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Abstract

Access to online visual search engines implies sharing of

private user content – the query images. We introduce the

concept of targeted mismatch attack for deep learning based

retrieval systems to generate an adversarial image to con-

ceal the query image. The generated image looks nothing

like the user intended query, but leads to identical or very

similar retrieval results. Transferring attacks to fully un-

seen networks is challenging. We show successful attacks to

partially unknown systems, by designing various loss func-

tions for the adversarial image construction. These include

loss functions, for example, for unknown global pooling op-

eration or unknown input resolution by the retrieval system.

We evaluate the attacks on standard retrieval benchmarks

and compare the results retrieved with the original and ad-

versarial image.

1. Introduction

Information about users is a valuable article. Websites,

service providers, and even operating systems collect and

store user data. The collected data have various forms,

e.g. visited websites, interactions between users in social

networks, hardware fingerprints, keyboard typing or mouse

movement patterns, etc. Internet search engines record what

the users search for, as well as the responses, i.e. clicks, to

the returned results.

Recent development in computer vision allowed efficient

and precise large scale image search engines to be launched,

such as Google Image Search. Nevertheless, similarly to

text search engines, queries – the images – are stored and

further analyzed by the provider1. In this work, we protect

the user image (target) by constructing a novel image. The

constructed image is visually dissimilar to the target, how-

ever, when used as a query, identical results are retrieved as

with the target image. Large-scale search methods require

short-code image representation, both for storage minimiza-

tion and for search efficiency, which are usually extracted

1Google Search Help: “The pictures you upload in your search may be stored by

Google for 7 days. They won’t be a part of your search history, and we’ll only use

them during that time to make our products and services better.”
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Figure 1. Top two rows show retrieval results to the user query

image (target). Bottom two rows show the results of our attack

where a carrier image (flower, Notre Dame) is perturbed to have

identical descriptor to that of the target in the first row. Identical

results are obtained without disclosing the target.

with Convolutional Neural Networks (CNN). We formulate

the problem as an adversarial attack on CNNs.

Adversarial attacks, as introduced by Szegedy et al. [35],

study imperceptible non-random image perturbations to

mislead a neural network. The first attacks were intro-

duced and tested on image classification. In that context,

adversarial attacks are divided into two categories, namely

non-targeted and targeted. The goal of non-targeted attacks

is to change the prediction of a test image to an arbitrary

class [25, 24], while targeted attacks attempt to make a spe-

cific change of the network prediction, i.e. to misclassify the

test image to a predefined target class [35, 7, 10].

Similarly to image classification, adversarial attacks

have been proposed in the domain of image retrieval too.

An non-targeted attack attempts to generate an image that

for a human observer carries the same visual information,

while for the neural network it appears dissimilar to other

images of the same object [19, 20, 37]. This way, a user

protects personal images and does not allow them to be in-
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dexed for content-based search, even when the images are

publicly available. In this paper, we address targeted attacks

aiming to retrieve images that are related to a hidden target

query without explicitly revealing the image (see Figure 1).

Example applications include users checking whether their

copyrighted image, or personal photo with sensitive con-

tent, etc. is indexed, i.e. used by anyone else, without pro-

viding the query image itself. Such case of privacy protec-

tion is an example of “legal” motivation. A concept that

bears resemblance to ours exists in the speech recognition,

but in a malicious context. Carlini et al. [6] generate hidden

voice commands that are imperceivable to human listeners

but are interpreted as commands by devices. We investi-

gate adversarial attacks beyond the white-box scenario, in

which all the parameters and design choices of the retrieval

system are known. Specifically, we analyze the cases of un-

known indexing image resolution and unknown global pool-

ing used in the network.

2. Related work

Adversarial attacks on image classification were intro-

duced by Szegedy et al. [35]. Follow up approaches are

categorized to white-box attacks [35, 12] if there is com-

plete knowledge of the model or to black-box [28, 29] oth-

erwise. Adversarial images are generated by various meth-

ods in the literature, such as optimization-based approaches

using box-constrained L-BFGS optimizer [35], gradient de-

scent with change of variable [7]. A fast gradient sign

method [12] and variants [18, 10] are designed to be fast

rather than optimal, while DeepFool [25] analytically de-

rives an optimal solution method by assuming that neural

networks are totally linear. All these approaches solve an

optimization problem given a test image and its associated

class in the case of non-targeted attacks or a test image and

a target class in the case of targeted attacks. A universal

non-targeted approach is proposed by Moosavi et al. [24],

where an image-agnostic Universal Adversarial Perturba-

tion (UAP) is computed and applied to unseen images to

cause network misclassification.

Adversarial attacks on image retrieval are studied by re-

cent work [19, 20, 37] in a non-targeted scenario for CNN-

based approaches. Liu et al. [20] and Zheng et al. [37] adopt

the optimization-based approach [35], while Li et al. [19]

adopt the UAP [24]. Similar attacks on classical retrieval

systems that are based on SIFT local descriptors [21] have

been addressed in an earlier line of work by Do et al. [9, 8].

To the best of our knowledge, no existing work focuses on

targeted adversarial attacks for image retrieval. Targeted at-

tacks for nearest neighbors in high dimensional spaces are

studied by Amsaleg et al. [2], where they directly perturb

the high dimensional vectors and show that the high local

intrinsic dimensionality results in high vulnerability.

3. Background

We provide the background for non-targeted and targeted

adversarial attacks in the domain of image classification,

then detail the basic components of CNN-based image re-

trieval approaches, and finally discuss non-targeted attacks

for image retrieval. All variants presented in this section

assume white-box access to the network classifier for clas-

sification or the feature extractor network for retrieval.

3.1. Image classification attacks

We denote the initial RGB image, called the carrier im-

age, by tensor xc ∈ [0, 1]W×H×3, and its associated label

by yc ∈ {1 . . .K}. A CNN trained for K-way classifica-

tion, denoted by function f : RW×H×3 → R
K , produces

vector f(xc) comprising class confidence values. Adversar-

ial attack methods for classification typically study the case

of images with correct class prediction, i.e. argmaxi f(xc)i
is equal to yc, where f(xc)i is the i-th dimension of vec-

tor f(xc). An adversary aims at generating adversarial

image xa that is visually similar to the carrier image but

is classified incorrectly by f . The goal of the attack can

vary [1] and corresponds to different loss functions opti-

mizing x ∈ [0, 1]W×H×3.

Non-targeted misclassification is achieved by reducing

the confidence for class yc, while increasing for all other

classes. It is achieved by minimizing loss function

Lnc(xc, yc;x) = −ℓce(f(x), yc) + λ ||x− xc||
2. (1)

Function ℓce(f(x), yc) is the cross-entropy loss which is

maximized to achieve misclassification. In this way, mis-

classification is performed to any wrong class. Term ||x −
xc||

2 is called carrier distortion or simply distortion and is

the squared l2 norm of the perturbation vector r = x − xc.

Other norms, such as l∞, are also applicable [7].

Targeted misclassification has the goal of generating an

adversarial image that gets classified into target class yt. It

is achieved by minimizing loss function

Ltc(xc, yt;x) = ℓce(f(x), yt) + λ ||x− xc||
2. (2)

In contrast to (1), cross-entropy loss is minimized w.r.t. the

target class instead of maximized w.r.t. the carrier class.

Optimization of (1) or (2) generates the adversarial images

given by

xa = argmin
x

Lnc(xc, yc;x), (3)

or

xa = argmin
x

Ltc(xc, yt;x), (4)

respectively. In the literature [35, 7], various optimizers

such as Adam [16], or L-BFGS [5] are used. The box con-

straints, i.e. x ∈ [0, 1]W×H×3, are ensured by projected
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gradient descent, clipped gradient descent, change of vari-

ables [7], or optimization algorithms that support box con-

straints such as L-BFGS. It is a common practice to per-

form line search for weight λ > 0 and keep the attack of

minimum distortion. The optimization is initialized by the

carrier image.

3.2. Image retrieval components

This work focuses on attacks on CNN-based image re-

trieval with global image descriptors. An image is mapped

to a high dimensional descriptor by a CNN with a global

pooling layer. The descriptor is consequently normalized to

have unit l2 norm. Then, retrieval from a large dataset w.r.t.

a query image reduces to nearest neighbor search via inner

product evaluation between the query descriptor and dataset

descriptors. The model for descriptor extraction consists of

the following components or parameters.

Image resolution: The input image x is re-sampled to im-

age xs to have the largest dimension equal to s.

Feature extraction: Image xs is fed as an input to a Fully

Convolutional Network (FCN), denoted by function g :
R

W×H×3 → R
w×h×d, which maps xs to tensor g(xs).

When the image is fed at its original resolution we denote

it by g(x).

Pooling: A global pooling operation h : Rw×h×d → R
d

maps the input tensor g(xs) to descriptor (h ◦ g)(xs).
We assume that l2 normalization is included in this pro-

cess, so that the output descriptor has unit l2 norm. We

consider various options for pooling, namely, max pool-

ing (MAC) [32, 36], sum pooling (SPoC) [4], general-

ized mean pooling (GeM) [31], regional max pooling (R-

MAC) [36], and spatially and channel-wise weighted sum

pooling (CroW) [15]. The framework can be extended to

multiple other variants [27, 23, 3].

Whitening: Descriptor post-processing is performed by

function w : Rd → R
d, which includes centering, whiten-

ing and l2 re-normalization [31]. Finally, input image xs is

mapped to descriptor (w ◦ h ◦ g)(xs).

For brevity we denote gx = g(x), hx = (h ◦ g)(x), and

wx = (w ◦ h ◦ g)(x). In the following, we consider an

extraction model during the adversarial image optimization

and another one during the testing of the retrieval/matching

performance. In order to differentiate between the two cases

we refer to the components of the former as attack-model,

attack-resolution, attack-FCN, attack-pooling and attack-

whitening and the latter as test-model, test-resolution, test-

FCN, test-pooling and test-whitening.

3.3. Image retrieval attacks

Adversarial attacks for image retrieval are so far limited

to the non-targeted case.

Carrier

Target

Adversarial

Targeted

Mismatch

Attack

Similar descriptors

Figure 2. In targeted mismatch attacks an adversarial image is gen-

erated given a carrier and a target image. The adversarial image

should match the descriptor of the target image but be visually dis-

similar to the target; visual dissimilarity to the target is achieved

via visual similarity to the carrier. The attack is formed by a re-

trieval query using the adversarial image, where the goal is to ob-

tain identical results as with the target query while keeping the

target image private.

Non-targeted mismatch aims at generating an adversarial

image with small perturbation compared to the carrier im-

age and descriptor that is dissimilar to that of the carrier.

This is formulated by loss function

Lnr(xc;x) = ℓnr(x,xc) +λ ||x− xc||
2

= h⊤
x
hxc

+λ ||x− xc||
2. (5)

The adversarial image is given by minimizer

xa = argmin
x

Lnr(xc;x). (6)

In this way, the adversary modifies images into their non-

indexable counterpart. The exact formulation in (5) has not

been addressed; the closest is the work of Li et al. [19]

where they are seeking of a UAP by maximizing l1 descrip-

tor distance instead of minimizing cosine similarity.

4. Method

We formulate the problem of targeted mismatch attack

and then propose various loss functions to address it and to

construct concealed query images.

4.1. Problem formulation

The adversary tries to generate an adversarial image with

the goal of using it as a (concealed) query for image retrieval

instead of a target image. The goal is to obtain the same

retrieval results without disclosing any information about

the target image itself.

We assume a target image xt ∈ R
W×H×3 and a carrier

image xc with the same resolution (see Figure 2). The goal
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of the adversary is to generate an adversarial image xa that

has high descriptor similarity but very low visual similarity

to the target. Visual (human) dissimilarity is not straight-

forward to model; we model visual similarity w.r.t. another

image, i.e. the carrier, instead. We refer to this problem as

targeted mismatch attack and the corresponding loss func-

tion is given by

Ltr(xc,xt;x) = ℓtr(x,xt) + λ ||x− xc||
2. (7)

In Section 4.2 we propose different instantiations of the

performance loss ℓtr according to the known and unknown

components of the test-model.

4.2. Targeted mismatch attacks

In all the following, we assume a white-box access to

the FCN, while the whitening is assumed unknown and is

totally ignored during the optimization of the adversarial

image; its impact on the attack is evaluated by adding it to

the test-model. In general, if all the parameters of the test-

model are known, the task is to generate an adversarial im-

age that reproduces the descriptor of the target image. Then,

nearest neighbor search will retrieve identical results as if

querying with the target image. Choosing a different per-

formance loss introduces invariance or robustness to some

parameters of the attacked retrieval system, when these pa-

rameters are unknown. We list different performance loss

functions used to minimize (7).

Global descriptor. Loss function

ℓdesc(x,xt) = 1− h⊤
x
hxt

. (8)

is suitable when all parameters of the retrieval system are

known, including the pooling, and when the image is pro-

cessed by the neural network at its original resolution. Pool-

ing function h is MAC, SPoC, or GeM in our experiments.

Activation tensor. In this scenario, the output of the FCN

should be the same for the adversarial and target image, at

the original resolution. This is achieved by minimizing the

mean squared difference of the two activation tensors

ℓtens(x,xt) =
||gx − gxt

||2

w · h · d
. (9)

Identical tensors guarantee identical descriptors computed

on top of these tensors, including those where spatial in-

formation is taken into account. This covers all global or

regional pooling operations, and even deep local features,

e.g. DELF [26]. However, our experiments show that pre-

serving the activation tensor may result in transferring the

target’s visual content on the adversarial image (see Fig-

ure 7). Further, the visual appearance of the target image

can be partially recovered by inverting [22] the activation

tensor of the adversarial image.

Activation histogram. Preserving channel-wise first or-

der statistics of the activation tensor, at the original resolu-

tion, is a weaker constraint than preserving the exact activa-

tion tensor. It guarantees identical descriptors for all global

pooling operations that ignore spatial information. Activa-

tion histogram loss function is defined as

ℓhist(x,xt) =
1

d

d∑

i=1

||u(gx,b)i − u(gxt
,b)i||, (10)

where u(gx,b)i is the histogram of activations from the i-th
channel of gx and b is the vector of histogram bin centers.

Histograms are created with soft assignment by an RBF ker-

nel2. Compared with the tensor case, the histogram opti-

mization does not preserve the spatial distribution, is signif-

icantly faster, and does not suffer from undesirable disclo-

sure artifacts.

Different image resolution. We require an adversarial im-

age at the original resolution of the target (W ×H), which

when down-sampled to resolution s, it retrieves similar re-

sults as the target image down-sampled to the same resolu-

tion. This is achieved by loss function

Ls
tr(x,xt;x) = ℓtr(x

s,xs
t ) + λ ||x− xc||

2, (11)

where ℓtr can be any of the descriptor, tensor, or histogram

based performance loss functions. Note that (11) is differ-

ent from (7), the performance loss is computed from re-

sampled images, while the distortion loss is still on the orig-

inal images.

A common down-sampling method used in CNNs is bi-

linear interpolation. We have observed that different im-

plementations of such a layer result in different descrip-

tors. The difference is caused by the presence of high-

frequencies in the high-resolution image. The adversarial

perturbation tends to be high-frequency, therefore differ-

ent down-sampling results may significantly alternate the

result of attack. In order to reduce the sensitivity to down-

sampling, we introduce high-frequency removal by Gaus-

sian blurring in the optimization. Instead of (11), the fol-

lowing loss is used

Lŝ
tr(x,xt;x) = ℓtr(x

ŝ,xŝ
t ) + λ ||x− xc||

2, (12)

where xŝ is image x blurred with Gaussian kernel with σb

and then down-sampled. Our experiments show, that blur-

ring plays an important role when the attack-resolution s
does not exactly match the test-resolution s′, i.e. s′ = s+∆.

Ensembles. We perform the adversarial optimization for a

combination of the aforementioned loss functions by mini-

mizing their sum. Some examples follow.

2We use e
(x−b)2

2σ2 , where σ = 0.1, x is a scalar activation normalized

by the maximum activation value of the target, and b is the bin center. We

uniformly sample bin centers in [0,1] with step equal to 0.05.
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- The test-pooling operation is unknown but there is a set

P of possible pooling operations. Minimization of (7) is

performed for performance loss

ℓP(x,xt) =

∑
p∈P

ℓp(x,xt)

|P|
. (13)

- The test-resolution is unknown. Joint optimization for a set

S of resolutions is performed with

LS
tr (x,xt;x) =

∑
s∈S

ℓtr(x
s,xs

t )

|S|
+ λ ||x− xc||

2. (14)

Any performance loss ℓtr is used, with or without blurring.

4.3. Optimization

The optimization is performed with Adam and projected

gradient descent is used to apply the box constraints, i.e.

x ∈ [0, 1]W×H×3. The adversarial image is initialized by

the carrier image, while after every update its values are

clipped to be in [0, 1]. The adversarial image is given by

xa = argmin
x

Ltr(xc,xt;x), (15)

where Ltr can be Ldesc (with “desc” equal to MAC, SPoC,

or GeM), LP , Lhist, or Ltens according to the variant, while

the variants with multiple scales are denoted e.g. by LS
hist

without blur or LŜ
hist with blur.

5. Experiments

Given a test architecture, we validate the success of the

targeted mismatch attack in two ways. First, by measuring

the cosine similarity between descriptors of the adversar-

ial image xa and the target xt (should be as high as possi-

ble), and second, by using xa as an image retrieval query

and compare its performance with that of the target query

(should be as close as possible)3.

5.1. Datasets and evaluation protocol

We perform experiments on four standard image re-

trieval benchmarks, namely Holidays [14], Copydays [11],

ROxford [30], and RParis [30]. They all consist of a set

of query images and a set of database images, while the

ground-truth denotes which are the relevant dataset images

per query. We choose to perform attacks only with the first

50 queries for Holidays and Copydays to form adversarial

attack benchmarks of reasonable size, while for ROxford

and RParis we keep all 70 of them and use the Medium

evaluation setup. All queries are used as targets to form an

attack and retrieval performance is measured with mean Av-

erage Precision (mAP). Unless otherwise stated we use the

“flower” of Figure 1 as the carrier; it is cropped to match

the aspect ratio of the target. All images are re-sampled to

3Public implementation: https://github.com/gtolias/tma

have the largest dimension equal to 1024, this is the original

image resolution. ROxford and RParis are treated differ-

ently than the other two due to the cropped image queries;

the cropped image region that defines the query is used

as a target and the relative scale change between queries

and database images should be preserved not to affect the

ground truth. When the image resolution for descriptor ex-

traction is different than the original one, we down-sample

the cropped image with the same scaling factor that the un-

cropped one should have been down-sampled with.

5.2. Implementation details and experimental setup

We set the learning rate equal to 0.01 in all our experi-

ments and perform 100 iterations for Ldesc and Lhist, while

1000 iterations for Ltens. If there is no convergence, we de-

crease the learning rate by a factor of 5 and increase the

number of iterations by a factor 2 and re-start. We nor-

malize the distortion term with the dimensionality of x;

this is skipped in the loss function of Sections 3 and 4 for

brevity. Moreover, in order to handle the different range

of activations for different FCNs, we normalize activation

tensors with the maximum target activation before comput-

ing the mean squared error in (9). Image blurring at res-

olution s in (12) is performed by a Gaussian kernel with

σb = 0.3max(W,H)/s. The exponent of GeM pooling is

always set to 3.

Setting λ = 0 provides a trivial solution to (7), i.e. xa =
xt. However, we observe that initialization by xc converges

to local minima that are significantly closer to xc than xt

even for the case of λ = 0. In this way, we satisfy the non-

disclosure constraint, i.e. the adversarial image is visually

dissimilar to the target, and do not sacrifice the performance

loss. The image distortion w.r.t. to the carrier image does

not sacrifice the goal of concealing the target and preserving

user privacy. Therefore, in our experiments we mostly focus

on cases with λ = 0, but also validate cases with λ > 0 to

show the impact of the distortion term or in order to promote

the non-disclosure constraint for the case of Ltens.

We experiment with different loss functions for tar-

geted mismatch attacks. We define S0, S1, S2, and

S3 sets of attack-resolutions4. We denote AlexNet [17],

ResNet18 [13], and VGG16 [34] by A , R , and V , re-

spectively. We use networks that are pre-trained on Ima-

geNet [33] and keep only their fully convolutional part. The

AlexNet and ResNet18 ensemble is denoted by E ; mean

loss over two networks is minimized. We report the triplet

attack-model, loss function and value of λ to denote the

kind of adversarial optimization, for example (A,LS1
hist ,0).

For testing, we report the triplet test-model, test-pooling and

test-resolution, for example [A,GeM,S0].

4S0 = {1024}, S1 = S0 ∪ {300, 400, 500, 600, 700, 800, 900},

S2 = S1 ∪ {350, 450, 550, 650, 750, 850, 950}, S3 = S0 ∪
{262, 289, 319, 351, 387, 427, 470, 518, 571, 630, 694, 765, 843, 929}
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Figure 3. Adversarial images are generated with different loss functions and various measurements are reported as they evolve with the

number of iterations. The presented measurements are: (a) the distortion w.r.t. the carrier image, (b) the performance loss from (7), (c)

descriptor similarity of the adversarial image to the target for test case [A,GeM,S0] and (d) descriptor similarity of the adversarial image

to the carrier for test case [A,GeM,S0]. The target and carrier images are the ones shown in Figure 7.
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Figure 4. Descriptor similarity between the adversarial image and

the target or the carrier as it evolves with the number of itera-

tions. Comparison for test-resolutions that are not in the attack-

resolutions for cases without (solid) and with (dashed) blurring.

The adversarial optimization (left) and the test model (right) are

denoted with →. The target and carrier images are from Figure 7.

5.3. Results

For each adversarial image we perform the following

measurements. We compute its similarity to the target and

to the carrier by cosine similarity of the corresponding de-

scriptors, we measure the carrier distortion and, lastly, we

perform an attack by using it as a query and measure the

average precision which is compared to that of the target.

Optimization iterations. We perform the optimization for

different loss functions and report the measurements over

iteration in Figure 3. Optimizing global descriptor or his-

togram converges much faster than the tensor case and re-

sults in significantly lower distortion. This justifies our

choice of using a lower number of iterations for the two

approaches. Increasing the value of λ keeps the distortion

lower but sacrifices the performance loss, as expected.

h

Ltr
Original LGeM LP Lhist Ltens

mAP mAP difference to original

GeM 41.3 −0.0 −0.0 −0.2 −0.1

MAC 37.0 −0.5 −0.0 −0.8 −0.0

SPoC 32.9 −4.4 −0.1 −0.1 −0.7

R-MAC 44.1 −1.2 −0.5 −0.7 −0.0

CroW 38.2 −1.3 −0.4 −0.2 −0.0

x
⊤

t xa

GeM 1.000 1.000 1.000 0.997 0.998

MAC 1.000 0.972 1.000 0.985 0.996

SPoC 1.000 0.909 1.000 0.999 0.996

R-MAC 1.000 0.972 0.978 0.979 0.997

CroW 1.000 0.968 0.994 0.995 0.998

Table 1. Performance evaluation for attacks based on AlexNet and

various loss functions optimized at the original image resolution

S0. Testing is performed on [A,desc,S0] for multiple types of de-

scriptor/pooling. Mean average Precision on RParis and mean

descriptor similarity between the adversarial image and the tar-

get across all queries is reported. Original corresponds to queries

without attack.

In Figure 4 we show how the similarity to the target and

the carrier evolves for test-resolution that is not included in

the set of attack-resolutions. Processing the images with

image blurring offers significant improvements, especially

for the smaller resolutions.

Robustness to unknown test-pooling. In Table 1 we

present the evaluation comparison for different loss func-

tions and test-pooling. The case of same attack-resolution

and test-resolution is examined first. If the test-pooling is

directly optimized (LGeM or LP case), then perfect perfor-

mance is achieved. The histogram and tensor based ap-

proaches both perform well for a variety of test-descriptors.

Robustness to unknown test-resolution. Cases with dif-

ferent attack-resolution and test-resolution are evaluated

and results are presented in Figure 5. Resolutions that
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Figure 5. Performance evaluation for attack based on AlexNet and a set of attack-resolutions. Mean average Precision on RParis and mean

descriptor similarity between the adversarial image and the target across all queries is shown for increasing test-resolution. Comparison

using different sets of attack-resolutions and comparison for optimization without (S) and with (Ŝ) image blurring.

Target Carrier λ=10 λ=1 λ=0
xt xc xa xa xa

0.702 0.873 0.987 0.998

0.796 0.953 0.995 0.999
Figure 6. Adversarial examples for a carrier image and two dif-

ferent targets while optimizing (A,L
Ŝ2
hist,λ) for various values of λ.

Descriptor similarity is reported for [A,GeM,S0].

are not part of the attack-resolutions suffer from signifi-

cant drop in performance when blurring is not performed,

while blurring improves it. We observe how the retrieval

performance and descriptor similarity between adversarial

image and target are correlated. Moreover, the optimization

for multiple resolutions is clearly better than that for single

resolution, while logarithmic sampling of attack-resolutions

(S3) significantly improves the performance for very small

test-resolution but harms it for larger ones.

Impact of the distortion term. We evaluate [A,GeM,S0]

on queries of RParis for (A,LŜ2

hist,λ) and λ equal to 0, 0.1,

1, 10. The average similarity between the adversarial im-

age and the target is 0.990, 0.987, 0.956, and 0.767, re-

spectively, while the average distortion is 0.0177, 0.0083,

0.0026, and 0.0008, respectively. Examples of adversarial

images are shown in Figure 6.

Impact of the whitening in the test-model. We now

consider the case that the test-model includes descriptor

whitening. The whitening is unknown during the time of

the adversarial optimization. We evaluate the performance

on RParis while learning whitening with PCA on ROxford.

Testing without whitening and [A,GeM,S0] or [A,GeM,768]
achieves 41.3, and 40.2 mAP, respectively. After apply-

ing whitening the respective performances increase to 47.5

and 48.0 mAP. Attacks with (A,LŜ2

hist,0) achieve 40.2, and

39.4 mAP when tested in the aforementioned cases without

whitening. Attacks with (A,LŜ2

hist,0) achieve 47.3, and 42.9

mAP when tested in the aforementioned cases with whiten-

ing. Whitening introduces additional challenges, but the at-

tacks seem effective with slightly reduced performance.

Concealing/revealing the target. We generate adversar-

ial images for different loss functions and show examples

in Figure 7. The corresponding tensors show that spatial

information is only preserved in the tensor-based loss func-

tion. The tensor-based approach requires the distortion term

to avoid revealing visual structures of the target (adversarial

images in 6-th and 7-th column). We now pose the ques-

tion “can the FCN activations of the adversarial image re-

veal the content of the target?”. To answer, we invert tensor

gxa
at multiple resolutions using the method of Mahendran

and Vedaldi [22]. The tensor-based approach indeed reveals

the target’s content in the reconstruction, while no other ap-

proach does. This highlights the benefits of the proposed

histogram-based optimization. Note that the reconstructed

image resembles the target less if the resolutions used in

the reconstruction are not the same as the attack-resolutions

(rightmost column).

Timings. We report the average optimization time per tar-

get image on Holidays dataset and on a single GPU (Tesla

P100) for some indicative cases. Optimizing (A,LGeM,0),

(A,LŜ1

GeM,0), (A,LŜ1

hist,0), (A,LŜ2

hist,0), and (A,LŜ1

tens,0) takes

1.9, 7.5, 12.3, 22.9, and 68.4 seconds, respectively. Using

ResNet18 (R ,LGeM,0) and (R ,LŜ2

hist,0) take 3.9 and 40.6 sec-

onds, respectively.

Multiple attacks. We show results of multiple attacks in

Table 2. We present the original retrieval performance to-

gether with the difference in the performance caused by the

attack. It summarizes the robustness of the histogram and

tensor based optimization to unknown pooling operations.

It emphasizes the challenges of unknown test-resolution and

the impact of the blurring; this outcome can be useful in

various different attack models. The very last row suggests

that transferring attacks to different FCNs (optimizing on

E , which includes A and R , and testing on V ) is hard to

achieve; it is harder than for classification [35].
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Ŝ1
GeM,0) (A,L

Ŝ1
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Ŝ1
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Ŝ1
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Ŝ1
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Ŝ2
tens,0) (A,L
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xt xc xa xa xa xa xa xa xa

0.782 1.000 1.000 0.994 0.999 0.997 0.998 0.997

S1 S1 S1 S1 S1 S1 S1 S2 S2 \ S1

Figure 7. Target, carrier and adversarial images for different variants (top image row), a summary of tensor gx by depth-wise maximum

(middle image row) and the inversion of gxt , gxc , or gxa , respectively, over multiple resolutions (bottom image row). The resolutions

for inversion are reported below the bottom row. The tensor inversion shows whether the target, or any information about it, can be

reconstructed from the adversarial image. The first two inversions are presented as a reference. Descriptor similarity to the target is

reported below the first image row for [A,GeM,1024].

Attack Test ROxford RParis Holidays Copydays

(A,L
Ŝ2
hist,0) [A,GeM,S0] 26.9 / +0.2 41.3 / -1.2 81.5 / +0.2 80.4 / -0.4

(R ,L
Ŝ2
GeM,0)

[R ,GeM,S0] 21.5 / -0.7 46.9 / -0.4 82.9 / -0.3 69.3 / -0.7

[R ,GeM,768] 24.0 / -2.5 48.0 / -3.9 81.7 / -4.4 75.6 / -2.8

[R ,GeM,512] 22.4 / -6.7 49.7 /-11.1 82.8 / -0.6 82.1 /-10.7

(R ,L
S2
hist ,0)

[R ,GeM,S0] 21.5 / -1.2 46.9 / -1.9 82.9 / -0.6 69.3 / -1.3

[R ,GeM,768] 24.0 / -3.7 48.0 / -7.2 81.7 / -2.3 75.6 / -7.1

[R ,GeM,512] 22.4 /-11.2 49.7 /-20.7 82.8 /-17.1 82.1 /-20.6

(R ,L
Ŝ2
hist,0)

[R ,GeM,S0] 21.5 / -1.4 46.9 / -1.8 82.9 / -2.4 69.3 / -1.3

[R ,GeM,768] 24.0 / -5.3 48.0 / -6.0 81.7 / -1.7 75.6 / -4.2

[R ,GeM,512] 22.4 / -7.4 49.7 /-11.9 82.8 / -4.9 82.1 /-11.3

(R ,L
Ŝ2
P
,0)

[R ,CroW,S0]

22.0 / -1.1 45.0 / -0.5 81.0 / +0.9 67.0 / -1.6

(R ,L
Ŝ2
hist,0) 22.0 / -0.3 45.0 / -0.8 81.0 / +1.3 67.0 / -1.0

(R ,L
Ŝ2
tens,0) 22.0 / -0.7 45.0 / -0.0 81.0 / -0.6 67.0 / -3.0

(E,L
Ŝ2
hist,0)

[A,GeM,S0] 26.9 / -2.3 41.3 / -5.5 81.5 / -3.1 80.4 / -4.9

[R ,CroW,S0] 22.0 / -1.1 45.0 / -0.8 81.0 / +1.0 67.0 / -0.8

[V ,GeM,S0] 38.1 /-34.9 54.0 /-47.4 85.7 /-72.6 80.0 /-72.9

Table 2. Performance evaluation for multiple attacks, test-models,

and datasets. Mean average Precision over the original queries,

together with the mAP difference to the original caused by the

attack, is reported. The parameters of the adversarial optimization

during the attack are shown in the leftmost column, while the type

of test-model used is shown in the second column.

6. Conclusions

We have introduced the problem of targeted mismatch

attack for image retrieval and address it in order to con-

struct concealed query images instead of the initial intended

query. We show that optimizing the first order statistics is

a good way to generate images that result in the desired

descriptors without disclosing the content of the intended

query. We analyze the impact of image re-sampling, which

is a natural component of image retrieval systems and reveal

the benefits of simple image blurring in the adversarial im-

age optimization. Finally, we show that transferring attacks

to new FCNs are much more challenging than their image

classification counterparts.

We focused on concealing the query in a privacy preserv-

ing scenario. In a malicious scenario the adversary might try

to corrupt the search results by targeted mismatch attacks on

indexed images. This is an interesting direction and an open

research problem.
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[30] Filip Radenović, Ahmet Iscen, Giorgos Tolias, Yannis
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