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Abstract

We propose a novel approach for estimating the diffi-

culty and transferability of supervised classification tasks.

Unlike previous work, our approach is solution agnostic

and does not require or assume trained models. Instead,

we estimate these values using an information theoretic ap-

proach: treating training labels as random variables and

exploring their statistics. When transferring from a source

to a target task, we consider the conditional entropy be-

tween two such variables (i.e., label assignments of the two

tasks). We show analytically and empirically that this value

is related to the loss of the transferred model. We further

show how to use this value to estimate task hardness. We

test our claims extensively on three large scale data sets—

CelebA (40 tasks), Animals with Attributes 2 (85 tasks), and

Caltech-UCSD Birds 200 (312 tasks)—together represent-

ing 437 classification tasks. We provide results showing that

our hardness and transferability estimates are strongly cor-

related with empirical hardness and transferability. As a

case study, we transfer a learned face recognition model to

CelebA attribute classification tasks, showing state of the

art accuracy for tasks estimated to be highly transferable.

1. Introduction

How easy is it to transfer a representation learned for one

task to another? How can we tell which of several tasks is

hardest to solve? Answers to these questions are vital in

planning model transfer and reuse, and can help reveal fun-

damental properties of tasks and their relationships in the

process of developing universal perception engines [3]. The

importance of these questions is therefore driving research

efforts, with several answers proposed in recent years.

Some of the answers to these questions established

task relationship indices, as in the Taskonomy [69] and

Task2Vec [1, 2] projects. Others analyzed task relationships

in the context of multi-task learning [30, 36, 59, 66, 71].

Importantly, however, these and other efforts are computa-
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tional in nature, and so build on specific machine learning

solutions as proxy task representations.

By relying on such proxy task representations, these ap-

proaches are naturally limited in their application: Rather

than insights on the tasks themselves, they may reflect rela-

tionships between the specific solutions chosen to represent

them, as noted by previous work [69]. Some, moreover, es-

tablish task relationships by maintaining model zoos, with

existing trained models already available. They may there-

fore also be computationally expensive [1, 69]. Finally,

in some scenarios, establishing task relationships requires

multi-task learning of the models, to measure the influence

different tasks have on each other [30, 36, 59, 66, 71].

We propose a radically different, solution agnostic ap-

proach: We seek underlying relationships, irrespective of

the particular models trained to solve these tasks or whether

these models even exist. We begin by noting that supervised

learning problems are defined not by the models trained to

solve them, but rather by the data sets of labeled exam-

ples and a choice of loss functions. We therefore go to the

source and explore tasks directly, by examining their data

sets rather than the models they were used to train.

To this end, we consider supervised classification tasks

defined over the same input domain. As a loss, we as-

sume the cross entropy function, thereby including most

commonly used loss functions. We offer the following sur-

prising result: By assuming an optimal loss on two tasks,

the conditional entropy (CE) between the label sequences

of their training sets provides a bound on the transferability

of the two tasks—that is, the log-likelihood on a target task

for a trained representation transferred from a source task.

We then use this result to obtain a-priori estimates of task

transferability and hardness.

Importantly, we obtain effective transferability and hard-

ness estimates by evaluating only training labels; we do not

consider the solutions trained for each task or the input do-

main. This result is surprising considering that it greatly

simplifies estimating task hardness and task relationships,

yet, as far as we know, was overlooked by previous work.

We verify our claims with rigorous tests on a total of

437 tasks from the CelebA [34], Animals with Attributes 2
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(AwA2) [65], and Caltech-UCSD Birds 200 (CUB) [64]

sets. We show that our approach reliably predicts task trans-

ferability and hardness. As a case study, we evaluate trans-

ferability from face recognition to facial attribute classifica-

tion. On attributes estimated to be highly transferable from

recognition, our results outperform the state of the art de-

spite using a simple approach, involving training a linear

support vector machine per attribute.

2. Related work

Our work is related to many fields in machine learning

and computer vision, including transfer learning [67], meta

learning [54], domain shifting [52], and multi-task learn-

ing [28]. Below we provide only a cursory overview of sev-

eral methods directly related to us. For more principled sur-

veys on transfer learning, we refer to others [4, 47, 63, 68].

Transfer learning. This paper is related to transfer learn-

ing [47, 63, 67] and our work can be used to select good

source tasks and data sets when transferring learned models.

Previous theoretical analysis of transfer learning is exten-

sive [2, 5, 6, 7, 8, 38]. These papers allowed generalization

bounds to be proven but they are abstract and hard to com-

pute in practice. Our transferability measure, on the other

hand, is easily computed from the training sets and can po-

tentially be useful also for continual learning [43, 44, 50].

Task spaces. Tasks in machine learning are often repre-

sented as labeled data sets and a loss function. For some

applications, qualitative exploration of the training data can

reveal relationships between two tasks and, in particular, the

biases between them [57].

Efforts to obtain more complex task relationships in-

volved trained models. Data sets were compared using fixed

dimensional lists of statistics, produced using an autoen-

coder trained for this purpose [18]. The successful Taskon-

omy project [69], like us, assumes multiple task labels for

the same input images (same input domain). They train one

model per-task and then evaluate transfers between tasks

thereby creating a task hypergraph—their taxonomy.

Finally, Task2Vec constructs vector representations for

tasks, obtained by mapping partially trained probe networks

down to low dimensional task embeddings [1, 2]. Unlike

these methods, we consider only the labels provided in the

training data for each task, without using trained models.

Multi-task learning. Training a single model to solve

multiple tasks can be mutually beneficial to the individual

tasks [23, 49, 62]. When two tasks are only weakly related,

however, attempting to train a model for them both can pro-

duce a model which under-performs compared to models

trained for each task separately. Early multi-branch net-

works and their variants encoded human knowledge on the

relationships of tasks in their design, joining related tasks

or separating unrelated tasks [27, 48, 51].

Others adjusted for related vs. unrelated tasks during

training of a deep multi-task network. Deep cross residual

learning does this by introducing cross-residuals for regu-

larization [27], cross-stitch combines activations from mul-

tiple task-specific networks [42], and UberNet proposed a

task-specific branching scheme [29].

Some sought to discover what and how should be shared

across tasks during training by automatic discovery of net-

work designs that would group similar tasks together [36]

or by solving tensor factorization problems [66]. Alter-

natively, parts of the input rather than the network were

masked according to the task at hand [59]. Finally, mod-

ulation modules were proposed to seek destructive interfer-

ences between unrelated tasks [71].

3. Transferability via conditional entropy

We seek information on the transferability and hardness

of supervised classification tasks. Previous work obtained

this information by examining machine learning models de-

veloped for these tasks [1, 2, 71]. Such models are pro-

duced by training on labeled data sets that represent the

tasks. These models can therefore be considered views on

their training data. In this work we instead use information

theory to produce estimates from the source: the data itself.

Like others [69], we assume our tasks share the same in-

put instances and are different only in the labels they assign

to each input. Such settings describe many practical scenar-

ios. A set of face images, for instance, can have multiple

labels for each image, representing tasks such as recogni-

tion [39, 40] and classification of various attributes [34].

We estimate transferability using the CE between the la-

bel sequences of the target and source tasks. Task hardness

is similarly estimated: by computing transferability from a

trivial task. We next formalize our assumptions and claims.

3.1. Task transferability

We assume a single input sequence of training sam-

ples, X = (x1, x2, . . . , xn) ∈ Xn, along with two la-

bel sequences Y = (y1, y2, . . . , yn) ∈ Yn and Z =
(z1, z2, . . . , zn) ∈ Zn, where yi and zi are labels assigned

to xi under two separate tasks: source task TZ = (X,Z)
and target task TY = (X,Y ). Here, X is the domain of the

values of X , while Y = range(Y ) and Z = range(Z) are

the sets of different values in Y and Z respectively. Thus,

if Z contains binary labels, then Z = {0, 1}.

We consider a classification model M = (w, h) on the

source task, TZ . The first part, w : X → R
D, is some

transformation function, possibly learned, that outputs a D-

dimensional representation r = w(x) ∈ R
D for an input

x ∈ X . The second part, h : R
D → P(Z), is a classi-

fier that takes a representation r and produces a probability
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distribution h(r) ∈ P(Z), where P(Z) is the space of all

probability distributions over Z .

This description emphasizes the two canonical stages of

a machine learning system [16]: representation followed by

classification. As an example, a deep neural network with

Softmax output is represented by a learned w which maps

the input into some feature space, producing a deep embed-

ding, r, followed by classification layers (one or more), h,

which maps the embedding into the prediction probability.

Now, assume we train a model (wZ , hZ) to solve TZ by

minimizing the cross entropy loss on Z:

wZ , hZ = argmin
w,h∈(W,H)

LZ(w, h), (1)

where W and H are our chosen spaces of possible values

for w and h, and LZ(w, h) is the cross entropy loss (equiva-

lently, the negative log-likelihood) of the parameters (w, h):

LZ(w, h) = −lZ(w, h) = −
1

n

n∑

i=1

logP (zi|xi;w, h),

(2)

where lZ(w, h) is the log-likelihood of (w, h).
To transfer this model to target task TY , we fix the func-

tion wZ and retrain only the classifier on the labels of TY .

Denote the new classifier kY , selected from our chosen

space K of target classifiers. Note that kY does not nec-

essarily share the same architecture as hZ . We train kY by

minimizing the cross entropy loss on Y with the fixed wZ :

kY = argmin
k∈K

LY (wZ , k), (3)

where LY (wZ , k) is defined similarly to Eq. (2) but for the

label set Y . Under this setup, we define the transferability

of task TZ to task TY as follows.

Definition 1 The transferability of task TZ to task TY is

measured by the expected accuracy of the model (wZ , kY )
on a random test example (x, y) of task TY :

Trf(TZ → TY ) = E [acc(y, x;wZ , kY )] , (4)

which indicates how well a representation wZ trained on

task TZ performs on task TY .

In practice, if the trained model does not overfit, the

log-likelihood on the training set, lY (wZ , kY ), provides a

good indicator of Eq (4), that is, how well the representation

wZ and the classifier kY performs on task TY . This non-

overfitting assumption holds even for large networks that

are properly trained and tested on datasets sampled from the

same distribution [70]. Thus, in the subsequent sections, we

instead consider the following log-likelihood as an alterna-

tive measure of transferability:

T̃rf(TZ → TY ) = lY (wZ , kY ). (5)

3.2. The conditional entropy of label sequences

From the label sequences Y and Z, we can compute the

empirical joint distribution P̂ (y, z) for all (y, z) ∈ Y × Z
by counting, as follows:

P̂ (y, z) =
1

n
|{i : yi = y and zi = z}|. (6)

We now adopt the definition of CE between two ran-

dom variables [13] to define the CE between our label se-

quences Y and Z.

Definition 2 The CE of a label sequence Y given a label

sequence Z, H(Y |Z), is the CE of a random variable (or

random label) ȳ given a random variable (or random label)

z̄, where (ȳ, z̄) are drawn from the empirical joint distribu-

tion P̂ (y, z) of Eq. (6):

H(Y |Z) = −
∑

y∈Y

∑

z∈Z

P̂ (y, z) log
P̂ (y, z)

P̂ (z)
, (7)

where P̂ (z) is the empirical marginal distribution on Z:

P̂ (z) =
∑

y∈Y

P̂ (y, z) =
1

n
|{i : zi = z}|. (8)

CE represents a measure of the amount of information

provided by the value of one random variable on the value

of another. By treating the labels assigned to both tasks as

random variables and measuring the CE between them, we

are measuring the information required to estimate a label

in one task given a (known) label in another task.

We now prove a relationship between the CE of Eq. (7)

and the tranferability of Eq. (5). In particular, we show that

the log-likelihood on the target task TY is lower bounded

by log-likelihood on the source task TZ minus H(Y |Z), if

the optimal input representation wZ trained on TZ is trans-

ferred to TY .

To prove our theorem, we assume the space K of target

classifiers contains a classifier k̄ whose log-likelihood lower

bounds that of kY . We construct k̄ as follows. For each in-

put x, we compute the Softmax output pZ = hZ(wZ(x)),
which is a probability distribution on Z . We then convert

pZ into a Softmax on Y by taking the expectation of the

empirical conditional probability P̂ (y|z) = P̂ (y, z)/P̂ (z)
with respect to pZ . That is, for all y ∈ Y , we define:

pY (y) = Ez∼pZ
[P̂ (y|z)] =

∑

z∈Z

P̂ (y|z) pZ(z), (9)

where pZ(z) is the probability of the label z returned by pZ .

For any input wZ(x), we let the output of k̄ be pY . That is,

k̄(wZ(x)) = pY . We can now prove the following theorem.
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Figure 1. Visualizing toy examples. The transferability between two tasks, represented as sequences (X,Y ) and (X,Z). The horizontal

axis represent instances and the values for Z (in red) and Y (cyan). In which of these examples would it be easiest to transfer a model

trained for task TZ to task TY ? See discussion and details in Sec. 3.3.

Theorem 1 Under the training procedure described in

Sec. 3.1, we have:

T̃rf(TZ → TY ) ≥ lZ(wZ , hZ)−H(Y |Z). (10)

Proof sketch.1 From the definition of kY and the assump-

tion that k̄ ∈ K, we have T̃rf(TZ → TY ) = lY (wZ , kY ) ≥
lY (wZ , k̄). From the construction of k̄, we have:

lY (wZ , k̄) =
1

n

n∑

i=1

log

(
∑

z∈Z

P̂ (yi|z)P (z|xi;wZ , hZ)

)

≥
1

n

n∑

i=1

log
(
P̂ (yi|zi)P (zi|xi;wZ , hZ)

)
(11)

=
1

n

n∑

i=1

log P̂ (yi|zi) +
1

n

n∑

i=1

logP (zi|xi;wZ , hZ). (12)

We can easily show that the first term in Eq. (12) equals

−H(Y |Z), while the second term is lZ(wZ , hZ).

Discussion 1: Generality of our settings. Our settings for

spaces W,H,K are general and include a variety of prac-

tical use cases. For example, neural networks W will in-

clude all possible (vector) values of the network weights

until the penultimate layer, while H and K would include

all possible (vector) values of the last layer’s weights. Al-

ternatively, we can use support vector machines (SVM) for

K. In this case, K would include all possible values of the

SVM parameters [55]. Our result even holds when the fea-

tures are fixed, as when using tailored representations such

as SIFT [35]. In these cases, space W would contain only

one transformation function from raw input to the features.

Discussion 2: Assumptions. We can easily satisfy the as-

sumption k̄ ∈ K by first choosing a space K ′ (e.g., the

SVMs) which will play the role of K \ {k̄}. We solve the

optimization problem of Eq. (3) on K ′ instead of K to ob-

tain the optimal classifier k′. To get the optimal classifier

kY on K = K ′ ∪ {k̄}, we simply compare the losses of k′

and k̄ and select the best one as kY .

The optimization problems of Eq. (1) and (3) are global

optimization problems. In practice, for complex deep net-

works trained with stochastic gradient descent, we often

1Full derivations provided in the supplemental.

only obtain the local optima of the loss. In this case, we can

easily change and prove Theorem 1 which would include

the differences in the losses between the local optimum and

the global optimum in the right-hand-side of Eq. (10). In

many practical applications, the difference between local

optimum and global optimum is not significant [12, 45].

Discussion 3: Extending our result to test log-likelihood.

In Theorem 1, we consider the empirical log-likelihood,

which is generally unbounded. If we make the (strong)

assumption of bounded differences between empirical log-

likelihoods, we can apply McDiarmids inequality [41] to

get an upper-bound on the left hand side of Eq. (10) by the

expected log-likelihood with some probability.

Discussion 4: Implications. Theorem 1 shows that the

transferability from task TZ to task TY depends on both

the CE H(Y |Z) and the log-likelihood lZ(wZ , hZ). Note

that the log-likelihood lZ(wZ , hZ) is optimal for task TZ

and so it represents the hardness (or easiness) of task TZ .

Thus, from the theorem, if lZ(wZ , hZ) is small (i.e., the

source task is hard), transferability would reduce. Besides,

if the CE H(Y |Z) is small, transferability would increase.

Finally, we note that when the source task TZ is fixed,

the log-likelihood lZ(wZ , hZ) is a constant. In this case,

the transferability only depends on the CE H(Y |Z). Thus,

we can estimate the transferability from one source task to

multiple target tasks by considering only the CE.

3.3. Intuition and toy examples

To gain intuition on CE and transferability, consider the

toy examples illustrated in Fig. 1. The (joint) input set is

represented by the X axis. Each input xi ∈ X is assigned

with two labels, yi ∈ Y and zi ∈ Z, for the two tasks. In

Fig. 1(a,b), task TZ is the trivial task with a constant label

value (red line) and in Fig. 1(c–e) TZ is a binary classifi-

cation task, whereas TY is binary in Fig. 1(a–d) and multi-

label in Fig. 1(e). In which of these examples would trans-

ferring a representation trained for TZ to TY be hardest?

Of the five examples, (c) is the easiest transfer as it

provides a 1-1 mapping from Z to Y . Appropriately, in

this case, H(Y |Z) = 0. Next up are (d) and (e) with

H(Y |Z) = log 2: In both cases each class in TZ is mapped

to two classes in TY . Note that TY being non-binary is nat-

urally handled by the CE. Finally, transfers (a) and (b) have
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H(Y |Z) = 4 log 2; the highest CE. Because TZ is trivial,

the transfer must account for the greatest difference in the

information between the tasks and so the transfer is hardest.

4. Task hardness

A potential application of transferability is task hardness.

In Sec. 3.2, we mentioned that the hardness of a task can

be measured from the optimal log-likelihood on that task.

Formally, we can measure the hardness of a task TZ by:

Hard(TZ) = min
w,h∈(W,H)

LZ(w, h) = −lZ(wZ , hZ). (13)

This definition of hardness depends on our choice of

(W,H), which may determine various factors such as repre-

sentation size or network architecture. The intuition behind

the definition is that if the task TZ is hard for all models in

(W,H), we should expect higher loss even after training.

Using Theorem 1, we can bound lZ(wZ , hZ) in Eq. (13)

by transferring from a trivial task TC to TZ . We define

a trivial task as the task for which all input values are as-

signed the same, constant label. Let C be the (constant)

label sequences of the trivial task TC . From Theorem 1 and

Eq. (13), we can easily show that:

Hard(TZ) = −lZ(wZ , hZ) ≤ H(Z|C). (14)

Thus, we can approximate the hardness of task TZ by look-

ing at the CE H(Z|C). We note that the CE H(Z|C) is

also used to estimate the transferability T̃rf(TC → TZ).

So, Hard(TZ) is closely related to T̃rf(TC → TZ). Par-

ticularly, if task TZ is hard, we expect it is more difficult to

transfer from a trivial task to TZ .

This relationship between hardness and transferabil-

ity from a trivial task is similar to the one proposed by

Task2Vec [1]. They too indexed task hardness as the dis-

tance from a trivial task. To compute task hardness, how-

ever, they required training deep models, whereas we obtain

this measure by simply computing H(Z|C) using Eq. (7).

Of course, estimating the hardness by H(Z|C) ignores

the input and is hence only an approximation. In particu-

lar, one could possibly design scenarios where this measure

would not accurately reflect the hardness of a given task.

Our results in Sec. 5.3 show, however, that these label statis-

tics provide a strong cue for task hardness.

5. Experiments

We rigorously evaluate our claims using three large

scale, widely used data sets representing 437 classification

tasks. Although Sec. 3.2 provides a bound on the training

loss, test accuracy is generally more important. We thus re-

port results on test images not included in the training data.

Benchmarks. The Celeb Faces Attributes (CelebA) set [34]

was extensively used to evaluate transfer learning [17, 32,

33, 56]. CelebA contains over 202k face images of 10,177

subjects. Each image is labeled with subject identity as

well as 40 binary attributes. We used the standard train /

test splits (182,626 / 19,961 images, respectively). To our

knowledge, of the three sets, it is the only one that provides

baseline results for attribute classification.

Animals with Attributes 2 (AwA2) [65] includes over 37k

images labeled as belonging to one of 50 animals classes.

Images are labeled based on their class association with 85

different attributes. Models were trained on 33,568 training

images and tested on 3,754 separate test images.

Finally, Caltech-UCSD Birds 200 (CUB) [64] offers

11,788 images of 200 bird species, labeled with 312 at-

tributes as well as Turker Confidence attributes. Labels

were averaged across multiple Turkers using confidences.

Finally, we kept only reliable labels, using a threshold of

0.5 on the average confidence value. We used 5,994 images

for training and 5,794 images for testing.

We note that the Task Bank set with its 26 tasks was also

used for evaluating task relationships [69]. We did not use

it here as it mostly contains regression tasks rather than the

classification problems we are concerned with.

5.1. Evaluating task transferability

We compared our transferability estimates from the CE

to the actual transferability of Eq. (4). To this end, for each

attribute TZ in a data set, we measure the actual transfer-

ability, Trf(TZ → TY ), to all other attributes TY in that

set using the test split. We then compare these transferabil-

ity scores to the corresponding CE estimates of Eq. (7) using

an existing correlation analysis [43].

We note again that when the source task is fixed, as in

this case, the transferability estimates can be obtained by

considering only the CE. Furthermore, since Trf(TZ →
TY ) and the CE H(Y |Z) are negative correlated, we

compare the correlation between the test error rate, 1 −
Trf(TZ → TY ), and the CE H(Y |Z) instead.

Transferring representations. We keep the learned rep-

resentation, wZ , and produce a new classifier kY by train-

ing on the target task (Sec. 3.1). We used ResNet18 [24],

trained with standard cross entropy loss, on each source

task TZ (source attribute). These networks were selected

as they were deep enough to obtain good accuracy on our

benchmarks, but not too deep to overfit [70]. The penul-

timate layer of these networks produce embeddings r ∈
R

2048 which the networks classified using hZ—their last,

fully connected (FC) layers—to binary attribute values.

We transferred from source to target task by freezing the

networks, only replacing their FC layers with linear SVM

(lSVM). These lSVM were trained to predict the binary la-

bels of target tasks given the embeddings produced for the

source tasks by wZ as their input. The test errors of the

lSVM, which are measures of 1− Trf(TZ → TY ), were
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Figure 2. Attribute prediction; CE vs. test errors on target tasks. Examples from CelebA (a-d), AwA2 (e-h), and CUB (i-l). Plot titles

name the source tasks TZ ; points represent different target tasks TY . Corr is the Pearson correlation coefficient between the two variables

and p is the statistical significance of the correlation. In all cases, the correlation is statistically significant. See Sec. 5.1 for details.

Attribute: Male Bald Gray Hair Mustache Double Chin . . . Attractive Wavy Hair High Cheeks Smiling Mouth Open Average (all)

1 LNets+ANet 2015 [34] 0.980 0.980 0.970 0.950 0.920

. . .

0.810 0.800 0.870 0.920 0.920 0.873

2 Walk and Learn 2016 [61] 0.960 0.920 0.950 0.900 0.930 0.840 0.850 0.950 0.980 0.970 0.887

3 MOON 2016 [53] 0.981 0.988 0.981 0.968 0.963 0.817 0.825 0.870 0.926 0.935 0.909

4 LMLE 2016 [25] 0.990 0.900 0.910 0.730 0.740 0.880 0.830 0.920 0.990 0.960 0.838

5 CR-I 2017 [15] 0.960 0.970 0.950 0.940 0.890 0.830 0.790 0.890 0.930 0.950 0.866

6 MCNN-AUX 2017 [22] 0.982 0.989 0.982 0.969 0.963 0.831 0.839 0.876 0.927 0.937 0.913

7 DMTL 2018 [21] 0.980 0.990 0.960 0.970 0.990 0.850 0.870 0.880 0.940 0.940 0.926

8 Face-SSD 2019 [26] 0.973 0.986 0.976 0.960 0.960 0.813 0.851 0.868 0.918 0.919 0.903

9 CE↑ (decreasing transferability) 0.017 0.026 0.052 0.062 0.083 0.361 0.381 0.476 0.521 0.551 -

10 Dedicated Res18 0.985 0.990 0.980 0.968 0.959 0.823 0.842 0.878 0.933 0.943 0.911

11 Transfer 0.992 0.991 0.981 0.968 0.963 0.820 0.800 0.859 0.909 0.901 0.902

Table 1. Transferability from face recognition to facial attributes. Results for CelebA attributes, sorted in ascending order of row 9 (de-

creasing transferability). Results are shown for the five attributes most and least transferable from recognition. Subject specific attributes,

e.g., male and bald, are more transferable than expression related attributes such as smiling and mouth open. Unsurprisingly, transfer

results (row 11) are best on the former than the latter. Rows 1-8 provide published state of the art results. Despite training only an lSVM

for attribute, row 11 results are comparable with more elaborate attribute classification systems. For details, see Sec. 5.2.

then compared with the CE, H(Y |Z).

We use lSVM as it allows us to focus on the information

passed from TZ to TY . A more complex classifier could

potentially mask this information by being powerful enough

to offset any loss of information due to the transfer. In prac-

tical use cases, when transferring a deep network from one

task to another, it may be preferable to fine tune the last lay-

ers of the network or its entirety, provided that the training

data on the target task is large enough.

Transferability results. Fig. 2 reports selected quantitative

transferability results on the three sets.2 Each point in these

graphs represents the CE, H(Y |Z), vs. the target test error,

1− Trf(TZ → TY ). The graphs also provide the linear re-

gression model fit with 95% confidence interval, the Pear-

son correlation coefficients between the two values, and the

statistical significance of the correlation, p.

In all cases, the CE and target test error are highly posi-

tively correlated with statistical significance. These results

testify that the CE of Eq. (7) is indeed a good predictor for

the actual transferability of Eq. (4). This is remarkable es-

2For full results see supplemental.
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Figure 3. Identity to attribute; CE vs. test errors on target

tasks. Predicting 40 CelebA attributes using a face recognition

network. Corr is the Pearson correlation coefficient between the

two variables, and p is the statistical significance of the correlation.

Figure 4. Identity to attribute; transferred − dedicated accu-

racy. Differences between CelebA accuracy of transferred recog-

nition model and models trained for each attribute. Results are

sorted by decreasing transferability (same as Table 1).

pecially since the relationship between tasks is evaluated

without considering the input domain or the machine learn-

ing models trained to solve these tasks.

5.2. Case study: Identity to facial attributes

A key challenge when training effective attribute classi-

fiers is the difficulty of obtaining labeled attribute training

data. Whereas face images are often uploaded to the Inter-

net along with subject names [9, 20], it is far less common

to find images labeled with attributes such as high cheek

bones, bald, or even male [31]. It is consequently harder to

assemble training sets for attribute classification at the same

scale and diversity as those used to train other tasks.

To reduce the burden of collecting attribute data, we

therefore explore transferring a representation learned for

face recognition. In this setting, we can also compute esti-

mated transferability scores (via the CE) between the sub-

ject labels provided by CelebA and the labels of each at-

tribute. We note that unlike the previous examples, the

source labels are not binary and include over 10k values.

Face recognition network. We compare our estimated

transferability vs. actual transferability using a deep face

recognition network. To this end, we use a ResNet101 ar-

chitecture trained for face recognition on the union of the

(a) Male

(b) Double chin
Figure 5. Classification accuracy for varying training set sizes.

Top: male; bottom: double chin. Dedicated classification net-

works trained from scratch (blue) vs. face recognition network

transferred to the attributes with an lSVM (red). Because recogni-

tion transfers well to these attributes, we obtain accurate classifi-

cation with a fraction of the training data and effort.

MS-Celeb-1M [20] and VGGFace2 [9] training sets (fol-

lowing removal of subjects included in CelebA), with a co-

sine margin loss (m = 0.4) [60]. This network achieves

accuracy comparable to the state of the art reported by oth-

ers, with different systems, on standard benchmarks [14].

Transferability results: recognition to attributes. Table 1

reports results for the five attributes most transferable from

recognition (smallest CE; Eq. (7)) and the five least trans-

ferable (largest CE). Columns are sorted by increasing CE

values (decreasing transferability), listed in row 9. Row 11

reports accuracy of the transferred network with the lSVM

trained on the target task. Estimated vs. actual transfer-

ability is further visualized in Fig. 3. Evidently, correla-

tion between the two is statistically significant, testifying

that Eq. (7) is a good predictor of actual transferability, here

demonstrated on a source task with multiple labels.

For reference, Table 1 provides in Row 10 the accuracy

of the dedicated ResNet18 networks trained for each at-

tribute. Finally, rows 1 through 8 provide results for pub-

lished state of the art on the same tasks.

Analysis of results. Subject specific attributes such as male

and bald are evidently more transferable from recognition

(left columns of Table 1) than attributes that are related to
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Figure 6. Estimated task hardness vs. empirical errors on the three benchmarks. Estimated hardness is well correlated with empirical

hardness with significance p < 0.001.

expressions (e.g., smiling and mouth open, right columns).

Although this relationship has been noted by others, previ-

ous work used domain knowledge to determine which at-

tributes are more transferable from identity [34], as others

have done in other domains [19, 37]. By comparison, our

work shows how these relationships emerge from our esti-

mation of transferability.

Also, notice that for the transferable attributes, our re-

sults are comparable to dedicated networks trained for each

attribute, although they gradually drop off for the less trans-

ferable attributes in the last columns. This effect is visual-

ized in Fig. 4 which shows the growing differences in at-

tribute classification accuracy for a transferred face recog-

nition model and models trained for each attribute. Results

are sorted by decreasing transferability (same as in Table 1).

Results in Fig. 4 show a few notable exceptions where

transfer performs substantially better than dedicated models

(e.g., the two positive peaks representing attributes young

and big nose). These and other occasional discrepancies in

our results can be explained in the difference between the

true transferability of Eq. (4), which we measure on the test

sets, and Eq. (5), defined on the training sets and shown in

Sec. 3.2 to be bounded by the CE.

Finally, we note that our goal is not to develop a state of

the art facial attribute classification scheme. Nevertheless,

results obtained by training an lSVM on embeddings trans-

ferred from a face recognition network are only 2.4% lower

than the best scores reported by DMTL 2018 [21] (last col-

umn of Table 1). The effort involved in developing a state

of the art face recognition network can be substantial. By

transferring this network to attributes these efforts are amor-

tized in training multiple facial attribute classifiers.

To emphasize this last point, consider Fig. 5 which re-

ports classification accuracy on male and double chin for

growing training set sizes. These attributes were selected as

they are highly transferable from recognition (see Table 1).

The figure compares the accuracy obtained by training a

dedicated network (in blue) to a network transferred from

recognition (red). Evidently, on these attributes, transferred

accuracy is much higher with far less training data.

5.3. Evaluating task hardness

We evaluate our hardness estimates for all attribute clas-

sification tasks in the three data sets, using the CE H(Z|C)
in Eq. (14). Fig. 6 compares the hardness estimates for each

task vs. the errors of our dedicated networks, trained from

scratch to classify each attribute. Results are provided for

CelebA, AwA2, and CUB.

The correlation between estimated hardness and classifi-

cation errors is statistically significant with p < 0.001, sug-

gesting that the CE H(Z|C) in Eq. (14) indeed captures the

hardness of these tasks. That is, in the three data sets, test

error rates strongly correlate with our estimated hardness:

the harder a task is estimated to be, the higher the errors

produced by the model trained for the task. Of course, this

result does not imply that the input domain has no impact

on task hardness; only that the distribution of training labels

already provides a strong predictor for task hardness.

6. Conclusions

We present a practical method for estimating the hard-

ness and transferability of supervised classification tasks.

We show that, in both cases, we produce reliable estimates

by exploring training label statistics, particularly the condi-

tional entropy between the sequences of labels assigned to

the training data of each task. This approach is simpler than

existing work, which obtains similar estimates by assum-

ing the existence of trained models or by careful inspection

of the training process. In our approach, computing con-

ditional entropy is cheaper than training deep models, re-

quired by others for the same purpose.

We assume that different tasks share the same input do-

main (the same input images). It would be useful to ex-

tend our work to settings where the two tasks are defined

over different domains (e.g., face vs. animal images). Our

work further assumes discrete labels. Conditional entropy

was originally defined over distributions. It is therefore rea-

sonable that CE could be extended to non-discrete labeled

tasks, such as, for faces, 3D reconstruction [58], pose esti-

mation [10, 11] or segmentation [46].
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