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Abstract

Knowledge distillation is a widely applicable technique

for training a student neural network under the guidance of

a trained teacher network. For example, in neural network

compression, a high-capacity teacher is distilled to train a

compact student; in privileged learning, a teacher trained

with privileged data is distilled to train a student without

access to that data. The distillation loss determines how

a teacher’s knowledge is captured and transferred to the

student. In this paper, we propose a new form of knowl-

edge distillation loss that is inspired by the observation that

semantically similar inputs tend to elicit similar activation

patterns in a trained network. Similarity-preserving knowl-

edge distillation guides the training of a student network

such that input pairs that produce similar (dissimilar) acti-

vations in the teacher network produce similar (dissimilar)

activations in the student network. In contrast to previous

distillation methods, the student is not required to mimic the

representation space of the teacher, but rather to preserve

the pairwise similarities in its own representation space.

Experiments on three public datasets demonstrate the po-

tential of our approach.

1. Introduction

Deep neural networks are being used to solve an increas-

ingly wide array of computer vision problems. While the

general trend in deep learning is towards deeper, wider, and

more complex networks, deploying deep learning solutions

in the real world requires us to consider the computational

cost. A mobile robot or self-driving vehicle, for example,

has limited memory and power. Even when resources are

abundant, such as when a vision system is hosted in the

cloud, more resource-efficient deep networks mean more

clients can be served at a lower cost. When performing

transfer learning in the real world, data privilege and pri-

vacy issues may restrict access to data in the source domain.

It may be necessary to transfer the knowledge of a network

trained on the source domain assuming access only to train-

ing data from the target task domain.
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Figure 1. Similarity-preserving knowledge distillation guides the

training of a student network such that input pairs that produce

similar (dissimilar) activations in the pre-trained teacher network

produce similar (dissimilar) activations in the student network.

Given an input mini-batch of b images, we derive b × b pairwise

similarity matrices from the activation maps, and compute a distil-

lation loss on the matrices produced by the student and the teacher.

Knowledge distillation is a general technique for super-

vising the training of “student” neural networks by captur-

ing and transferring the knowledge of trained “teacher” net-

works. While originally motivated by the task of neural net-

work compression for resource-efficient deep learning [12],

knowledge distillation has found wider applications in such

areas as privileged learning [21], adversarial defense [25],

and learning with noisy data [19]. Knowledge distillation is

conceptually simple: it guides the training of a student net-

work with an additional distillation loss that encourages the

student to mimic some aspect of a teacher network. Intu-

itively, the trained teacher network provides a richer super-

visory signal than the data supervision (e.g. annotated class

labels) alone.

The conceptual simplicity of knowledge distillation be-

lies the fact that how to best capture the knowledge of the

teacher to train the student (i.e. how to define the distillation
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loss) remains an open question. In traditional knowledge

distillation [12], the softened class scores of the teacher are

used as the extra supervisory signal: the distillation loss en-

courages the student to mimic the scores of the teacher. Fit-

Nets [31] extend this idea by adding hints to guide the train-

ing of intermediate layers. In flow-based knowledge dis-

tillation [38], the extra supervisory signal comes from the

inter-layer “flow” – how features are transformed between

layers. The distillation loss encourages the student to mimic

the teacher’s flow matrices, which are derived from the in-

ner product between feature maps in two layers, such as the

first and last layers in a residual block. In attention trans-

fer [41], the supervisory signal for knowledge distillation

is in the form of spatial attention. Spatial attention maps

are computed by summing the squared activations along the

channel dimension. The distillation loss encourages the stu-

dent to produce similar normalized spatial attention maps as

the teacher, intuitively paying attention to similar parts of

the image as the teacher.

In this paper, we present a novel form of knowledge dis-

tillation that is inspired by the observation that semantically

similar inputs tend to elicit similar activation patterns in a

trained neural network. Similarity-preserving knowledge

distillation guides the training of a student network such

that input pairs that produce similar (dissimilar) activations

in the trained teacher network produce similar (dissimilar)

activations in the student network. Figure 1 shows the over-

all procedure. Given an input mini-batch of b images, we

compute pairwise similarity matrices from the output acti-

vation maps. The b × b matrices encode the similarities in

the activations of the network as elicited by the images in

the mini-batch. Our distillation loss is defined on the pair-

wise similarity matrices produced by the student and the

teacher.

To support the intuition of our distillation loss, Figure 2

visualizes the average activation of each channel in the last

convolutional layer of a WideResNet-16-2 teacher network

(we adopt the standard notation WideResNet-d-k to refer to

a wide residual network [40] with depth d and width mul-

tiplier k), on the CIFAR-10 test images. We can see that

images from the same object category tend to activate sim-

ilar channels in the trained network. The similarities in ac-

tivations across different images capture useful semantics

learned by the teacher network. We study whether these

similarities provide an informative supervisory signal for

knowledge distillation.

The contributions of this paper are:

• We introduce similarity-preserving knowledge distilla-

tion, a novel form of knowledge distillation that uses

the pairwise activation similarities within each input

mini-batch to supervise the training of a student net-

work with a trained teacher network.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

CIFAR-10 test images, grouped by category

A
v
e

ra
g

e
 c

h
a

n
n

e
l 
a

c
ti
v
a

ti
o

n
s
 (

s
a

m
p

le
d

)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Figure 2. Semantically similar inputs tend to elicit similar activa-

tion patterns in a trained neural network. This visualization shows

channel-wise average activations sampled from the last convolu-

tional layer of a WideResNet-16-2 network on the CIFAR-10 test

images. Activation patterns are largely consistent within the same

category (e.g. columns 1 to 1000) and distinctive across different

categories (e.g. columns 1 to 1000 vs. columns 1001 to 2000).

• We experimentally validate our approach on three pub-

lic datasets. Our experiments show the potential of

similarity-preserving knowledge distillation, not only

for improving the training outcomes of student net-

works, but also for complementing traditional methods

for knowledge distillation.

2. Method

The goal of knowledge distillation is to train a student

network under the guidance of a trained teacher network,

which acts as an extra source of supervision. For example,

in neural network compression, the student network is com-

putationally cheaper than the teacher: it may be shallower,

thinner, or composed of cheaper operations. The trained

teacher network provides additional semantic knowledge

beyond the usual data supervision (e.g. the usual one-hot

vectors for classification). The challenge is to determine

how to encode and transfer the teacher’s knowledge such

that student performance is maximized.

In traditional knowledge distillation [12], knowledge is

encoded and transferred in the form of softened class scores.

The total loss for training the student is given by

L = (1− α)LCE(y, σ(zS)) + 2αT 2LCE(σ(
zS

T
), σ(

zT

T
)) ,

(1)

where LCE(·, ·) denotes the cross-entropy loss, σ(·) denotes

the softmax function, y is the one-hot vector indicating the

ground truth class, zS and zT are the output logits of the
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Figure 3. Activation similarity matrices G (Eq. 2) produced by trained WideResNet-16-1 and WideResNet-40-2 networks on sample

CIFAR-10 test batches. Each column shows a single batch with inputs grouped by ground truth class along each axis (batch size = 128).

Brighter colors indicate higher similarity values. The blockwise patterns indicate that the elicited activations are mostly similar for inputs

of the same class, and different for inputs across different classes. Our distillation loss (Eq. 4) encourages the student network to produce

G matrices closer to those produced by the teacher network.

student and teacher networks, respectively, T is a tempera-

ture hyperparameter, and α is a balancing hyperparameter.

The first term in Eq.1 is the usual cross-entropy loss defined

using data supervision (ground truth labels), while the sec-

ond term encourages the student to mimic the softened class

scores of the teacher.

Recall from the introduction and Figure 2 that semanti-

cally similar inputs tend to elicit similar activation patterns

in a trained neural network. In Figure 2, we can observe that

activation patterns are largely consistent within the same

object category and distinctive across different categories.

Might the correlations in activations encode useful teacher

knowledge that can be transferred to the student? Our hy-

pothesis is that, if two inputs produce highly similar acti-

vations in the teacher network, it is beneficial to guide the

student network towards a configuration that also results in

the two inputs producing highly similar activations in the

student. Conversely, if two inputs produce dissimilar ac-

tivations in the teacher, we want these inputs to produce

dissimilar activations in the student as well.

Given an input mini-batch, denote the activation map

produced by the teacher network T at a particular layer l by

A
(l)
T ∈ Rb×c×h×w, where b is the batch size, c is the num-

ber of output channels, and h and w are spatial dimensions.

Let the activation map produced by the student network S at

a corresponding layer l′ be given by A
(l′)
S ∈ Rb×c′×h′

×w′

.

Note that c does not necessarily have to equal c′, and like-

wise for the spatial dimensions. Similar to attention trans-

fer [41], the corresponding layer l′ can be the layer at the

same depth as l if the student and teacher share the same

depth, or the layer at the end of the same block if the stu-

dent and teacher have different depths. To guide the student

towards the activation correlations induced in the teacher,

we define a distillation loss that penalizes differences in the

L2-normalized outer products of A
(l)
T and A

(l′)
S . First, let

G̃
(l)
T = Q

(l)
T ·Q

(l)⊤
T ; G

(l)
T [i,:] = G̃

(l)
T [i,:] / ||G̃

(l)
T [i,:]||2 (2)

where Q
(l)
T ∈ Rb×chw is a reshaping of A

(l)
T , and therefore

G̃
(l)
T is a b×b matrix. Intuitively, entry (i, j) in G̃

(l)
T encodes

the similarity of the activations at this teacher layer elicited

by the ith and jth images in the mini-batch. We apply a row-

wise L2 normalization to obtain G
(l)
T , where the notation

[i, :] denotes the ith row in a matrix. Analogously, let

G̃
(l)
S = Q

(l)
S ·Q

(l)⊤
S ; G

(l)
S[i,:] = G̃

(l)
S[i,:] / ||G̃

(l)
S[i,:]||2 (3)

where Q
(l′)
S ∈ Rb×c′h′w′

is a reshaping of A
(l′)
S , and G

(l′)
S

is a b×b matrix. We define the similarity-preserving knowl-

edge distillation loss as:

LSP(GT , GS) =
1

b2

∑

(l,l′)∈I

||G
(l)
T −G

(l′)
S ||2F , (4)

where I collects the (l, l′) layer pairs (e.g. layers at the end

of the same block, as discussed above) and || · ||F is the

Frobenius norm. Eq. 4 is a summation, over all (l, l′) pairs,

of the mean element-wise squared difference between the

G
(l)
T and G

(l′)
S matrices. Finally, we define the total loss for

training the student network as:

L = LCE(y, σ(zS)) + γ LSP(GT , GS) , (5)
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Group Output WideResNet-16-k WideResNet-40-k

name size

conv1 32× 32 3× 3, 16 3× 3, 16

conv2 32× 32

[

3× 3, 16k

3× 3, 16k

]

× 2

[

3× 3, 16k

3× 3, 16k

]

× 6

conv3 16× 16

[

3× 3, 32k

3× 3, 32k

]

× 2

[

3× 3, 32k

3× 3, 32k

]

× 6

conv4 8× 8

[

3× 3, 64k

3× 3, 64k

]

× 2

[

3× 3, 64k

3× 3, 64k

]

× 6

1× 1 average pool, 10-d fc, softmax

Table 1. Structure of WideResNet networks used in CIFAR-10 ex-

periments. Downsampling is performed by strided convolutions in

the first layers of conv3 and conv4.

where γ is a balancing hyperparameter.

Figure 3 visualizes the G matrices for several batches in

the CIFAR-10 test set. The top row is produced by a trained

WideResNet-16-1 network, consisting of 0.2M parameters,

while the bottom row is produced by a trained WideResNet-

40-2 network, consisting of 2.2M parameters. In both cases,

activations are collected from the last convolution layer.

Each column represents a single batch, which is identical

for both networks. The images in each batch have been

grouped by their ground truth class for easier interpretabil-

ity. The G matrices in both rows show a distinctive block-

wise pattern, indicating that the activations at the last layer

of these networks are largely similar within the same class

and dissimilar across different classes (the blocks are dif-

ferently sized because each batch has an unequal number of

test samples from each class). Moreover, the blockwise pat-

tern is more distinctive for the WideResNet-40-2 network,

reflecting the higher capacity of this network to capture the

semantics of the dataset. Intuitively, Eq. 4 pushes the stu-

dent network towards producing G matrices closer to those

produced by the teacher network.

Differences from previous approaches. The similarity-

preserving knowledge distillation loss (Eq. 4) is defined in

terms of activations instead of class scores as in traditional

distillation [12]. Activations are also used to define the dis-

tillation losses in FitNets [31], flow-based distillation [38],

and attention transfer [41]. However, a key difference is

that these previous distillation methods encourage the stu-

dent to mimic different aspects of the representation space

of the teacher. Our method is a departure from this common

approach in that it aims to preserve the pairwise activation

similarities of input samples. Its behavior is unchanged by a

rotation of the teacher’s representation space, for example.

In similarity-preserving knowledge distillation, the student

is not required to be able to express the representation space

of the teacher, as long as pairwise similarities in the teacher

space are well preserved in the student space.

3. Experiments

We now turn to the experimental validation of our dis-

tillation approach on three public datasets. We start with

CIFAR-10 as it is a commonly adopted dataset for com-

paring distillation methods, and its relatively small size al-

lows multiple student and teacher combinations to be eval-

uated. We then consider the task of transfer learning, and

show how distillation and fine-tuning can be combined to

perform transfer learning on a texture dataset with limited

training data. Finally, we report results on the larger CINIC-

10 dataset.

3.1. CIFAR­10

CIFAR-10 consists of 50,000 training images and 10,000

testing images at a resolution of 32x32. The dataset covers

ten object classes, with each class having an equal number

of images. We conducted experiments using wide residual

networks (WideResNets) [40] following [4, 41]. Table 1

summarizes the structure of the networks. We adopted the

standard protocol [40] for training wide residual networks

on CIFAR-10 (SGD with Nesterov momentum; 200 epochs;

batch size of 128; and an initial learning rate of 0.1, decayed

by a factor of 0.2 at epochs 60, 120, and 160). We applied

the standard horizontal flip and random crop data augmen-

tation. We performed baseline comparisons with respect

to traditional knowledge distillation (softened class scores)

and attention transfer. For traditional knowledge distillation

[12], we set α = 0.9 and T = 4 following the CIFAR-10

experiments in [4, 41]. Attention transfer losses were ap-

plied for each of the three residual block groups. We set

the weight of the distillation loss in attention transfer and

similarity-preserving distillation by held-out validation on

a subset of the training set (β = 1000 for attention transfer,

γ = 3000 for similarity-preserving distillation).

Table 2 shows our results experimenting with several

student-teacher network pairs. We tested cases in which the

student and teacher networks have the same width but dif-

ferent depth (WideResNet-16-1 student with WideResNet-

40-1 teacher; WideResNet-16-2 student with WideResNet-

40-2 teacher), the student and teacher networks have the

same depth but different width (WideResNet-16-1 student

with WideResNet-16-2 teacher; WideResNet-16-2 student

with WideResNet-16-8 teacher), and the student and teacher

have different depth and width (WideResNet-40-2 student

with WideResNet-16-8 teacher). In all cases, transfer-

ring the knowledge of the teacher network using similarity-

preserving distillation improved student training outcomes.

Compared to conventional training with data supervision

(i.e. one-hot vectors), the student network consistently ob-

tained lower median error, from 0.5 to 1.2 absolute percent-

age points, or 7% to 14% relative, with no additional net-

work parameters or operations. Similarity-preserving dis-

tillation also performed favorably with respect to the tra-

1368



Student Teacher Student KD [12] AT [41] SP (ours) Teacher

WideResNet-16-1 (0.2M) WideResNet-40-1 (0.6M) 8.74 8.48 8.30 8.13 6.51

WideResNet-16-1 (0.2M) WideResNet-16-2 (0.7M) 8.74 7.94 8.28 7.52 6.07

WideResNet-16-2 (0.7M) WideResNet-40-2 (2.2M) 6.07 6.00 5.89 5.52 5.18

WideResNet-16-2 (0.7M) WideResNet-16-8 (11.0M) 6.07 5.62 5.47 5.34 4.24

WideResNet-40-2 (2.2M) WideResNet-16-8 (11.0M) 5.18 4.86 4.47 4.55 4.24

Table 2. Experiments on CIFAR-10 with three different knowledge distillation losses: softened class scores (traditional KD), attention

transfer (AT), and similarity preserving (SP). The median error over five runs is reported, following the protocol in [40, 41]. The best result

for each experiment is shown in bold. Brackets indicate model size in number of parameters.
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Figure 4. LSP vs. error for (from left to right) WideResNet-16-1 students trained with WideResNet-16-2 teachers, WideResNet-16-2

students trained with WideResNet-40-2 teachers, and WideResNet-40-2 students trained with WideResNet-16-8 teachers, on CIFAR-10.

ditional (softened class scores) and attention transfer base-

lines, achieving the lowest error in four of the five cases.

This validates our intuition that the activation similari-

ties across images encode useful semantics learned by the

teacher network, and provide an effective supervisory sig-

nal for knowledge distillation.

Figure 4 plots LSP vs. error for the WideResNet-16-

1/WideResNet-16-2, WideResNet-16-2/WideResNet-40-2,

and WideResNet-40-2/WideResNet-16-8 experiments (left

to right, respectively), using all students trained with tradi-

tional KD, AT, and SP. The plots verify that LSP and perfor-

mance are correlated.

While we have presented these results from the perspec-

tive of improving the training of a student network, it is

also possible to view the results from the perspective of the

teacher network. Our results suggest the potential for us-

ing similarity-preserving distillation to compress large net-

works into more resource-efficient ones with minimal accu-

racy loss. In the fifth test, for example, the knowledge of a

trained WideResNet-16-8 network, which contains 11.0M

parameters, is distilled into a much smaller WideResNet-

40-2 network, which contains only 2.2M parameters. This

is a 5× compression rate with only 0.3% loss in accuracy,

using off-the-shelf PyTorch without any specialized hard-

ware or software.

The above similarity-preserving distillation results were

produced using only the activations collected from the last

convolution layers of the student and teacher networks. We

also experimented with using the activations at the end of

each WideResNet block, but found no improvement in per-

formance. We therefore used only the activations at the final

convolution layers in the subsequent experiments. Activa-

tion similarities may be less informative in the earlier lay-

ers of the network because these layers encode more generic

features, which tend to be present across many images. Pro-

gressing deeper in the network, the channels encode in-

creasingly specialized features, and the activation patterns

of semantically similar images become more distinctive.

We also experimented with using post-softmax scores to

determine similarity, but this produces worse results than

using activations. We found the same when using an oracle,

suggesting that the soft teacher signal is important.

3.2. Transfer learning combining distillation with
fine­tuning

In this section, we explore a common transfer learning

scenario in computer vision. Suppose we are faced with a

novel recognition task in a specialized image domain with

limited training data. A natural strategy to adopt is to trans-

fer the knowledge of a network pre-trained on ImageNet (or

another suitable large-scale dataset) to the new recognition

task by fine-tuning. Here, we combine knowledge distilla-

tion with fine-tuning: we initialize the student network with

source domain (in this case, ImageNet) pretrained weights,

and then fine-tune the student to the target domain using

both distillation and cross-entropy losses (Eq. 5).

We analyzed this scenario using the describable textures

dataset [3], which is composed of 5,640 images covering
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Student Teacher Student AT [41] SP (win:loss) Teacher

MobileNet-0.25 (0.2M) MobileNet-0.5 (0.8M) 42.45 42.39 41.30 (7:3) 36.76

MobileNet-0.25 (0.2M) MobileNet-1.0 (3.3M) 42.45 41.89 41.76 (5:5) 34.10

MobileNet-0.5 (0.8M) MobileNet-1.0 (3.3M) 36.76 35.61 35.45 (7:3) 34.10

MobileNetV2-0.35 (0.5M) MobileNetV2-1.0 (2.2M) 41.25 41.60 40.29 (8:2) 36.62

MobileNetV2-0.35 (0.5M) MobileNetV2-1.4 (4.4M) 41.25 41.04 40.43 (8:2) 35.35

MobileNetV2-1.0 (2.2M) MobileNetV2-1.4 (4.4M) 36.62 36.33 35.61 (8:2) 35.35

Table 3. Transfer learning experiments on the describable textures dataset with attention transfer (AT) and similarity preserving (SP)

knowledge distillation. The median error over the ten standard splits is reported. The best result for each experiment is shown in bold.

The (win:loss) notation indicates the number of splits in which SP outperformed AT. The (*M) notation indicates model size in number of

parameters.

47 texture categories. Image sizes range from 300x300

to 640x640. We applied ImageNet-style data augmen-

tation with horizontal flipping and random resized crop-

ping during training. At test time, images were resized to

256x256 and center cropped to 224x224 for input to the net-

works. For evaluation, we adopted the standard ten training-

validation-testing splits. To demonstrate the versatility of

our method on different network architectures, and in par-

ticular its compatibility with mobile-friendly architectures,

we experimented with variants of MobileNet [13] and Mo-

bileNetV2 [32]. Tables 1 and 2 in the supplementary sum-

marize the structure of the networks.

We compared with an attention transfer baseline. Soft-

ened class score based distillation is not directly comparable

in this setting because the classes in the source and target

domains are disjoint. Similarity-preserving distillation can

be applied directly to train the student, without first fine-

tuning the teacher, since it aims to preserve similarities in-

stead of mimicking the teacher’s representation space. The

teacher is run in inference mode to generate representations

in the new domain. This capacity is useful when the new

domain has limited training data, when the source domain

is not accessible to the student (e.g. in privileged learning),

or in continual learning where trained knowledge needs to

be preserved across tasks 1. We set the hyperparameters

for attention transfer and similarity-preserving distillation

by held-out validation on the ten standard splits. All net-

works were trained using SGD with Nesterov momentum,

a batch size of 96, and for 60 epochs with an initial learning

rate of 0.01 reduced to 0.001 after 30 epochs.

Table 3 shows that similarity-preserving distillation can

effectively transfer knowledge across different domains.

For all MobileNet and MobileNetV2 student-teacher pairs

tested, applying similarity-preserving distillation during

fine-tuning resulted in lower median student error than

1In continual (or lifelong) learning, the goal is to extend a trained net-

work to new tasks while avoiding the catastrophic forgetting of previous

tasks. One way to prevent catastrophic forgetting is to supervise the new

model (the student) with the model trained for previous tasks (the teacher)

via a knowledge distillation loss [42].

fine-tuning without distillation. Fine-tuning MobileNet-

0.25 with distillation reduced the error by 1.1% absolute,

and fine-tuning MobileNet-0.5 with distillation reduced the

error by 1.3% absolute, compared to fine-tuning without

distillation. Fine-tuning MobileNetV2-0.35 with distilla-

tion reduced the error by 1.0% absolute, and fine-tuning

MobileNetV2-1.0 with distillation reduced the error by

1.0% absolute, compared to fine-tuning without distillation.

For all student-teacher pairs, similarity-preserving dis-

tillation obtained lower median error than the spatial at-

tention transfer baseline. Table 3 incudes a breakdown of

how similarity-preserving distillation compares with spa-

tial attention transfer on a per-split basis. On aggregate,

similarity-preserving distillation outperformed spatial at-

tention transfer on 19 out of the 30 MobileNet splits and

24 out of the 30 MobileNetV2 splits. The results suggest

that there may be a challenging domain shift in the impor-

tant image areas for the network to attend. Moreover, while

attention transfer summarizes the activation map by sum-

ming out the channel dimension, similarity-preserving dis-

tillation makes use of the full activation map in computing

the similarity-based distillation loss, which may be more

robust in the presence of a domain shift in attention.

3.3. CINIC­10

The CINIC-10 dataset [5] is designed to be a middle op-

tion relative to CIFAR-10 and ImageNet: it is composed

of 32x32 images in the style of CIFAR-10, but at a total

of 270,000 images its scale is closer to that of ImageNet.

We adopted CINIC-10 for rapid experimentation because

several GPU-months would have been required to perform

full held-out validation and training on ImageNet for our

method and all baselines.

For the student and teacher architectures, we experi-

mented with variants of the state-of-the-art mobile archi-

tecture ShuffleNetV2 [23]. The ShuffleNetV2 networks are

summarized in Table 3 in the supplementary. We used

the standard training-validation-testing split and set the hy-

perparameters for similarity-preserving distillation and all

baselines by held-out validation (KD: {α = 0.6, T = 16};
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Student Teacher Student KD [12] AT [41] SP (ours) KD+SP AT+SP Teacher

Sh.NetV2-0.5 (0.4M) Sh.NetV2-1.0 (1.3M) 20.09 18.62 18.50 18.56 18.35 18.20 17.26

Sh.NetV2-0.5 (0.4M) Sh.NetV2-2.0 (5.3M) 20.09 18.96 18.78 19.09 18.88 18.43 15.63

Sh.NetV2-1.0 (1.3M) Sh.NetV2-2.0 (5.3M) 17.26 16.01 15.95 15.95 16.11 15.89 15.63

M.NetV2-0.35 (0.4M) M.NetV2-1.0 (2.2M) 17.12 16.27 16.10 16.57 16.17 15.66 14.05

Table 4. Experiments on CINIC-10 with three different knowledge distillation losses: softened class scores (traditional KD), attention

transfer (AT), and similarity preserving (SP). The best result for each experiment is shown in bold. Brackets indicate model size in number

of parameters.

AT: β = 50; SP: γ = 2000; KD+SP: {α = 0.6, T =
16, γ = 2000}; AT+SP: {β = 30, γ = 2000}). All net-

works were trained using SGD with Nesterov momentum,

a batch size of 96, for 140 epochs with an initial learning

rate of 0.01 decayed by a factor of 10 after the 100th and

120th epochs. We applied CIFAR-style data augmentation

with horizontal flips and random crops during training.

The results are shown in Table 4 (top). Compared to

conventional training with data supervision only, similarity-

preserving distillation consistently improved student train-

ing outcomes. In particular, training ShuffleNetV2-0.5 with

similarity-preserving distillation reduced the error by 1.5%

absolute, and training ShuffleNetV2-1.0 with similarity-

preserving distillation reduced the error by 1.3% abso-

lute. On an individual basis, all three knowledge distil-

lation approaches achieved comparable results, with a to-

tal spread of 0.12% absolute error on ShuffleNetV2-0.5

(for the best results with ShuffleNetV2-1.0 as teacher) and

a total spread of 0.06% absolute error on ShuffleNetV2-

1.0. However, the lowest error was achieved by combin-

ing similarity-preserving distillation with spatial attention

transfer. Training ShuffleNetV2-0.5 combining both distil-

lation losses reduced the error by 1.9% absolute, and train-

ing ShuffleNetV2-1.0 combining both distillation losses

reduced the error by 1.4% absolute. This result shows

that similarity-preserving distillation complements atten-

tion transfer and captures teacher knowledge that is not fully

encoded in spatial attention maps. Table 4 (bottom) sum-

marizes additional experiments with MobileNetV2. The

results are similar: SP does not outperform the individual

baselines but complements traditional KD and AT.

Sensitivity analysis. Figure 5 illustrates how the perfor-

mance of similarity-preserving distillation is affected by the

choice of hyperparameter γ. We plot the top-1 errors on the

CINIC-10 test set for ShuffleNetV2-0.5 and ShuffleNetV2-

1.0 students trained with γ ranging from 10 to 64,000. We

observed robust performance over a broad range of values

for γ. In all experiments, we set γ by held-out validation.

3.4. Different student and teacher architectures

We performed additional experiments with students and

teachers from different architecture families on CIFAR-

10. Table 5 shows that, for both MobileNetV2 and Shuf-
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Figure 5. Sensitivity to γ on the CINIC-10 test set for Shuf-

fleNetV2 students.

fleNetV2, SP outperforms conventional training as well as

the traditional KD and AT baselines.

4. Related Work

We presented in this paper a novel distillation loss for

capturing and transferring knowledge from a teacher net-

work to a student network. Several prior alternatives

[12, 31, 38, 41] are described in the introduction and some

key differences are highlighted in Section 2. In addition to

the knowledge capture (or loss definition) aspect of distil-

lation studied in this paper, another important open ques-

tion is the architectural design of students and teachers.

In most studies of knowledge distillation, including ours,

the student network is a thinner and/or shallower version

of the teacher network. Inspired by efficient architectures

such as MobileNet and ShuffleNet, Crowley et al. [4] pro-

posed to replace regular convolutions in the teacher network

with cheaper grouped and pointwise convolutions in the stu-

dent. Ashok et al. [1] developed a reinforcement learn-

ing approach to learn the student architecture. Polino et al.

[28] demonstrated how a quantized student network can be

trained using a full-precision teacher network.

There is also innovative orthogonal work exploring al-

ternatives to the usual student-teacher training paradigm.

Wang et al. [34] introduced an additional discriminator

network, and trained the student, teacher, and discrimina-
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Student Teacher Student KD [12] AT [41] SP (ours) Teacher

ShuffleNetV2-0.5 (0.4M) WideResNet-40-2 (2.2M) 8.95 9.09 8.55 8.19 5.18

MobileNetV2-0.35 (0.4M) WideResNet-40-2 (2.2M) 7.44 7.08 7.43 6.62 5.18

Table 5. Additional experiments with students and teachers from different architecture families on CIFAR-10. The median error over five

runs is reported, following the protocol in [40, 41]. The best result for each experiment is shown in bold. Brackets indicate model size in

number of parameters.

tor networks together using a combination of distillation

and adversarial losses. Lan et al. [18] proposed the on-

the-fly native ensemble teacher model, in which the teacher

is trained together with multiple students in a multi-branch

network architecture. The teacher prediction is a weighted

average of the branch predictions.

Knowledge distillation was first introduced as a tech-

nique for neural network compression. Resource efficiency

considerations have led to a recent increase in interest in

efficient neural architectures [13, 14, 23, 32, 44], as well

as in algorithms for compressing trained deep networks.

Weight pruning methods [11, 20, 22, 24, 33, 35, 39] re-

move unimportant weights from the network, sparsifying

the network connectivity structure. The induced sparsity

is unstructured when individual connections are pruned, or

structured when entire channels or filters are pruned. Un-

structured sparsity usually results in better accuracy but re-

quires specialized sparse matrix multiplication libraries [26]

or hardware engines [10] in practice. Quantized networks

[8, 15, 17, 30, 43, 46], such as fixed-point, binary, ternary,

and arbitrary-bit networks, encode weights and/or activa-

tions using a small number of bits, or at lower precision.

Fractional or arbitrary-bit quantization [9, 17] encodes in-

dividual weights at different precisions, allowing multiple

precisions to be used within a single network layer. Low-

rank factorization methods [6, 7, 16, 27, 45] produce com-

pact low-rank approximations of filter matrices. Techniques

from different categories have also been optimized jointly

or combined sequentially to achieve higher compression

rates [7, 11, 33].

State-of-the-art network compression methods can

achieve significant reductions in network size, in some

cases by an order of magnitude, but often require special-

ized software or hardware support. For example, unstruc-

tured pruning requires optimized sparse matrix multiplica-

tion routines to realize practical acceleration [26], platform

constraint-aware compression [2, 36, 37] requires hard-

ware simulators or empirical measurements, and arbitrary-

bit quantization [9, 17] requires specialized hardware. One

of the advantages of knowledge distillation is that it is easily

implemented in any off-the-shelf deep learning framework

without the need for extra software or hardware. Moreover,

distillation can be integrated with other network compres-

sion techniques for further gains in performance [28].

5. Conclusion

We proposed similarity-preserving knowledge distilla-

tion: a novel form of knowledge distillation that aims to

preserve pairwise similarities in the student’s representa-

tion space, instead of mimicking the teacher’s representa-

tion space. Our experiments demonstrate the potential of

similarity-preserving distillation in improving the training

outcomes of student networks compared to training with

only data supervision (e.g. ground truth labels). Moreover,

in a transfer learning setting, when traditional class score

based distillation is not directly applicable, we have shown

that similarity-preserving distillation provides a robust solu-

tion to the challenging domain shift problem. We have also

shown that similarity-preserving distillation complements

the state-of-the-art attention transfer method and captures

teacher knowledge that is not fully encoded in spatial at-

tention maps. We believe that similarity-preserving distilla-

tion can provide a simple yet effective drop-in replacement

for (or complement to) traditional forms of distillation in a

variety of application areas, including model compression

[28], privileged learning [21], adversarial defense [25], and

learning with noisy data [19].

Future directions. As future work, we plan to ex-

plore similarity-preserving knowledge distillation in semi-

supervised and omni-supervised [29] learning settings.

Since similarity-preserving distillation does not require la-

bels, it is possible to distill further knowledge from the

teacher using auxiliary images without annotations. For

example, the supervised loss (e.g. cross-entropy) can be

computed using the usual annotated training set, while the

distillation loss can be computed using an auxiliary set of

unlabelled web images. In this setting, the distillation loss

is analogous to the reconstruction or unsupervised loss in

semi-supervised learning.
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