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Abstract

Today, a frame-based camera is the sensor of choice for

machine vision applications. However, these cameras, orig-

inally developed for acquisition of static images rather than

for sensing of dynamic uncontrolled visual environments,

suffer from high power consumption, data rate, latency and

low dynamic range.

An event-based image sensor addresses these drawbacks

by mimicking a biological retina. Instead of measuring the

intensity of every pixel in a fixed time interval, it reports

events of significant pixel intensity changes. Every such

event is represented by its position, sign of change, and

timestamp, accurate to the microsecond.

Asynchronous event sequences require special handling,

since traditional algorithms work only with synchronous,

spatially gridded data. To address this problem we in-

troduce a new module for event sequence embedding, for

use in different applications. The module builds a repre-

sentation of an event sequence by firstly aggregating infor-

mation locally across time, using a novel fully-connected

layer for an irregularly sampled continuous domain, and

then across discrete spatial domain. Based on this module,

we design a deep learning-based stereo method for event-

based cameras. The proposed method is the first learning-

based stereo method for an event-based camera and the

only method that produces dense results. We show large

performance increases on the Multi Vehicle Stereo Event

Camera Dataset (MVSEC), which became the standard set

for the benchmarking of event-based stereo methods.

1. Introduction

Stereo matching is the problem of finding for every point

in an image taken from one viewpoint its physically corre-

sponding one in an image taken from another viewpoint.

Given the parameters of a stereo camera setup, the match-

ing results allow to compute the 3d structure of a scene,

with many applications, e.g. in robotics [29], medical imag-

ing [32], remote sensing [47], or computational photogra-

phy [55, 2].

1.1. Deep stereo for frame­based cameras

Currently, most successful stereo matching methods are

based on deep learning. First successes of deep learning

in stereo matching were achieved by replacing individual

algorithmic elements in legacy methods (often [28, 16])

with neural networks, e.g. similarity metric [62, 24, 51, 61,

8], smoothness penalty [45, 21], matching confidence [46]

and disparity post-processing [13].

Current works solve the stereo matching by training a

neural network end-to-end, which combines embedding,

matching, regularization, and sometimes refinement mod-

ules in a single model [10, 27, 20, 63, 36, 19, 23, 7, 52, 59,

50]. An embedding module computes image descriptors for

left and right images, a matching module performs a corre-

lation [10, 27, 36, 19, 23, 59, 50], computes matching signa-

tures [52] or simply concatenates [20, 7, 63] left and shifted

right descriptors for every disparity. The regularization

module, implemented as an hourglass network with short-

cut connections between the contracting and the expanding

parts and 2d [27, 10, 36, 23] or 3d [20, 52, 63, 19, 7] con-

volutions, enforces stereo matching constraints and com-

putes disparities or a distribution over disparities. Finally,

some methods [36, 23, 19] have a refinement module, that

improves the initial low-resolution disparity relying on left-

right warping error.

Best results are obtained with fully-supervised training

on large synthetic datasets with ground truth [27] and an L1

or cross-entropy [52] loss, while some methods use weakly

supervised settings [63, 39, 59], relying on geometric con-

straints of the task. Most recent methods [59, 50] further
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Table 1. Comparison of event-based image sensor, such as [3] to

a frame-based sensor. The numbers show orders of magnitude

for every characteristic, rather than precise values. Advantages

of event-based sensors are highlighted.

Characteristic Frame-based Event-based

Dynamic range, [dB] 50 130

Power consumption, [W] 1 0.01

Data rate, [Mb/s] 100 0.1

Latency, [ms] 10 0.001

Resolution, [MP] 1 0.01

Intensity information ✓ ✗

improve results using multi-task learning.

Many stereo methods exist for frame-base cameras, how-

ever, stereo matching with novel bio-inspired event-based

sensors is a relatively new area of research, with many in-

teresting research challenges.

1.2. Event­based sensors

Conventional frame-based camera sensors capture stro-

boscopic sequences of still pictures at a fixed time interval

or frame rate. In contrast, the retina in the human eye op-

erates on completely different principles. Nobel prize win-

ing experiments [18] showed that the retina is most sensi-

tive to temporal brightness gradients, and is blind to static

scenes in absence of eye movements [41]. These princi-

ples inspired the development of event-based image sen-

sors [49, 3].

In an event-based image sensor, pixels are sensitive

to temporal brightness contrast and trigger binary events

with a rate proportional to the temporal gradient of photo-

current. Events can have positive or negative polarity de-

pending on the sign of the gradient (i.e. “dark to bright” or

“bright to dark”). Triggered events are recorded from the

sensor in an asynchronous manner with information about

their spatial positions, polarities, and timestamps accurate

to microseconds.

Event-based image sensors have several advantages over

frame-based sensors. First, they have higher dynamic range

and thus do not saturate in extreme lighting conditions,

such as bright daylight and night with minimum illumina-

tion, thanks to pixel-wise gain and integration time con-

trol. Secondly, they have lower power consumption and

data rates, since they only transmit information about sig-

nificant brightness changes. This enables use in power-

constrained systems. Finally, due to immediate transmis-

sion of every triggered event with a microsecond-accurate

timestamp, event-based sensors have lower latency and can

be used in time-critical applications. However, these advan-

tages come at a cost. Event-based sensors have lower res-

olution, because their pixels are more complex, and do not

provide rich intensity information. A comparison between

frame-based and event-based sensors is shown in Table 1.

Unique properties of event-based image sensors make

them attractive for low-latency dynamic vision applications

in environments with uncontrolled illumination, such as

tracking [12], robot control [25], or object recognition [48].

Depth estimation, that we investigate in this work, could

drastically improve performance in these applications, and

open the way to novel use cases, such as augmented reality.

1.3. Event­based stereo

Due to the novelty of event-based image sensors, only a

few event-based stereo methods have been proposed, none

of which is learning-based.

One line of research investigates how to represent and

compare events. This is a hard problem because events

have few spatio-temporal neighbors and only one binary

feature. Early methods [22, 42] compared events using

only their timestamps which led to matching ambiguities,

due to the noise, variable cameras sensitivity, and imper-

fect camera synchronization. Therefore, later methods re-

lied on hand-crafted descriptors [4, 68, 69] and similarity

measures [44, 67, 38]. In [4] descriptors are computed as a

bank of orientation-sensitive spatial filter responses, in [68]

as a vector of distances to closest events in several spatial

directions, in [69] as a histogram of orientations of vectors

pointing to the closest events in a spatial window. As for

similarity measures, spatial windows with event are com-

pared in [44] using average distances to the closest events,

in [38] using average inverse timestamp difference between

corresponding events, and in [67] using intersection-over-

union of events.

The second research direction explores how to apply

regularization in stereo matching. This is a challeng-

ing problem due to the sparsity of data in both time and

space, which consequently cannot be represented with con-

ventional Markov Random Field (MRF) models. Some

works [37, 11, 38] adopt heuristic cooperative regulariza-

tion from [26] by defining a spatio-temporal inhibitory

and excitatory neighborhood for each event, while oth-

ers [56, 57] use belief propagation and semi-global match-

ing on sparse MRF models, were nodes are active only dur-

ing a fixed interval after receiving an event.

The third line of research explores how to accumulate

events over time to cope with the fact of individual events

being noisy and not very informative, though leading to the

undesirable effect of blurring object boundaries when using

long accumulation times. Most methods use fixed accumu-

lation intervals [22, 42, 4, 44], while [69] sets accumulation

time equal to the average of the inverse of the event rate,

and [67] warps event positions as if they were all triggered

at the same time using depth hypothesis and known camera

motion.

Another challenging problem is to perform dense stereo

matching using sparse event data. While most of the meth-

ods produce sparse disparity, the work [64] reconstructs
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semi-dense disparities by fusing information from several

view-points using a known camera motion. In [69] a dis-

parity is computed at every location without an event by

fitting a plane to its neighbor disparities.

Finally, a variety of works is dedicated to implement and

perform stereo matching on neuromorphic chips and field-

programmable gate arrays (FPGA) [1, 9].

All existing methods use hand-crafted event represen-

tations and grid-based image models, which support only

simplistic priors, such as smoothness. Meanwhile, most

successful frame-based stereo methods use learning-based

representations [61] and regularization based on deep net-

works, which are able to perform area-based regulariza-

tion [20] and even use monocular depth cues [14]. This

motivates our work: an end-to-end deep learning model for

event-based stereo matching.

1.4. Deep learning with event sequences

Event sequences can be processed using convolutional

neural networks (CNNs), recurrent neural networks (RNNs)

and specialized networks for event data.

One option is to use off-the-shelf CNNs, that are success-

ful in frame-based image processing. However, one prob-

lem is that convolutional modules work with dense images,

where each pixel lies in a 2d or 3d (in case of video) discrete

space, with an intensity value assigned to it. In contrast,

an event sequence is a sparse number of 3d points, with

two discrete spatial dimensions, one continuous temporal

dimension, and with a binary variable (polarity) as a fea-

ture. Therefore, such a sequence needs to be transformed to

a frame-based representation before it can be input to a stan-

dard CNN. Note, however, that naive binning of the time di-

mension is problematic since it would produce tensors with

a prohibitively large temporal dimensions.

Existing methods [34, 25, 30, 53, 66, 60] use hand-

crafted transformations to convert event sequences to

frame-based representations, that we call event images. For

example, [34] saves the polarity of the last event, [30] sums

event polarities in every location during a predetermined

time interval, and [25] counts the number of positive and

negative events to avoid information loss due to polarity

cancellation. To preserve time information, in addition to

positive and negative event counts, [66] stores the times-

tamp of the last positive and negative events at every lo-

cation, while [60] saves the average timestamps of the up-

dates. To capture time dynamic, [53, 60] stack several

event images described earlier, for consecutive time inter-

vals. The main drawback of all these representations is that

they loose precise timing information about events.

Another seemingly natural choice, given the sequential

nature of the data, is to use RNNs. An application to

even-based recognition with RNNs and long-term memory

is [33]. That model has the drawback that it does not pre-

serve the spatial information, which is a crucial ingredient

for example to stereo matching. Note, that convolutional

RNNs, such as [58], preserve spatial information, but are

not applicable for the same reason as CNNs.

Finally, one can use asynchronous networks, where ev-

ery neuron has an internal state that is updated by events,

such as Spiked Neural Networks (SNN) [6] or specially

designed convolutional neural networks [5, 35]. Unfortu-

nately, it is hard to build and train such networks, because

they are not easily differentiable, and additionally difficult

to implement in a standard framework that enable the use of

available computational back-ends such as GPUs.

1.5. Contribution

The contributions of this paper are the following:

1. We propose a learnable representation (embedding)

for event sequences that, explicitly treats sequences as

stream of sparse 3d points with two discrete spatial and

one continuous temporal coordinate. It takes into ac-

count both spatial positions and accurate timeing in-

formation of all recorded events.

2. We use this embedding to design the first deep

learning-based method for event-based stereo recon-

struction. The method is based on an architecture with

large receptive field that uses large context and al-

lows stereo reconstruction for locations without events.

We demonstrate that this method significantly outper-

forms other competing approaches on the Multi Vehi-

cle Stereo Event Camera Dataset (MVSEC).

2. Method

Let the left and right event sequences be El, Er, each

consisting of n events sorted by the time of arrival E =
((xi, yi, ti, pi) | ti+1 > ti)i=1...n. Each event is a

point in a three dimensional space with two discrete spa-

tial coordinates and one continuous temporal coordinate

(x, y, t) ∈ [0 . . . w)× [0 . . . h)×R and one polarity feature

p ∈ {−1, 1}, where w and h correspond to the width and

height of an image sensor. Given both El, Er, the network

computes an estimated disparity tensor D̂ as

D̂ = Net(El, Er | Θ, dmax) ∈ [0, dmax]
h×w, (1)

where Θ is the tensor of network parameters and dmax is

a maximum disparity. An element of the disparity tensor

D̂y,x specifies that a pixel with coordinates (x, y) from the

left camera matches the pixel with coordinates (x−D̂y,x, y)
from the right camera. In §2.1 we describe the proposed

network architecture for event-based stereo matching, and

in §2.2 explain the novel embedding for event sequences.
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2.1. Network architecture

Our architecture is inspired by recent stereo networks

for frame-based cameras, which use large image contexts

and produce disparities with sub-pixel accuracy [52, 20]. It

consists of embedding, matching, regularization modules,

followed by an estimator. The embedding module takes

as input an event sequence E and computes its descriptor

F of size c × h
4
× w

4
. The same module is applied to the

left and right event sequence independently. This approach

will be described in detail in §2.2. The matching module

for each disparity then takes the left descriptor and shifted

right descriptor and computes a matching signature of size
c
8
× h

4
× w

4
. All matching signatures for all disparities are

concatenated to a 4d tensor of size c
8
× dmax

4
× h

4
× w

4
, which

are then passed to the regularization module. The regular-

ization module is an hourglass neural network with 3d con-

volutions and shortcut connections between the contracting

and the expanding parts. It produces a matching cost tensor

C of size dmax

2
×h×w (matching costs are computed only

for even disparities to save space), passed to the sub-pixel

estimator [52] which produces an estimated disparity tensor

D̂ as

D̂y,x =
∑

j

d(j) · softmin
j:|ĵ−j|≤δ

(Cj,y,x)

with ĵ = argmin
j

(Cj,y,x) , (2)

where ∆ = 2 is an estimator support and d(j) = 2 · j is

a disparity, corresponding to index j in the matching cost

tensor. More details about the network architecture are de-

scribed in the supplementary material.

Network training uses a sub-pixel cross entropy loss [52]

L(Θ) =
1

wh

∑

y,x

∑

j

Laplace(d(j) | µ = DGT
y,x , b)×

log(softmin
j

(Cj,y,x)), (3)

where Laplace(d | µ = DGT
y,x , b) is a discretized and nor-

malized Laplace probability density function over dispari-

ties with mean equal to the ground truth disparity µ = DGT
y,x

and diversity b = 2.

2.2. Events sequence embedding

In this work, we focus on a special family of embed-

ding functions that can be represented as a composition

fS(fτ (·)) of two functions: temporal aggregation fτ (·)
and spatial aggregation fS(·). The temporal aggregation

function is defined per-location and it takes a local event

sequence E(x, y) = ((xi, yi, ti, pi) ∈ E | (xi, yi) =
(x, y)) as input, and produces a event image I of size

h
 x

 w

 κ

12

478

3

569

 First-In First-Out queue

polarities

timestamps

1 -1 1 0

t8 t7 t4 0

time

t9t8t7t6t5t4t3t2t1

 2

Figure 1. The event queue is a 4d tensor of size 2 × κ × h × w,

where κ is a queue capacity. The figure depicts the queue with

width and height fused to a single dimension. It stores polarities

and timestamps of the κ most recent events at each location in

order of arrival. When a new event, here (9), arrives, it pushes

older events (6, 5, 2) to the end of the queue and occupies the first

position and the oldest event (1) is pushed out of the queue.

c × h × w, as Iy,x = fτ (E(x, y)). The spatial aggrega-

tion is a translation-invariant function that is applied to sub-

windows of the event image and produces a event descriptor

F such that ∀y, x, Fy,x = fS (Iy−∆:y+∆,x−∆:x+∆).

The spatial grid structure of the event image allows the

use of standard 2d convolutions. Therefore, throughout our

experiments we use two convolutional residual blocks [15]

and focus on different temporal aggregation methods.

To implement different temporal aggregation methods

we need a way to efficiently accumulate events in each loca-

tion. For that we propose to use a First-In First-Out (FIFO)

queue shown in Figure 1. It saves the κ most recent events

at each location sorted by time of their arrival. This queue

could be efficiently implemented using linked lists or sim-

pler circular buffers. Note also, that this queue works well

regardless of the amount of motion: in presence of fast mo-

tion, when events are frequent, it stores only the recent ones,

while in presence of slow motion, when events are rare, it

preserves old ones. We prune events that arrived more than

τ seconds ago from the queue and replace them with ze-

ros before applying the temporal aggregation. We call κ the

capacity and τ the time horizon of the queue.

Hand-crafted. In §1.4 we reviewed existing methods for

converting event sequences to event images. All of them

can be thought of as hand-crafted temporal aggregations.

One of these methods produces an event image by counting

the number of positive and negative events, and recording

timestamps of the most recent positive and negative events

at every location. Since similar methods [34, 25, 30, 53, 66,

60] worked well in many applications, we use this solution

as our baseline.

Temporal convolutional network. Temporal convolu-

tional network seems like a natural choice for temporal ag-

gregation. However, a convolutional network usually ap-

plies to regularly sampled data, whereas in our case event

timestamps are sampled irregularly and the temporal dimen-
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Figure 2. In the continuous fully-connected layer depicted here,

for every timestamp the kernel network computes two weights, and

for all timestamps two vectors, each corresponding to a continuous

kernel. To get an event sequence descriptor we multiply each of

these vectors by polarity vector using dot product, add bias and

apply non-linearity. The corresponding weight vector, descriptor

element and continuous kernel are shown in same color.

sion in the queue only reflects the order of event arrival.

Actual timestamp difference between nearby events in the

queue might be different and arbitrary. To compensate for

that, we feed the timestamp of each event to the network

along with its polarity as a feature. Details of the network

with temporal convolutions can be found in our supplemen-

tary material.

Continuous fully-connected layer. Ideally, the fact that

event timestamps are continuous and sampled irregularly is

taken into account. To do so, we use a continuous fully-

connected layer (CFC), where continuous kernels are them-

selves approximated by a multi-layer perceptron (MLP),

that we call a kernel network. This network allows to model

arbitrary complex kernels by modulating their capacity, and

can be trained end-to-end along with the rest of the archi-

tecture. The overall idea is illustrated by Figure 2. Details

about kernel networks can be found in our supplementary

material.

Let us compare the proposed layer to a standard fully-

connected (FC) layer, to appreciate the differences. Given

event polarities p = [p1, p2, p3, p4, p5, 0, 0] for some loca-

tion stored in the event queue, a single output of the con-

ventional FC layer is computed as I = σ(
∑7

i wipi + b),
where w is a weights vector, b is a bias and σ(·) is a non-

linearity. In contrast, a single output of the proposed CFC

layer is computed as I = σ( 1
5

∑5

i w(ti) · pi + b). Note that

as shown in Figure 3, for a standard FC layer, the weight of

each polarity simply depends on the events order i, while

for the proposed CFC, the weight is a continuous paramet-

ric function w(ti) = KernelNet(ti) (MLP), of real-valued

event timestamp ti. This allows to embed event sequences

with irregularly spaced time intervals between events.

A similar construction was used in [54] but with the use

of continuous convolutional layers. Here, we propose con-

tinuous fully-connected layer. Another difference is that

in [54] the input are 3d LIDAR points in a Euclidean space.

t1 t2t3 t41 2 3 4 5 6 7 t5

w
e
ig
h
ts

p
o
la
ri
ti
e
s

(a) Conventional FC (b) Proposed CFC

Figure 3. Comparison of (a) conventional fully-connected (FC)

layer to (b) proposed continuous fully-connected (CFC) layer. In

contrast to FC, CFC allows to embed event sequences with irreg-

ularly spaced time intervals between events.

3. Experiments

All experiments are done using the PyTorch frame-

work [40]. Network learning uses RMSprop with standard

settings. In all experiments we normalize event polarities in

the queue to N (0, 1) and subtract the timestamp of the most

recent event from all other event timestamps.

All experiments are done on publicly available datasets,

and our code is available on GitHub 1.

3.1. Dataset and evaluation protocol

We use the Multi Vehicle Stereo Event Camera

Dataset (MVSEC) [65] which is available online [31].

MVSEC is the only large publicly available dataset captured

with a real event-based stereo system, and over recent years

it has became the de-facto standard for comparing event-

based stereo methods [67, 64]. It is collected by a system

composed of a LIDAR and two event-based cameras with a

resolution of 346×260 pixels mounted on various vehicles,

such as a drone, a car and a motorcycle. LIDAR records

frames with sparse depth measurements at 20Hz, while the

event-based cameras acquire continuous streams of events

and gray-scale video frames, which we use for visualization

purposes only.

We unpack the original data in ROS bag format [43]. The

depths are converted to left-view sub-pixel disparities and

saved as images (sub-pixel precision is preserved by scal-

ing the disparities). All pixels with disparities > 36 are as-

sumed to have unknown disparities. Then, for each depth,

we find the closest gray-scale image in time, and events pre-

ceding the depth by 0.05 seconds in the left and right view.

We correct their optical distortions, rectify and save them.

The script for data conversion is available online with the

rest of the source code.

We use the Indoor Flying dataset from MVSEC, which

is captured from a drone flying in a room with various ob-

1https://github.com/tlkvstepan/event_stereo_

ICCV2019
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Table 2. Summary of Indoor Flying splits. For each split we spec-

ify which sequences and frames are used for training and test.

For example, S1

140,..,1200 means that from sequence one only the

frames 140 to 1200 are used. We use the same test intervals as

in [67] to allow a fair comparison.

# Set Sequence and frames Size

1
Training S2

160,..,1580 ∪ S3

125,..,1815 3110

Validation A ∈ S1

140,..,1200 200

Test B ∈ S1

140,..,1200 | A ∩B = ∅ 861

2
Training S1

80,..,1260 ∪ S3

125,..,1815 2870

Validation A ∈ S2

120,..,1420 200

Test B ∈ S2

120,..,1420 | A ∩B = ∅ 1101

3

Training S1

80,..,1260 ∪ S2

160,..,1580 2600

Validation A ∈ S3

73,..,1615 200

Test B ∈ S3

73,..,1615 | A ∩B = ∅ 1343

jects. We compare our method to existing methods using

the protocol from [67] and report results on the three se-

quences. The results are summarized in Table 2. Follow-

ing [67], take-off and landing frames are removed. The test

sequences are the same as in [67].

Similar to [67], we compute and report the mean depth

error (MDE) and one-pixel-accuracy (1PA) computed in

sparse locations corresponding to 15’000 events preceding

each depth measurement. The one-pixel-accuracy is the

percentage of locations for which the predicted disparity is

off by less than one pixel.

3.2. Comparison of temporal aggregation methods

In this section, we compare performance of the temporal

aggregation variants described in §2.2. We train the network

three times for each method using different random initial-

izations. For every trial we select the network that achieves

the highest 1PA on the validation set over all epochs. The

selected networks are then used to compute the performance

on the test set. In Table 3 we report average test results

along with standard deviations.

For each variant we use the architecture that was found

during the grid-search experiments with the shallow stereo

network from [61] on validation set. During training, we

consider only ground truth at locations corresponding to the

most recent 15’000 events.

All networks are initialized using the default PyTorch

initialization, except the kernel network, for which we de-

veloped a custom initialization that ensures that the outputs

of the network follow a normal distribution. More details

can be found in the supplementary materials.

As shown in Table 3, the proposed learning-based meth-

ods for temporal aggregation outperform the hand-crafted

method, probably due to the fact that they utilize times-

tamps of individual events. Among the learning-based

Table 3. Empirical results on the first split test set of the Indoor

Flying dataset. Shown is the average test set results over three

trials with the best performing method highlighted. Note, that

all proposed learning-based methods outperform the hand-crafted

method.

Method MDE, [cm] 1PA, [%]

Hand-crafted 16.5± 0.5 87.3±0.2

Temporal convolutional network 13.8± 0.1 90.7±0.1

Continuous fully-connected layer 13.6± 0.2 91.3±0.9

methods, the network with the continuous fully-connected

layer shows the best performance as it explicitly handles

events which are irregularly sampled from the continuous

time domain. In all following sections we use the latter

method, and call the resulting stereo matching method Deep

Dense Event Stereo (DDES).

3.3. Empirical results

Next, we compare the proposed stereo method to the

state-of-the-art event-based methods [67, 64, 38], and to

two traditional methods [16, 17] which were adopted to

work on event images in [64].

For quantitative comparison we use the protocol

from [67] described in §3.1. According to this protocol,

results are evaluated in sparse locations corresponding to

15’000 most recent events. We use the same parameters

and experiments settings as in §3.2. During the experiments

we noticed that for the second split there is a significant dif-

ference between test and training set. The test set has more

abrupt motions, triggering a larger number of events com-

pared to the training set (for details please refer the supple-

Table 4. Results on the Indoor Flying dataset using sparse ground

truth, following the protocol from [66] described in §3.1. Results

for TSES [67] and CopNet [38] are from [67] and results for Semi-

Dense 3D [64], SGM* [16, 64] and FCVF* [17, 64] are from [64].

SGM* and FCVF* methods implemented in [64] are similar to the

original frame-based methods but operate on event images. For

Semi-Dense 3D, SGM* and FCVF* results for the second split

are not available. We report average test set errors including stan-

dard deviations over the three randomized training trials. For other

methods the standard deviation are not available. All methods are

sorted in ascending order according to their test error. Our pro-

posed method dubbed Deep Dense Event Stereo (DDES) is high-

lighted. Note, that it outperforms other single viewpoint methods,

such as TSES, CopNet, SGM* and FCVF*, and even performs

on-par with Semi-Dense 3D method that fuses depths from sev-

eral viewpoints using known camera motion.

Method
Mean depth error, [cm]

Split 1 Split 2 Split 3

Semi-Dense 3D [64] 13 – 33

DDES (proposed) 13.6±0.2 18.0±0.2 18.4±0.5

TSES [67] 36 44 36

CopNet [38] 61 100 64

SGM* [16, 64] 93 – 119

FCVF* [17, 64] 99 – 103
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Table 5. Performance on the Indoor Flying dataset evaluated us-

ing dense ground truth. We train our method using the full ground

truth disparity, taking into account all locations, including those

without events. We select the network with the highest validation

1PA during a single training pass and report its results on the test

set. Note that the results are only slightly worse than results ob-

tained using sparse ground truth.

Mean depth error, [cm] One pixel accuracy, [%]

Split 1 Split 2 Split 3 Split 1 Split 2 Split 3

16.7 29.4 27.8 89.8 61.0 74.8

mentary materials). As a partial remedy, for the second split

we trained the network using a fixed number of 130’000

events instead of a fixed time horizon and show the results

in the tables. However, we believe that due to the domain

shift this split has limited significance and should not be

used.

The results are summarized in Table 4. Our proposed

Dense Deep Event Stereo (DDES) method performs better

than other single viewpoint methods, such as TSES [67],

CopNet [38], SGM* [16, 64] and FCVF* [17, 64] and even

performs on-par with the Semi-Dense 3D method [64] that

fuses depth from several viewpoints using known camera

motion.

We also train and test our method using the entire ground

truth, taking into account all locations, including those with-

out events. We select the network with the highest valida-

tion 1PA during a single training pass and report its results

on the test set. The results are summarized in Table 5. Note,

that the results are only slightly worse than results using the

sparse ground truth. To our knowledge, this is the first suc-

cessful attempt to compute dense stereo results for event-

based cameras.

For qualitative comparison we estimate disparity using

DDES trained on the full ground truth for example cases

similar to the ones used in [67, 64]. Figure 5 contains a vi-

sual comparison of our results with those of TSES [67] and

Semi-Dense 3D [64] borrowed from the respective papers.

Unlike previous techniques, DDES computes truly dense

and sub-pixel accurate disparity.

Our implementation of DDES runs at about 10 frames

per second on a desktop PC with a GeForce GTX TITAN X

GPU.

3.4. Weights of continuous fully­connected layer.

In this section, we visualize the output of the kernel net-

work. To this end, we input uniformly sampled timestamps

∈ [−0.5, 0] to the kernel network and plot every row of

the CFC weights tensor as a smooth curve, which we call

weight kernel.

Resulting kernels before and after the training are shown

in Figure 4. At the start of training, the output of the ker-

nel network is (by design) normally distributed, due to the

initialization. After training, the weight kernels become

Table 6. Impact of the event queue capacity on performance. The

table shows validation errors for split # 1 of the Indoor Flying set

averaged over 2 trials.

Queue capacity κ 1 3 7 15

Mean depth error, [cm] 13.3 13.4 13.5 13.3

smooth in time and converge to one of two shapes: bell-

shaped (kernels 2 and 3) or derivative (kernel 1). The bell-

shaped kernels detect events with particular timestamps,

while the derivative kernels compute event count changes

(time-derivative) at varying time scales. Most of the kernels

assign close to zero weights to old events.

3.5. Importance of spatial and temporal context.

During our initial experiments with the temporal embed-

ding we used the shallow stereo network with a small recep-

tive field of size 9× 9 from [61]. The shallow networks had

no access to a large spatial context and larger event queue

capacity and thus larger temporal context clearly helped to

achieve better results. For example, with an event queue ca-

pacity κ = 1 the MDE validation error was 80.4 cm, while

with κ = 7 it was 67.9 cm (the error was computed for Split

1 and averaged over two trials).

For the deep architecture from § 2.1, we noticed that the

performance became very similar for different event queue

capacities κ as shown in Table 6. This indicates that a net-

work with access to a larger spatial context tends to ignore

temporal context. We hypothesise, that spatial context is

more reliable than temporal context, particular in dynamic

sequences, such as drone videos.

4. Conclusion

In this work, we proposed a novel learning-based method

for embedding event sequences as recorded by event-based

vision sensors. It allows to model events as a stream of

sparse 3d data points, each with two discrete spatial coordi-

nates and one continuous temporal coordinate, and is able to

use timestamps and spatial positions of all events in a time

interval. We demonstrated state-of-the-art performance for
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Figure 4. Visualization of kernel network output. Before train-

ing (a), the kernel network output is (by design) normally dis-

tributed. After training (b), the weight kernels have one of two

shapes: bell-shaped (kernels 2 and 3) and derivative (kernel 1).

Details are in the text. For clarity, we show 3 kernels out of 64.
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(a) Events (b) Ground Truth (c) DDES (proposed) (d) TSES [67]

(a) Events (b) Ground Truth (c) DDES (proposed) (f) Semi-Dense 3D [64]

Figure 5. Qualitative comparison with recent event-based methods on the Indoor Flying dataset. For comparison, we select frames similar

to the ones used in [67] and in [64]. Results for TSES [67] and Semi-Dense 3D [64] are borrowed from the respective papers. Note,

that, unlike our method, Semi-Dense 3D fuses depth from several viewpoints using known camera motion. The rows correspond to frame

#100 from sequence 1, frame #340 from sequence 1, frame #1700 from sequence 3 and frame #980 from sequence 1 correspondingly.

To get the results for one sequence we trained the network using the remaining two. We tried to match the color-coding of the different

outputs. In all figures warmer colors correspond to closer objects. In (a) we visualize the 15’000 most recent events from the left camera,

overlaid with a gray-scale image, which is not used by the methods. Positive events are shown in red and negative events are shown in

blue. In (b,c,d) locations without disparities are shown in dark blue and in (f) in black. Note, that our proposed method (c) computes dense

disparities, while in TSES (d) some disparities are invalidated by outlier rejection and in Semi-Dense 3D (f) disparities are computed only

for locations with events. Similarly to Semi-Dense 3D method, our proposed method (c) estimates sub-pixel disparities, while TSES (d)

estimates integer disparities.

the task of stereo matching. Empirical results are better

than the best hand-crafted as well as a learning-based em-

bedding that uses on temporal convolutions in a discretized

time domain. Using the proposed embedding we developed

DDES, a deep neural network for stereo matching. This

is the first deep learning-based stereo matching method for

event-based cameras. We demonstrated that DDES perfoms

better than prior state-of-the-art on the standard MVSEC

dataset by a large margin.

Event-based cameras offer advantages such as
higher dynamic range and temporal resolution over
traditional frame-based cameras but require spe-
cialized handling of their event streams. We hope
that the proposed embedding finds applications to
more imaging algorithms beyond stereo matching.
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radt, and Christoph Richter. Spiking cooperative stereo-

matching at 2 ms latency with neuromorphic hardware. In

Conference on Biomimetic and Biohybrid Systems, pages

119–137. Springer, 2017. 3

[10] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip

Hausser, Caner Hazirbas, Vladimir Golkov, Patrick van der

Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learn-

ing optical flow with convolutional networks. In CVPR,

2015. 1

[11] Mohsen Firouzi and Jörg Conradt. Asynchronous event-

based cooperative stereo matching using neuromorphic sil-

icon retinas. Neural Processing Letters, 43(2):311–326,

2016. 2

[12] Daniel Gehrig, Henri Rebecq, Guillermo Gallego, and Da-

vide Scaramuzza. Asynchronous, photometric feature track-

ing using events and frames. In ECCV, 2018. 2

[13] Spyros Gidaris and Nikos Komodakis. Detect, replace, re-

fine: Deep structured prediction for pixel wise labeling.

CVPR, 2017. 1

[14] Clément Godard, Oisin Mac Aodha, and Gabriel J Bros-

tow. Unsupervised monocular depth estimation with left-

right consistency. In CVPR, pages 270–279, 2017. 3

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 4

[16] Heiko Hirschmuller. Stereo processing by semiglobal match-

ing and mutual information. PAMI, 2008. 1, 6, 7

[17] Asmaa Hosni, Christoph Rhemann, Michael Bleyer, Carsten

Rother, and Margrit Gelautz. Fast cost-volume filtering for

visual correspondence and beyond. PAMI, 2013. 6, 7

[18] David H Hubel and Torsten N Wiesel. Receptive fields of

single neurones in the cat’s striate cortex. The Journal of

physiology, 148(3):574–591, 1959. 2

[19] Zequn Jie, Pengfei Wang, Yonggen Ling, Bo Zhao, Yunchao

Wei, Jiashi Feng, and Wei Liu. Left-right comparative recur-

rent model for stereo matching. In CVPR, 2018. 1

[20] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter

Henry, Ryan Kennedy, Abraham Bachrach, and Adam Bry.

End-to-end learning of geometry and context for deep stereo

regression. ICCV, 2017. 1, 3, 4
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