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Figure 1: Left: Our xR-EgoPose Dataset setup: (a) external camera viewpoint showing a synthetic character wearing the

headset; (b) example of photorealistic image rendered from the egocentric camera perspective; (c) 2D and (d) 3D poses

estimated with our algorithm. Right: results on real images; (e) real image acquired with our HMD-mounted camera with

predicted 2D heatmaps; (f) estimated 3D pose, showing good generalization to real images.

Abstract

We present a new solution to egocentric 3D body pose

estimation from monocular images captured from a down-

ward looking fish-eye camera installed on the rim of a head

mounted virtual reality device. This unusual viewpoint, just

2 cm away from the user’s face, leads to images with unique

visual appearance, characterized by severe self-occlusions

and strong perspective distortions that result in a drastic

difference in resolution between lower and upper body. Our

contribution is two-fold. Firstly, we propose a new encoder-

decoder architecture with a novel dual branch decoder de-

signed specifically to account for the varying uncertainty in

the 2D joint locations. Our quantitative evaluation, both on

synthetic and real-world datasets, shows that our strategy

leads to substantial improvements in accuracy over state of

the art egocentric pose estimation approaches. Our second

contribution is a new large-scale photorealistic synthetic

dataset – xR-EgoPose – offering 383K frames of high qual-

ity renderings of people with a diversity of skin tones, body

shapes, clothing, in a variety of backgrounds and lighting

conditions, performing a range of actions. Our experiments

show that the high variability in our new synthetic training

corpus leads to good generalization to real world footage

and to state of the art results on real world datasets with

ground truth. Moreover, an evaluation on the Human3.6M

benchmark shows that the performance of our method is

on par with top performing approaches on the more classic

problem of 3D human pose from a third person viewpoint.

1. Introduction

The advent of xR technologies (such as AR, VR, and

MR) have led to a wide variety of applications in areas such

as entertainment, communication, medicine, CAD design,

art, and workspace productivity. These technologies mainly

focus on immersing the user into a virtual space by the

use of a head mounted display (HMD) which renders the

environment from the very specific viewpoint of the user.

However, current solutions have been focusing so far on

the video and audio aspects of the user’s perceptual sys-

tem, leaving a gap in the touch and proprioception senses.

Partial solutions to the proprioception problem have been

limited to hands whose positions are tracked and rendered

in real time by the use of controller devices. The 3D pose of

the rest of the body can be inferred from inverse kinemat-

ics of the head and hand poses [16], but this often results in

inaccurate estimates of the body configuration with a large

loss of signal which impedes compelling social interaction

[14] and even leads to motion sickness [36].

In this paper we present a new approach for full-body 3D

human pose estimation from a monocular camera mounted

on the rim of a HMD looking down, effectively just 2 cm

away from an average size nose. With this unique camera

viewpoint, most of the lower body appears self-occluded

(see right images of Fig. 2). In addition, the strong perspec-

tive distortion, due to the fish-eye lens and the camera being

so close to the face, results in a drastic difference in resolu-

tion between the upper and lower body (see Fig. 3). Con-
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sequently, estimating 2D or 3D pose from images captured

from this first person viewpoint is considerably more chal-

lenging than from the more standard external perspective

and, therefore, even state of the art approaches to human

pose estimation [42] underperform on our input data.

Our work tackles the two main challenges described

above: (i) given the unique visual appearance of our input

images and the scarcity of training data for the specific sce-

nario of a HMD mounted camera, we have created a new

large scale photorealistic synthetic dataset for training with

both 2D and 3D annotations; and (ii) to tackle the challeng-

ing problem of self-occlusions and difference in resolution

between lower and upper body we have proposed a new ar-

chitecture that accounts for the uncertainty in the estimation

of the 2D location of the body joints.

More specifically, our solution adopts a two-step ap-

proach. Instead of regressing directly the 3D pose from in-

put images, we first train a model to extract the 2D heatmaps

of the body joints and then regress the 3D pose via an auto-

encoder with a dual branch decoder. While one branch is

trained to regress 3D pose from the encoding, the other re-

constructs input 2D heatmaps. This way, the latent vector is

enforced to encode the uncertainty in the 2D joint estimates.

The auto-encoder helps to infer accurate joint poses for oc-

cluded body parts or those with high uncertainty. Both sub-

steps are first trained independently and finally end-to-end

as the resulting network is fully differentiable. The train-

ing is performed on real and synthetic data. The synthetic

dataset was created with a large variety of body shapes, en-

vironments, and body motions.

Our contributions can be summarized as:

• A new encoder-decoder network for egocentric full-

body 3D pose estimation from monocular images cap-

tured from a camera-equipped VR headset (Sec. 5.2).

Our quantitative evaluation on both synthetic and real-

world benchmarks with ground truth 3D annotations

shows that our approach outperforms previous state of

the art [55]. Our ablation studies show that the in-

troduction of our novel decoder branch, trained to re-

construct the 2D input heatmaps, is responsible for the

drastic improvements in 3D pose estimation.

• We show that our new approach generalizes, without

modifications, to the standard scenario of an exter-

nal front facing camera. Our method is currently the

second best performing after [46] on the Human3.6M

benchmark.

• A new large-scale training corpus, composed of 383K

frames, that will be made publicly available to pro-

mote progress in the area of egocentric human pose

capture (see Section 4). Our new dataset departs from

the only other existing monocular egocentric dataset

from a headmounted fish-eye camera [55] in its photo-

realistic quality (see Fig. 2), different viewpoint (since

the images are rendered from a camera located on a

VR HMD), and its high variability in characters, back-

grounds and actions.

2. Related Work

We describe related work on monocular (single-camera)

marker-less 3D human pose estimation focusing on two dis-

tinct capture setups: outside-in approaches where an exter-

nal camera viewpoint is used to capture one or more sub-

jects from a distance – the most commonly used setup; and

first person or egocentric systems where a head-mounted

camera observes the own body of the user. While our paper

focuses on the second scenario, we build on recent advances

in CNN-based methods for human 3D pose estimation. We

also describe approaches that incorporate wearable sensors

for first person human pose estimation.

Monocular 3D Pose Estimation from an External Cam-

era Viewpoint: the advent of convolutional neural net-

works and the availability of large 2D and 3D training

datasets [18, 3] has recently allowed fast progress in monoc-

ular 3D pose estimation from RGB images captured from

external cameras. Two main trends have emerged: (i) fully

supervised regression of 3D joint locations directly from

images [22, 31, 47, 58, 32, 27] and (ii) pipeline approaches

that decouple the problem into the tasks of 2D joint detec-

tion followed by 3D lifting [26, 29, 35, 1, 59, 60, 4, 43].

Progress in fully supervised approaches and their ability to

generalize has been severely affected by the limited avail-

ability of 3D pose annotations for in-the-wild images. This

has led to significant efforts in creating photorealistic syn-

thetic datasets [39, 51] aided by the recent availability of

parametric dense 3D models of the human body learned

from body scans [24]. On the other hand, the appeal of two-

step decoupled approaches comes from two main advan-

tages: the availability of high-quality off-the-shelf 2D joint

detectors [53, 30, 34, 6] that only require easy-to-harvest

2D annotations, and the possibility of training the 3D lift-

ing step using 3D mocap datasets and their ground truth

projections without the need for 3D annotations for im-

ages. Even simple architectures have been shown to solve

this task with a low error rate [26]. Recent advances are

due to combining the 2D and 3D tasks into a joint estima-

tion [41, 42] and using weakly [54, 48, 50, 9, 33] or self-

supervised losses [49, 38] or mixing 2D and 3D data for

training [46].

First Person 3D Human Pose Estimation: while captur-

ing users from an egocentric camera perspective for activ-

ity recognition has received significant attention in recent

years [11, 25, 5], most methods detect, at most, only up-

per body motion (hands, arms or torso). Capturing full 3D

body motion from head-mounted cameras is considerably
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Figure 2: Example images from our xR-EgoPose Dataset compared with the competitor Mo2Cap2 dataset [55]. The quality

of our frames is far superior than the randomly sampled frames from mo2cap2, where the characters suffer color matching

with respect to the background light conditions.

more challenging. Some head-mounted capture systems are

based on RGB-D input and reconstruct mostly hand, arm

and torso motions [40, 57]. Jiang and Grauman [20] re-

construct full body pose from footage taken from a cam-

era worn on the chest by estimating egomotion from the

observed scene, but their estimates lack accuracy and have

high uncertainty. A step towards dealing with large parts of

the body not being observable was proposed in [2] but for

external camera viewpoints. Rhodin et al. [37] pioneered

the first approach towards full-body capture from a helmet-

mounted stereo fish-eye camera pair. The cameras were

placed around 25 cm away from the user’s head, using tele-

scopic sticks, which resulted in a fairly cumbersome setup

for the user but with the benefit of capturing large field of

view images where most of the body was in view. A monoc-

ular head-mounted systems for full-body pose estimation

has more recently been demonstrated by Xu et al. [55], who

propose a real-time compact setup mounted on a baseball

cap, although in this case the egocentric camera is placed

a few centimeters further from the user’s forehead than in

our proposed approach. Our approach substantially outper-

forms Xu et al.’s method [55] by at least 20% on both in-

door and outdoor sequences from their real world evaluation

dataset.

3D Pose Estimation from Wearable Devices: Inertial

Measurement Units (IMUs) worn by the subject provide a

camera-free alternative solution to first person human pose

estimation. However, such systems are intrusive and com-

plex to calibrate. While reducing the number of sensors

leads to a less invasive configuration [52] recovering ac-

curate human pose from sparse sensor readings becomes a

more challenging task. An alternative approach, introduced

by Shiratori et al. [44] consists of a multi-camera structure-

from-motion (SFM) approach using 16 limb-mounted cam-

eras. Still very intrusive, this approach suffers from motion

blur, automatic white balancing, rolling shutter effects and

motion in the scene, making it impractical in realistic sce-

narios.

3. Challenges in Egocentric Pose Estimation

Fig. 3 provides a visualization of the unique visual ap-

pearance of our HMD egocentric setup — the top row

shows which body parts would become self-occluded from

an egocentric viewpoint. The continuous graduation from

bright red to dark green encodes the increasing pixel res-

olution for the corresponding colored area. This unusual

visual appearance calls both for a new approach and a new

training corpus. Our paper tackles both. Our new neural

network architecture encodes the difference in uncertainty

between upper and lower body joints caused by the varying

resolution, extreme perspective effects and self-occlusions.

On the other hand, our new large-scale synthetic training set

— xR-EgoPose — contains 383K images rendered from

a novel viewpoint: a fish-eye camera mounted on a VR

display. It has quite superior levels of photorealism in

contrast with the only other existing monocular egocentric

dataset [55] (see Fig. 2 for a side to side comparison), and

large variability in the data. To enable quantitative evalua-

tions on real world images, we contribute xR-EgoPoseR, a

smaller scale real-world dataset acquired with a lightweight

setup – a real fish-eye camera mounted on a VR display –

with ground truth 3D pose annotations. Our extensive ex-

perimental evaluations show that our new approach outper-

forms the current state of the art in monocular egocentric

3D pose estimation [55] both on synthetic and real-world

datasets.

4. xR-EgoPose Synthetic Dataset

The design of the dataset focuses on scalability, with

augmentation of characters, environments, and lighting

conditions. A rendered scene is generated from a random

selection of characters, environments, lighting rigs, and an-

imation actions. The animations are obtained from mocap

data. A small random displacement is added to the posi-

tioning of the camera on the headset to simulate the typical

variation of the pose of the headset with respect to the head

when worn by the user.

Characters: To improve the diversity of body types, from a
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Figure 3: Visualization of different poses with the same character. Top: poses rendered from an external camera viewpoint.

White represents occlusion, which is body parts that would not be visible from the egocentric perspective. Bottom: poses

rendered from the egocentric camera viewpoint. Color gradient indicates the density of image pixels for each area of the

body: green is higher pixel density, whereas red is lower density. This figure illustrates the challenges faced in egocentric

human pose estimation: severe self-occlusions, extreme perspective effects and lower pixel density for the lower body.

single character we generate additional skinny short, skinny

tall, full short, and full tall versions The height distribution

of each version varies from 155 cm to 189 cm.

Skin: color tones include white (Caucasian, freckles or

Albino), light-skinned European, dark-skinned European

(darker Caucasian, European mix), Mediterranean or olive

(Mediterranean, Asian, Hispanic, Native American), dark

brown (Afro-American, Middle Eastern), and black (Afro-

American, African, Middle Eastern). Additionally, we built

random skin tone parameters into the shaders of each char-

acter used with the scene generator.

Clothing: Clothing types include athletic pants, jeans,

shorts, dress pants, skirts, jackets, T-Shirts, long sleeves,

and tank tops. Shoes include sandals, boots, dress shoes,

athletic shoes, crocs. Each type is rendered with different

texture and colors.

Actions: the type of actions are listed in Table 1.

Images: the images have a resolution of 1024 × 1024 pix-

els and 16-bit color depth. For training and testing, we

downsample the color depth to 8 bit. The frame rate is 30
fps. RGB, depth, normals, body segmentation, and pixel

world position images are generated for each frame, with

the option for exposure control for augmentation of lighting.

Metadata is provided for each frame including 3D joint po-

sitions, height of the character, environment, camera pose,

body segmentation, and animation rig.

Render quality: Maximizing the photorealism of the syn-

thetic dataset was our top priority. Therefore, we animated

the characters in Maya using actual mocap data [17], and

used a standardized physically based rendering setup with

V-Ray. The characters were created with global custom

shader settings applied across clothing, skin, and lighting

of environments for all rendered scenes.

4.1. Training, Test, and Validation Sets

The dataset has a total size of 383K frames, with 23 male

and 23 female characters, divided into three sets: Train-

set: 252K frames; Test-set: 115K frames; and Validation-

set: 16K frames. The gender distribution is: Train-set:

13M/11F, Test-set: 7M/5F and Validation-set: 3M/3F. Ta-

ble 1 provides a detailed description of the partitioning of

the dataset according to the different actions.

Action N. Frames Size Train Size Test

Gaming 24019 11153 4684

Gesticulating 21411 9866 4206

Greeting 8966 4188 1739

Lower Stretching 82541 66165 43491

Patting 9615 4404 1898

Reacting 26629 12599 5104

Talking 13685 6215 2723

Upper Stretching 162193 114446 46468

Walking 34989 24603 9971

Table 1: Total number of frames per action and their dis-

tribution between train and test sets. Everything else not

mentioned is validation data.

5. Architecture

Our proposed architecture, shown in Fig. 4, is a two step

approach with two modules. The first module detects 2D

heatmaps of the locations of the body joints in image space

using a ResNet [13] architecture. The second module takes

the 2D heatmaps as inputs and regresses the 3D coordinates

of the body joints using a novel dual branch auto-encoder.

One of the most important advantages of this pipeline ap-

proach is that 2D and 3D modules can be trained indepen-

dently according to the available training data. For instance,
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Figure 4: Our novel two-step architecture for egocentric 3D human pose estimation has two modules: a) the 2D heatmap

estimator, based on ResNet101 [13] as the core architecture; b) the 3D lifting module takes 2D heatmaps as input and is based

on our novel dual branch auto-encoder.

if a sufficiently large corpus of images with 3D annotations

is not available, the 3D lifting module can be trained inde-

pendently using 3D mocap data and its projected heatmaps.

Once the two modules are pre-trained the entire architecture

can be fine-tuned end-to-end since it is fully differentiable.

A further advantage of this architecture is that the second

branch is only needed at training time (see Sec. 5.2) and

can be removed at test time, guaranteeing the same perfor-

mance and a faster execution.

5.1. 2D Pose Detection

Given an RGB image I ∈ R
368×368×3 as input, the

2D pose detector infers 2D poses, represented as a set of

heatmaps HM ∈ R
47×47×15, one for each of the body

joints. For this task we have used a standard ResNet

101 [13] architecture, where the last average pooling and

fully connected layers have been replaced by a deconvo-

lutional layer, with kernel size = 3 and stride = 2. The

weights have been randomly initialized using Xavier initial-

ization [12]. The model was trained using normalized input

images, obtained by subtracting the mean value and divid-

ing by the standard deviation, and using the mean square

error of the difference between the ground truth heatmaps

and the predicted ones as the loss:

L2D = mse(HM, ĤM) (1)

We also trained alternative 2D pose detectors including

the CPM [53] and the Stacked Hourglass Network [30] re-

sulting in comparable performance at a higher computa-

tional cost.

5.2. 2D­to­3D Mapping

The 3D pose module takes as input the 15 heatmaps com-

puted by the previous module and outputs the final 3D pose

P ∈ R
16×3. Note that the number of output 3D joints is

16 since we include the head which despite being out of

the field of view it can be regressed in 3D. In most pipeline

approaches the 3D lifting module typically takes as input

the 2D coordinates of the detected joints. Instead, similarly

to [33], our approach regresses the 3D pose from heatmaps,

not just 2D locations. The main advantage is that these carry

important information about the uncertainty of the 2D pose

estimates.

The main novelty of our architecture (see Fig. 4), is

that we ensure that this uncertainty information is not lost.

While the encoder takes as input a set of heatmaps and

encodes them into the embedding ẑ, the decoder has two

branches – one to regress the 3D pose from ẑ and another to

reconstruct the input heatmaps. The purpose of this branch

is to force the latent vector to encode the probability density

function of the estimated 2D heatmaps.

The overall loss function for the auto-encoder becomes

LAE = λp(||P− P̂||2 +R(P, P̂)) +

λhm||ĤM− H̃M||2 (2)

P the ground truth; H̃M is the set of heatmaps regressed by

the decoder from the latent space and ĤM are the heatmaps

regressed by ResNet (see Sec. 5.1). Finally R is the loss

over the 3D poses R(P, P̂) = λθθ(P, P̂) + λLL(P, P̂)
with

θ(P, P̂) =

L∑

l

Pl · P̂l

||P|| ∗ ||P̂l||
L(P, P̂) =

L∑

l

||Pl − P̂l||

corresponding to the cosine-similarity error and the limb-

length error, with Pl ∈ R
3 the lth limb of the pose. An

important advantage of this loss is that the model can be

trained on a mix of 3D and 2D datasets simultaneously: if

an image sample only has 2D annotations then λp = 0,

such that only the heatmaps are contributing to the loss. In

Section 6.4 we show how having a larger corpus of 2D an-

notations can be leveraged to improve final 3D body pose

estimates.

5.3. Training Details

The model has been trained on the entire training set

for 3 epochs, with a learning rate of 1e − 3 using batch

normalization on a mini-batch of size 16. The deconvolu-

tional layer used to identify the heatmaps from the features

computed by ResNet has kernel size = 3 and stride = 2.
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Approach
Evaluation

error (mm)
Gaming Gesticulating Greeting

Lower

Stretching
Patting Reacting Talking

Upper

Stretching
Walking All

Martinez [26]
Upper body 58.5 66.7 54.8 70.0 59.3 77.8 54.1 89.7 74.1 79.4
Lower body 160.7 144.1 183.7 181.7 126.7 161.2 168.1 159.4 186.9 164.8
Average 109.6 105.4 119.3 125.8 93.0 119.7 111.1 124.5 130.5 122.1

Ours - single-branch
Upper body 114.4 106.7 99.3 90.9 99.1 147.5 95.1 119.0 104.3 112.5
Lower body 162.2 110.2 101.2 175.6 136.6 203.6 91.9 139.9 159.0 148.3
Average 138.3 108.5 100.3 133.3 117.8 175.6 93.5 129.0 131.9 130.4

Ours - dual-branch
Upper body 48.8 50.0 43.0 36.8 48.6 56.4 42.8 49.3 43.2 50.5
Lower body 65.1 50.4 46.1 65.2 70.2 65.2 45.0 58.8 72.2 65.9
Average 56.0 50.2 44.6 51.1 59.4 60.8 43.9 53.9 57.7 58.2

Table 2: Quantitative evaluation with Martinez et al. [26], a state-of-the-art approach developed for front-facing cameras.

Both upper and lower body reconstructions are shown as well. A comparison with our own architecture using a single-

branch decoder is also included. Note how the competing approach fails consistently across different actions in lower body

reconstructions. This experiment emphasizes how, even a state-of-the-art 3D lifting method developed for external cameras

fails on this challenging task.

The convolutional and deconvolutional layers of the en-

coder have kernel size = 4 and stride = 2. Finally, all the

layers of the encoder use leakly ReLU as activation function

with 0.2 leakiness. The λ weights used in the loss function

were identified through grid search and set to λhm = 10−3,

λp = 10−1, λθ = −10−2 and λL = 0.5 . The model has

been trained from scratch with Xavier weight initializer.

6. Experimental Evaluation

We evaluate the proposed approach quantitatively on a

variety of egocentric 3D human pose datasets: (i) the test-

set of xR-EgoPose, our synthetic corpus, (ii) the test-set

of xR-EgoPoseR, our smaller scale real-world dataset ac-

quired with a real fish-eye camera mounted on a VR dis-

play and with ground truth 3D poses, and (iii) the Mo2Cap2

test-set [55] which includes 2.7K frames of real images with

ground truth 3D poses of two people captured in indoor and

outdoor scenes.

In addition we evaluate quantitatively on the Hu-

man3.6M dataset to show that our architecture generalizes

well without any modifications to the case of an external

camera viewpoint.

Evaluation protocol: Unless otherwise mentioned, we re-

port the Mean Per Joint Position Error - MPJPE:

E(P, P̂) =
1

Nf

1

Nj

Nf∑

f=1

Nj∑

j=1

||P
(f)
j − P̂

(f)
j ||2 (3)

where P
(f)
j and P̂

(f)
j are the 3D points of the ground truth

and predicted pose at frame f for joint j, out of Nf number

of frames and Nj number of joints.

6.1. Evaluation on our Egocentric Synthetic Dataset

Evaluation on xR-EgoPose test-set: Firstly, we evaluate

our approach on the test-set of our synthetic xR-EgoPose

dataset. It was not possible to establish a comparison with

state of the art monocular egocentric human pose estima-

tion methods such as Mo2Cap2 [55] given that their code

has not been made publicly available. Instead we compare

with Martinez et al. [26], a recent state of the art method for

a traditional external camera viewpoint. For a fair compar-

ison, the training-set of our xR-EgoPose dataset has been

used to re-train the model of Martinez et al. This way we

can directly compare the performance of the 2D to 3D mod-

ules.

Table 2 reports the MPJPE (Eq. 3) for both methods

showing that our approach (Ours-dual-branch) outperforms

that by Martinez et al. by 36.4% in the upper body recon-

struction, 60% in the lower body reconstruction, and 52.3%

overall, showing a considerable improvement.

Effect of the second decoder branch: Table 2 also reports

an ablation study to compare the performance of two ver-

sions of our approach: with (Ours-dual-branch) and with-

out (Ours-single-branch) the second branch for the decoder

which reconstructs the heatmaps
ˆ̃

HM from the encoding

z. The overall average error of the single branch encoder

is 130.4 mm, far from the 58.2 mm error achieved by our

novel dual-branch architecture.

Reconstruction errors per joint type: Table 4 reports a

decomposition of the reconstruction error into different in-

dividual joint types. The highest errors are in the hands (due

to hard occlusions when they go outside of the field of view)

and feet (due to self-occlusions and low resolution).

6.2. Evaluation on Egocentric Real Datasets

Comparison with Mo2Cap2 [55]: We compare the results

of our approach with those given by our direct competitor,

Mo2Cap2, on their real world test set, including both indoor

and outdoor sequences. To guarantee a fair comparison, the

authors of [55] provided us the heatmaps from their 2D joint

estimator. This way, both 3D reconstruction networks use

the same input. Table 6 reports the MPJPE errors for both

methods. Our dual-branch approach substantially outper-

forms Mo2Cap2 [55] in both indoor and outdoor scenarios.

Note that the dataset provided by the stereo egocentric sys-

tem EgoCap [37] cannot be directly used for comparison,
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Protocol #1 Chen Hossain Dabral Tome Moreno Kanazawa Zhou Jahangiri Mehta Martinez Fang Sun Sun Ours

[7] [15]* [8]* [48] [29] [21] [61] [19] [27] [26] [10] [45] [46]

Errors (mm) 114.2 51.9 52.1 88.4 87.3 88.0 79.9 77.6 72.9 62.9 60.4 59.1 49.6 53.4

Protocol #2 Yasin Hossain Dabral Rogez Chen Moreno Tome Zhou Martinez Kanazawa Sun Fang Sun Ours

[56] [15]* [8]* [39] [7] [29] [48] [61] [26] [21] [45] [10] [46]

Errors (mm) 108.3 42.0 36.3 88.1 82.7 76.5 70.7 55.3 47.7 58.8 48.3 45.7 40.6 45.24

Table 3: Comparison with other state-of-the-art approaches on the Human3.6M dataset (front-facing cameras). Approaches

with * make use of temporal information.

due to the hugely different camera position relative to the

head (their stereo cameras are 25 cm from the head).

Evaluation on xR-EgoPoseR: The ∼ 10K frames of our

small scale real-world data set were captured from a fish-

eye camera mounted on a VR HMD worn by three different

actors wearing different clothes, and performing 6 different

actions. The ground truth 3D poses were acquired using a

custom mocap system. The network was trained on our syn-

thetic corpus (xR-EgoPose) and fine-tuned using the data

from two of the actors. The test set contained data from

the unseen third actor. Examples of the input views and the

reconstructed poses are shown in Fig. 6. The MPJPE [18]

errors (Eq. 3) are shown in Table 7. These results show

good generalization of the model (trained mostly on syn-

thetic data) to real images.

6.3. Evaluation on Front­facing Cameras

Comparison on Human3.6M dataset: We show that our

proposed approach is not specific for the egocentric case,

but also provides excellent results in the more standard case

of front-facing cameras. For this evaluation, we chose the

Human3.6M dataset [18]. We used two evaluation proto-

cols. Protocol 1 has five subjects (S1, S5, S6, S7, S8) used

in training, with subjects (S9, S11) used for evaluation. The

Joint Error (mm) Joint Error (mm)

Left Leg 34.33 Right Leg 33.85

Left Knee 62.57 Right Knee 61.36

Left Foot 70.08 Right Foot 68.17

Left Toe 76.43 Right Toe 71.94

Neck 6.57 Head 23.20

Left Arm 31.36 Right Arm 31.45

Left Elbow 60.89 Right Elbow 50.13

Left Hand 90.43 Right Hand 78.28

Table 4: Average reconstruction error per joint using Eq. 3,

evaluated on the entire test-set (see Sec. 4).

3D 2D Error (mm)

50% 50% 68.04

50% 100% 63.98

(a) xR-EgoPose

Training dataset Error (mm)

H36M 67.9

H36M + COCO + MPII 53.4

(b) Human3.6M

Table 5: Having a larger corpus of 2D annotations can be

leveraged to improve final 3D pose estimation

Figure 5: Reconstructed heatmaps generated by decoder re-

produce the correct uncertainty of the 2D predictions.

MPJPE error is computed on every 64th frame. Protocol 2

contains six subjects (S1, S5, S6, S7, S8, S9) used for train-

ing, and the evaluation is performed on every 64th frame of

Subject 11 (Procrustes aligned MPJPE is used for evalua-

tion). The results are shown in Table 3 from where it can be

seen that our approach is on par with state-of-the-art meth-

ods, scoring second overall within the non-temporal meth-

ods.

6.4. Mixing 2D and 3D Ground Truth Datasets

An important advantage of our architecture is that the

model can be trained on a mix of 3D and 2D datasets si-

multaneously: if an image sample only has 2D annotations

but no 3D ground truth labels, the sample can still be used,

only the heatmaps will contribute to the loss. We evaluated

the effect of adding additional images with 2D but no 3D

labels on both scenarios: egocentric and front-facing cam-

eras. In the egocentric case we created two subsets of the

xR-EgoPose test-set. The first subset contained 50% of all

the available image samples with both 3D and 2D labels.

The second contained 100% of the image samples with 2D

labels, but only 50% of the 3D labels. Effectively the sec-

ond subset contained twice the number of images with 2D

annotations only. Table 5a compares the results between the

subsets, where it can be seen that the final 3D pose estimate

benefits from additional 2D annotations. Equivalent behav-

ior is seen on the Human3.6M dataset. Table 5b shows the

improvements in reconstruction error when additional 2D

annotations from COCO [23] and MPII [3] are used.

6.5. Encoding Uncertainty in the Latent Space

Figure 5 demonstrates the ability of our approach to en-

code the uncertainty of the input 2D heatmaps in the latent

vector. Examples of input 2D heatmaps and those recon-

structed by the second branch of the decoder are shown for

comparison.
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INDOOR walking sitting crawling crouching boxing dancing stretching waving total (mm)

3DV’17 [27] 48.76 101.22 118.96 94.93 57.34 60.96 111.36 64.50 76.28
VCNet [28] 65.28 129.59 133.08 120.39 78.43 82.46 153.17 83.91 97. 85
Xu [55] 38.41 70.94 94.31 81.90 48.55 55.19 99.34 60.92 61.40
Ours 38.39 61.59 69.53 51.14 37.67 42.10 58.32 44.77 48.16

OUTDOOR walking sitting crawling crouching boxing dancing stretching waving total (mm)

3DV’17 [27] 68.67 114.87 113.23 118.55 95.29 72.99 114.48 72.41 94.46
VCNet [28] 84.43 167.87 138.39 154.54 108.36 85.01 160.57 96.22 113.75
Xu [55] 63.10 85.48 96.63 92.88 96.01 68.35 123.56 61.42 80.64
Our 43.60 85.91 83.06 69.23 69.32 45.40 76.68 51.38 60.19

Table 6: Quantitative evaluation on Mo2Cap2 dataset [55], both indoor and outdoor test-sets. Our approach outperforms all

competitors by more than 21.6% (13.24 mm) on indoor data and more than 25.4% (20.45 mm) on outdoor data.

Figure 6: Qualitative results on synthetic and real images acquired with a camera physically mounted on a HMD: (top)

3D poses reconstructed from synthetic images. Blue are ground truth poses and red predictions; (bottom) reconstructed 3D

predictions (in red) from real images captured in a mocap studio compared to ground truth poses (in blue), and reconstruction

of images the wild from mo2cap2 [55] with poses shown using the same alignment for better visualization.

Action Error (mm) Action Error (mm)

Greeting 51.78 Upper Stretching 61.09

Talking 47.46 Throwing Arrow 88.54

Playing Golf 68.74 Average 61.71

Shooting 52.64

Table 7: Average reconstruction error per joint using Eq. 3,

evaluated on real data captured in a mocap studio.

7. Conclusions

We have presented a solution to the problem of 3D body

pose estimation from a monocular camera installed on a

HMD. Given a single image, our fully differentiable net-

work estimates heatmaps and uses them as an intermediate

representation to regress 3D pose via a novel dual-branch

auto-encoder which was fundamental for accurate results.

We have also introduced the xR-EgoPose dataset, a new

large scale photorealistic synthetic dataset that was essential

for training and will be made publicly available to promote

research in this exciting area. While our results are state-of-

the-art, there are a few failures cases due to extreme occlu-

sion and the inability of the system to measure hands when

they are out of the field of view. Adding additional cameras

to cover more field of view and enable multi-view sensing

is the focus of our future work.
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