Our method takes images together with

their attribute annotations as input and applies a regular-

izer to enforce the image representation to be decompos-

able over the attributes. (2) We illustrate the simplicity of

collecting attribute annotations on a subset of the ImageNet

dataset in Section 3.3. (3) We provide a comprehensive

analysis of the learned representation in the context of few-

shot learning on three datasets. The evaluation in Section 4

demonstrates that our proposed approach results in a rep-

resentation that generalizes significantly better and requires

fewer examples to learn novel categories.

2. Related Work

Few-shot learning is a classic problem of recognition

with only a few training examples [39]. Lake et al. [21]

explicitly encode compositionality and causality properties

with Bayesian probabilistic programs. Learning then boils

down to constructing programs that best explain the obser-

vations and can be done efficiently with a single example

per category. However, this approach is limited by that the

programs have to be manually defined for each new domain.

State-of-the-art methods for few-shot learning can be

categorized into the ones based on metric learning [18, 40,

36, 38] — training a network to predict whether two images

belong to the same category, and the ones built around the

idea of meta-learning [12, 33, 43, 44] — training with a loss

that explicitly enforces easy adaptation of the weights to

new categories with only a few examples. Separately from

these approaches, some work proposes to learn to gener-

ate additional examples for unseen categories [42, 15]. Re-

cently, it has been shown that it is crucial to use cosine sim-

ilarity as a distance measure to achieve top results in few-

shot learning evaluation [14]. Even more recently, Chen et

al. [7] demonstrate that a simple baseline approach — a lin-

ear layer learned on top of a frozen CNN — achieves state-

of-the-art results on two few-shot learning benchmarks. The

key to the success of their baseline is using cosine classi-

fication function and applying standard data augmentation

techniques during few-shot training. Here we confirm their

observation about the surprising efficiency of this baseline

in a more realistic setting and demonstrate that learning a

classifier on top of the compositional feature representation

results in a significant improvement in performance.

Compositional representations have been extensively

studied in the cognitive science literature [5, 17, 13], with

Biderman’s Recognition-By-Components theory being es-

pecially influential in computer vision. One attractive prop-

erty of compositional representations is that they allow

learning novel concepts from a few or even a single example

by composing known primitives. Lake et al. [22] argue that

compositionality is one of the key building blocks of human

intelligence that is missing in the state-of-the-art artificial

intelligence systems. Although early computer vision mod-

els have been inherently compositional [26, 27, 45], build-

ing upon feature hierarchies [11, 49] and part-based mod-

els [30, 10], modern deep learning systems [24, 20, 16] do
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not explicitly model concepts as combinations of parts.

Analysis of internal representations learned by deep net-

works [47, 35, 25, 48, 19] has shown that some of the neu-

rons in the hidden layers do encode object and scene parts.

However, all the work observes that the discovered com-

positional structure is limited and qualitative analysis of

network activations is highly subjective. Very recently, an

approach to quantitative evaluation of compositionality of

learned representations has been proposed by Andreas [3].

This work posits that a feature encoding of an image is com-

positional if it can be represented as a sum of the encodings

of attributes describing the image, and designs an algorithm

to quantify this property. We demonstrate that naı̈vely turn-

ing this measure into a training objective results in inferior

performance and we propose a remedy.

Among prior work that explicitly addresses composition-

ality in deep learning models, Misra et al. [29] propose to

train a network that predicts classifiers for novel concepts

by composing existing classifiers for the parts. By contrast,

we propose to train a single model that internally decom-

poses concepts into parts and show results in a few-shot set-

ting. Stone et al. [37] address the notion of spatial compo-

sitionality, constraining network representations of objects

in an image to be independent from each other and from the

background. They then demonstrate that networks trained

with this constraint generalize better to the test distribution.

While we also enforce decomposition of a network repre-

sentation into parts with the goal of increasing its general-

ization abilities, our approach does not require spatial, or

even image-level supervision. We can thus handle abstract

attributes and be readily applied to large-scale datasets.

Learning with attributes has been studied in a vari-

ety of applications. Most notably, zero-shot learning meth-

ods use category-level attributes to recognize novel classes

without seeing any training examples [1, 2, 8, 23]. To this

end, they learn models that take attributes as input and pre-

dict image classifiers, allowing them to recognize never-

before-seen classes as long as they can be described by

the known attribute vocabulary. By contrast, our method

uses attributes to learn compositional image representations

that require fewer training examples to recognize novel con-

cepts. Crucially, unlike these methods, our approach does

not require attribute annotations for novel classes.

Another context in which attributes have been used

is that of active [31] and semi-supervised learning [34].

In [31] attribute classifiers are used to mine hard negative

images for a category based on user feedback. Our method

is offline and does not require user interactions. In [34]

attributes are used to explicitly provide constraints when

learning from a small number of labeled and a large num-

ber of unlabeled images. Our approach uses attributes to

regularize a learned deep image representation, resulting in

these constraints being implicitly encoded by the network.

3. Our Approach

3.1. Problem Formulation

We consider the task of few-shot image classification.

We have a set of base categories Cbase and a correspond-

ing dataset Sbase = {(xi, yi) , xi ∈ X , yi ∈ Cbase} which

contains a large number of examples per class. We also

have a set of unseen novel categories Cnovel and a corre-

sponding dataset Snovel = {(xi, yi) , xi ∈ X , yi ∈ Cnovel}
which consists of only n examples per class, where n could

be as few as one. We learn a representation model fθ
parametrized by θ on Sbase that can be used for the down-

stream classification task on Snovel.

While there might exist many possible representations

that can be learned and achieve similar generalization per-

formance on the base categories, we argue that the one

that is decomposable into shared parts will be able to

generalize better to novel categories from fewer exam-

ples. Consider again the example in Figure 1. Intu-

itively, a model that has internally learned to recognize

the attributes beak:curvy, wing color:grey, and

breast color:white is able to obtain a classifier of

the never-before-seen bird species simply by composition.

But how can this intuitive notion of compositionality be for-

mulated in the space of deep representation models?

Following the formalism proposed in [3], on the base

dataset Sbase, we augment the category labels yi ∈ Cbase of

the examples xi, with information about their structure in

the form of derivations D(xi), defined over a set of prim-

itives D0. That is, D(xi) is a subset of D0. In practice,

these primitives can be seen as parts, or, more broadly, at-

tributes capturing the compositional structure of the exam-

ples. Derivations are then simply sets of attribute labels. For

instance, for the CUB-200-2011 dataset the set of primitives

consists of items such as beak:curvy, beak:needle,

etc., and a derivation for the image in Figure 1(a) is then

{beak:curvy, wing color:brown, ...}.

We now leverage derivations to learn a compositional

representation on the base categories. Note that for the

novel categories, we only have access to the category labels

without any derivations.

3.2. Compositionality Regularization

In [3] a representation fθ is defined as compositional

over D0 if each fθ(x) is determined by D(x). That is, the

image representation can be reconstructed from the repre-

sentations of the corresponding attributes. This definition is

formalized in the following way:

fθ(xi) =
∑

d∈D(xi)

f̂η(d), (1)

where f̂η is the attribute representation parameterized by η,

and d is an element of the derivation of xi. In practice, f̂η is
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(a) (b) (c)

Figure 2. Overview of our proposed compositional regularization. The goal is to learn an image representation that is decomposable into

parts by leveraging attribute annotations. First, an image is encoded with a CNN and its attributes with a linear layer (a). We then propose

two forms of regularizations: a hard one, shown in (b) and a soft one, shown in (c). The former is forcing the image representation to be

fully described by the attributes. The latter is a relaxed version that allows a part of the representation to encode other information about

the images (shown in grey).

implemented as a linear embedding layer (see Figure 2(a)),

so η is a matrix of size k × m, where k = |D0|, and m is

the dimensionality of the image embedding space. Given a

fixed, pre-trained image embedding fθ, Eq. (1) can be op-

timized over η to discover the best possible decomposition.

In [3] this decomposition is then used to evaluate a recon-

struction error on a held-out set of images and quantify the

compositionality of fθ.

By contrast, in this work we want to use attribute an-

notations to improve the compositional properties of image

representations. Naı̈vely, one could imagine a method that

directly enforces the equality in Eq. (1) while learning the

image representation. Indeed, it is differentiable not only

with respect to η but also with respect to θ. We can thus turn

it into an objective function σ(fθ(xi),
∑

d∈D(xi)
f̂η(d)),

where σ is a distance function, such as cosine similarity,

and jointly optimize both fθ and f̂η .

Hard constraints: Based on this observation, we pro-

pose a hard compositionality constraint:

Lcmp h(θ, η) =
∑

i

σ
(

fθ(xi),
∑

d∈D(xi)

f̂η(d)
)

. (2)

It can be applied as a regularization term together with a

classification loss Lcls, such as softmax. Intuitively, Eq. (2)

imposes a constraint on the gradient-based optimization of

parameters θ, forcing it to choose out of all the representa-

tions that solve the classification problem equally well the

one that is fully decomposable over a pre-defined vocabu-

lary of primitives D0. A visualization of the hard constraint

is presented in Figure 2(b). Overall, we use the following

loss for training:

L(θ, η) = Lcls(θ) + λLcmp h(θ, η), (3)

where λ is a hyper-parameter that balances the importance

of the two objectives.

One crucial assumption made in Eq. (1) is that the deriva-

tions D are exhaustive. In other words, for this equation to

hold, D0 has to capture all the aspects of the images that

are important for the downstream classification task. How-

ever, even in such a narrow domain as that of CUB, exhaus-

tive attribute annotations are extremely expensive to obtain.

In fact, it is practically impossible for larger-scale datasets,

such as SUN and ImageNet. Ideally, we want only a part

of the image embedding fθ to model the primitives in D0,

allowing the other part to model the remaining factors of

variation in the data. More formally, we want to enforce a

softer constraint compared to the one in Eq. (1):

fθ(xi) =
∑

d∈D(xi)

f̂η(d) + w(xi), (4)

where w(xi) accounts for a part of the image representation

which is not described by the attributes.

To this end, instead of enforcing the full decomposition

of the image embedding over the attributes, we propose to

maximize the sum of the individual similarities between the

embedding of each attribute and the image embedding us-

ing the dot product:
∑

d∈D(xi)
fθ(xi) · f̂η(d). Optimizing

this objective jointly with Lcls ensures that fθ captures the

compositional information encoded by the attributes, while

allowing it to model the remaining factors of variation that

are useful for the classification task. Note that to avoid triv-

ial solutions, the similarity with the embeddings of the at-

tributes that are not in D(xi) has to be minimized at the

same time.

Soft constraints: Our proposed soft compositionality

constraint is defined below (see Figure 2(c) for a visualiza-

tion):

Lcmp s(θ, η) =
∑

d 6∈D(xi)

f(xi) · f̂η(d)−
∑

d∈D(xi)

f(xi) · f̂η(d). (5)

It is easy to see that this formulation is equivalent to multi-

label classification when weights of attribute classifiers are

treated as embeddings f̂η(d). In contrast to the hard vari-

ant in Eq. (2), it allows a part of the image encoding fθ,

shown in grey in Figure 2(c)), to represent the information

not captured by the attribute annotations.
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CUB-200-2011 SUN397 ImageNet

Figure 3. Examples of categories from three datasets used in the paper together with samples of attribute annotations.

Finally, we observe that some attributes can be highly

correlated in the training set. For instance, most of the

natural scenes on SUN also have vegetation in

them. Directly optimizing Eq. (5) for such attributes will

fail to disentangle the corresponding factors of variation,

limiting the generalization abilities of the learned image

representation. To address this issue, we propose to enforce

orthogonality of the attribute embeddings f̂η . In particular,

our final objective takes the form:

L(θ, η) = Lcls(θ) + λLcmp s(θ, η) + β | ηηT − I |, (6)

where I is the identity matrix, and β is a hyper-parameter

that controls the importance of the orthogonality constraint.

Notice that similar constraints have been recently proposed

in other domains [4, 6].

3.3. Complexity of Obtaining Attribute Supervision

Up till now the derivations D(xi) were defined on the

instance level. Such fine-grained supervision is very ex-

pensive to obtain. To mitigate this issue, we claim that in-

stances in any given category share the same compositional

structure. Indeed, all seagulls have curvy beaks and short

necks, so we can significantly reduce the annotation effort

by redefining derivations as D(xi) = D(yi). One objec-

tion might be that the beak is not visible in all the images

of seagulls. While this is true, we argue that such labeling

noise can be ignored in practice, which is verified empiri-

cally in Section 4.

We use three datasets for experimental evaluation: CUB-

200-2011 [41], SUN397 [46], and ImageNet [9]. Samples

of images from different categories of the three datasets,

together with their attribute annotations, are shown in Fig-

ure 3. Our method handles concrete visual attributes, like

material and color, and abstract attributes, such as

openness and symmetry. For the first two datasets, at-

tribute annotations are publicly available, but for ImageNet

we collect them ourselves. Below we describe key steps in

collecting these annotations.

We heavily rely on the WordNet [28] hierarchy both to

define the vocabulary of attributes and to collect them. First,

we define attributes on each level of the hierarchy: every ob-

ject has size and material, most of the mammals have

legs and eyes, etc. This allows us to obtain a vocabulary

that is both broad, intersecting boundaries of categories, and

specific enough, capturing discriminative properties. Sec-

ond, we also rely on the hierarchical properties of the at-

tributes to simplify annotation process. In particular, the

annotator is first asked about generic properties of the cate-

gory, like whether it is living, and then all the attributes

specific to non-living entities are set to a negative value

automatically. This pruning is applied on every level of the

hierarchy, allowing a single annotator to collect attribute la-

bels for 386 categories in the base split of [15] in just 3

days.

4. Experiments

4.1. Datasets and Evaluation

We use three datasets: CUB-200-2011, SUN397, and

ImageNet. Below we describe each of them together with

their evaluation protocols in more detail.

CUB-200-2011 is a dataset for fine-grained classifica-

tion [41]. It contains 11,788 images of birds, labeled with

200 categories corresponding to bird species. The dataset is

evenly split into training and test subsets. In addition, the

authors have collected annotations for 307 attributes, corre-

sponding to the appearance of the birds’ parts, such as shape

of the beak and color of the forehead. These attribute anno-

tations have been collected on the image level via crowd

sourcing. We aggregate them on the category level by la-

beling a category as having a certain attribute if at least half

of the images in the category are labeled with it. We further
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filter out rare attributes by only keeping the ones that are la-

beled for at least five categories, resulting in 130 attributes

used in training. For few-shot evaluation, we randomly split

the 200 categories into 100 base and 100 novel categories.

SUN397 is a subset of the SUN dataset for scene recog-

nition, which contains the 397 most well sampled cate-

gories, totaling to 108,754 images [46]. Patterson et al. [32]

have collected discriminative attributes for these scene cat-

egories, resulting in a vocabulary of 106 attributes that are

both discriminative and shared across scene classes. Simi-

lar to CUB, we aggregate these image-level annotations for

categories by labeling a category as having an attribute if

half of the images in the category have this attribute, and

filter out the infrequent attributes, resulting in 89 attributes

used in training. For few-shot evaluation, we randomly split

the scene categories into 197 base and 200 novel categories.

ImageNet is an object-centric dataset [9] that contains

1,200,000 images labeled with 1,000 categories. The cat-

egories are sampled from the WordNet [28] hierarchy and

constitute a diverse vocabulary of concepts ranging from

animals to music instruments. Defining a vocabulary of at-

tributes for such a dataset is non-trivial and has not been

done previously. We described our approach for collecting

the attributes in more detail in Section 3.3. For few-shot

evaluation, we use the split proposed in [15, 42].

4.2. Implementation Details

Following [15, 42], we use a ResNet-10 [16] architecture

as a backbone for all the models, but also report results us-

ing deeper variants in the supplementary material. We add

a linear layer without nonlinearity at the end of all the net-

works to aid in learning a cosine classifier. The networks

are first pre-trained on the base categories using mini-batch

SGD, as in [15, 42, 7]. The learning rate is set to 0.1, mo-

mentum to 0.9, and weight decay to 0.0001. The batch size

and learning rate schedule depend on the dataset size and

are reported in the supplementary material. All the mod-

els are trained with a sofmax cross-entropy loss as Lcls in

Eq. (3). Our soft compositionality constraint in Eq. (5) is

implemented with a multi-label, one-versus-all loss.

We observe that the proposed compositionality regu-

larization slows down convergence when training from

scratch. To mitigate this issue, we first pre-train a network

with the standard classification loss and then fine-tune it

with regularization for the same number of epochs using

the same optimization parameters. For a fair comparison,

baseline models are fine-tuned in the same way. We set the

hyper-parameters λ and β in Eq. (6) for each dataset indi-

vidually, using the validation set.

In few-shot training, we use the baseline proposed in [7]

as our base model. In particular, we learn either a linear or

cosine classifier on top of the frozen CNN representation.

Differently from [7], we learn the classifier jointly on novel
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Figure 4. Comparison of the variants of our compositionallity reg-

ularizations to a baseline on the novel categories of the CUB and

SUN datasets. The y-axis indicates top-5 accuracy. Our soft reg-

ularization with orthogonality constraint achieves the best perfor-

mance on both datasets.

and base categories. We use mini-batch SGD with a batch

size of 1,000 and a learning rate of 0.1, but find that training

is robust to these hyper-parameters. What is important is the

number of training iterations. This number depends on the

dataset and the classifier (see the supplementary material).

Overall, we follow the evaluation protocol proposed in [42].

4.3. Analysis of Compositional Representations

Here we analyze whether our compositionallity con-

straints lead to learning representations that are able to rec-

ognize novel categories from a few examples. We use CUB

and SUN datasets due to availability of high quality anno-

tations. Following [14, 7], we use a cosine classifier in the

most of the experiments due to its superior performance.

A qualitative analysis of the representations using Network

Dissection [48] is provided in the supplementary material.

Comparison between hard and soft compositional

constraints: We begin our analysis by comparing the two

proposed variants of compositionallity regularizations: the

hard one in Eq. (2) and the soft one in Eq. (5). Figure 4

shows the top-5 performance on the novel categories of

CUB and SUN. We perform the evaluation in 1- and 5-

shot scenarios. First we notice that the variant of the reg-

ularization based on the hard sum constraint (shown in or-

ange) slightly increases the performance over the baseline

on CUB, but leads to a decrease on SUN. This is not sur-

prising, since this constraint assumes exhaustive attribute

annotations, as mentioned in Section 3. On CUB the anno-

tations of bird parts do capture most of the important factors

of variation, whereas the attributes on SUN are less exhaus-

tive. By contrast, our proposed soft constraint (shown in

grey) allows the representations to capture important infor-

mation that is not described in the attribute annotation. En-

forcing orthogonality of the attribute embeddings, as pro-

posed in Eq. (6), further improves the performance. The
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Novel All

1-shot 2-shot 5-shot 1-shot 2-shot 5-shot

Cos 46.1 57.0 68.9 58.2 63.3 69.8

Cos w/ comp 52.5 63.6 73.8 62.6 68.4 74.0

Linear w/ comp 47.0 60.0 74.0 57.6 65.0 72.7

Cos + data aug 47.7 58.0 69.4 58.7 64.0 70.1

Cos w/ comp + data aug 53.6 64.8 74.6 63.1 69.2 74.5

Linear w/ comp + data aug 52.1 63.1 75.2 60.9 67.3 73.9

Table 1. Analysis of our approach: top-5 accuracy on the novel

and all (i.e., novel + base) categories of the CUB dataset. ‘Cos’:

the baseline with a cosine classifier, ‘Cos w/ comp’: our compo-

sitional representation with a cosine classifier, ‘Linear w/ comp’:

our compositional representation with a linear classifier. The vari-

ants trained with data augmentation are marked with ‘+ data aug’.

Novel All

1-shot 2-shot 5-shot 1-shot 2-shot 5-shot

Cos 35.4 45.6 56.4 52.1 56.7 61.9

Cos w/ comp 43.4 54.5 65.9 54.9 60.4 66.3

Linear w/ comp 41.2 51.8 63.3 50.1 57.6 66.4

Cos + data aug 39.9 49.7 59.7 54.2 58.5 63.5

Cos w/ comp + data aug 45.9 56.7 67.1 56.3 61.5 67.3

Linear w/ comp + data aug 41.1 51.6 62.3 51.7 57.1 63.3

Table 2. Analysis of our approach: top-5 accuracy on the novel

and all (i.e., novel + base) categories of the SUN dataset. ‘Cos’:

the baseline with a cosine classifier, ‘Cos w/ comp’: our compo-

sitional representation with a cosine classifier, ‘Linear w/ comp’:

our compositional representation with a linear classifier. The vari-

ants trained with data augmentation are marked with ‘+ data aug’.

improvement is larger on SUN, since attributes are more

correlated in this dataset. Overall, our full model (shown

in yellow) improves the performance over the baseline by

6.4% on CUB and by 8% on SUN in the most challenging

1-shot scenario. Comparable improvements are observed

in the 5-shot regime as well. This confirms our hypothesis

that enforcing the learned representation to be decompos-

able over category-level attributes allows it to generalize to

novel categories with fewer examples. We thus use the soft

variant of our approach with orthogonality constraint in the

remainder of the paper.

Ablation studies: We further analyze the compositional

representation learned with the soft constraint through ex-

tensive ablations and report the results in Table 1.

Evaluation in the challenging joint label space of base

and novel classes: We notice that the observation about

the positive effect of the compositionallity constraints on

the generalization performance of the learned representa-

tion made above for the novel categories holds for the

novel+ base setting (right part ‘All’ of Table 1, rows 1 and

2). In particular, our approach improves over the baseline

by 4.4% in the 1-shot and by 4.2% in the 5-shot setting.

Cosine vs. linear classifiers: The linear classifier, de-

noted as ‘Linear w/ comp’, performs significantly worse

than the cosine variant, especially in the novel + base set-

ting. A similar behavior was observed in [14, 7] and at-

tributed to that the cosine classifier explicitly reduces intra-

class variation among features during training, by unit-

normalizing the vectors before dot product operation.
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Figure 5. Comparison of our compositionallity regularization to a

baseline on the base categories of the CUB and SUN datasets. The

y-axis indicates top-5 accuracy on the corresponding validation

set. The improvements are smaller than those on the novel classes.

Effect of data augmentation: Another observation made

in [7] is that, for a fair comparison, standard data augmen-

tation techniques, e.g., random cropping and flipping, need

to be applied when performing few-shot learning. We re-

port the results with data augmentation in the lower part of

Table 1. The most important result here is that data aug-

mentation is indeed effective when learning a classifier in a

few-shot regime, improving the performance of all the vari-

ants. By contrast, in the supplementary material we demon-

strate that traditional few-shot learning methods are not able

to significantly benefit from data augmentation.

Larger-scale evaluation: To validate our previous ob-

servations, we now report results on a much larger-scale

SUN397 dataset [46]. Table 2 summarizes the 200- and

397-way evaluation in novel and novel + base settings,

respectively. Overall, similar conclusions can be drawn

here, confirming the effectiveness of our approach across

domains and dataset sizes.

Effect of the number of attributes: We also evaluate the

effect of the number of attributes used for training on the

few-shot performance in the supplementary material.

Large sample performance: Figure 5 evaluates the ac-

curacy of the cosine classifier baseline (shown in blue) and

our compositional representations (shown in yellow) on the

validation set of the base categories of CUB and SUN. The

improvement due to compositional representations is signif-

icantly lower than that on the novel categories (e.g., in the 1-

shot scenario: 2.5% compared with 6.4% on CUB, and only

1% compared with 8% on SUN). This observation confirms

our claim that the proposed approach does not simply im-

prove the overall performance of the model, but increases

its generalization ability in the few-shot regime.

4.4. Comparison to the State­of­the­Art

We now compare our compositional representations

with the cosine classifiers, denoted as ‘Cos w/ comp’,

to the state-of-the-art few-shot methods based on meta-
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Novel All

1-shot 2-shot 5-shot 10-shot 1-shot 2-shot 5-shot 10-shot

Prototypical networks [36] 43.2 54.3 67.8 72.9 55.6 59.1 64.1 65.8

Matching Networks [40] 48.5 57.3 69.2 74.5 50.6 55.8 62.6 65.4

Relational networks [38] 39.5 54.1 67.1 72.7 51.9 57.4 63.1 65.3

Cos w/ comp (Ours) 52.5 63.6 73.8 78.5 62.6 68.4 74.0 76.4

Cos w/ comp + data aug (Ours) 53.6 64.8 74.6 78.7 63.1 69.2 74.5 76.9
Table 3. Comparison to the state-of-the-art approaches: top-5 accuracy on the novel and all (i.e., novel + base) categories of the CUB

dataset using a ResNet-10 backbone. Our approach consistently achieves the best performance.

Novel All

1-shot 2-shot 5-shot 10-shot 1-shot 2-shot 5-shot 10-shot

Prototypical networks [36] 37.1 49.2 63.1 70.0 51.3 59.0 66.4 69.3

Matching Networks [40] 41.0 48.9 60.4 67.6 50.3 54.0 60.2 64.4

Relational networks [38] 35.1 49.0 63.7 70.3 51.0 58.6 66.5 69.1

Cos w/ comp (Ours) 43.4 54.5 65.9 71.4 54.9 60.4 66.3 69.2

Cos w/ comp + data aug (Ours) 45.9 56.7 67.1 72.3 56.3 61.5 67.3 70.0
Table 4. Comparison to the state-of-the-art approaches: top-5 accuracy on the novel and all (i.e., novel + base) categories of the SUN

dataset using a ResNet-10 backbone. Our approach consistently achieves the best performance.

Novel All

1-shot 2-shot 5-shot 10-shot 1-shot 2-shot 5-shot 10-shot

Prototype Matching Networks w/ G [42] 45.8 57.8 69.0 74.3 57.6 64.7 71.9 75.2

Prototype Matching Networks [42] 43.3 55.7 68.4 74.0 55.8 63.1 71.1 75.0

Prototypical networks w/ G [42] 45.0 55.9 67.3 73.0 56.9 63.2 70.6 74.5

Prototypical networks [36] 39.3 54.4 66.3 71.2 49.5 61.0 69.7 72.9

Matching Networks [40] 43.6 54.0 66.0 72.5 54.4 61.0 69.0 73.7

Cos w/ comp (Ours) 46.6 58.0 68.5 73.0 55.4 63.8 71.2 74.4

Cos w/ comp + data aug (Ours) 49.3 60.1 69.7 73.6 57.9 65.3 71.9 74.7

Table 5. Comparison to the state-of-the-art approaches: top-5 accuracy on the novel and all (i.e., novel+ base) categories of the ImageNet

dataset using a ResNet-10 backbone. Even with noisy or less discriminative attributes which we collected, our approach achieves the best

performance in 1-, 2-, and 5-shot scenarios. It can be potentially combined with the data generation approach [42] for further improvement.

learning [40, 36, 42, 38]. We evaluate on 3 datasets: CUB-

200-2011, SUN397, and ImageNet. For CUB and SUN

which have publicly available, well annotated attributes, Ta-

bles 3 and 4 show that our approach easily outperforms

all the baselines across the board even without data aug-

mentation. In the supplementary material, we show that

other methods demonstrate marginal improvements with

data augmentation. In particular, our full method provides

5 to 7 point improvements on both datasets for the novel

classes in the most challenging 1- and 2-shot scenarios, and

achieves similar improvements in the joint label space.

Table 5 summarizes the comparison on ImageNet for

which we collected attribute annotations ourselves. Here

we compare to the state-of-the-art methods reported in [42],

including the approaches that generate additional training

examples. These results verify the effectiveness of our ap-

proach to annotating attributes on the category level. The

collected annotations might be noisy or less discrimina-

tive, compared to the crowd sourced annotation in [41, 32].

However, our compositional representation with a simple

cosine classifier still achieves the best performance in 1-,

2-, and 5-shot scenarios, and is only outperformed in the

10-shot scenario by Prototype Matching Networks [42].

5. Conclusion

In this work, we have proposed a simple attribute-based

regularization approach that allows to learn compositional

image representations. The resulting representations are on

par with the existing approaches when many training exam-

ples are available, but generalize much better in the small-

sample size regime. We validated the use of our approach in

the task of learning from few examples, obtaining the state-

of-the-art results on three dataset. Compositionality is one

of the key properties of human cognition that is missing in

the modern deep learning methods, and we believe that our

work is a precursor to a more in-depth study on this topic.
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