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Figure 1: We propose a novel depth-aware domain adaptation framework (DADA) to efficiently leverage depth as privileged

information in the unsupervised domain adaptation setting. This example shows how semantic segmentation of a scene from the target

domain benefits from the proposed approach, in comparison to state-of-the-art domain adaptation with no use of depth. In figure’s top, we

use different background colors (blue and red) to represent source and target information that are available during training. Here, annotated

source domain data come from the synthetic SYNTHIA dataset and un-annotated target domain images are real scenes from Cityscapes.

The cyclist highlighted by the yellow box is a good qualitative illustration of the improvement we obtain.

Abstract

Unsupervised domain adaptation (UDA) is important

for applications where large scale annotation of represen-

tative data is challenging. For semantic segmentation in

particular, it helps deploy, on real “target domain” data,

models that are trained on annotated images from a dif-

ferent “source domain”, notably a virtual environment.

To this end, most previous works consider semantic seg-

mentation as the only mode of supervision for source do-

main data, while ignoring other, possibly available, in-

formation like depth. In this work, we aim at exploit-

ing at best such a privileged information while training

the UDA model. We propose a unified depth-aware UDA

framework that leverages in several complementary ways

the knowledge of dense depth in the source domain. As

a result, the performance of the trained semantic segmen-

tation model on the target domain is boosted. Our novel

approach indeed achieves state-of-the-art performance on

different challenging synthetic-2-real benchmarks. Code

and models are available at https://github.com/

valeoai/DADA.

1. Introduction

Advances in deep convolutional neural networks (CNNs)

brought significant leaps forward in many recognition tasks

including semantic segmentation. Still, predicting semantic

labels for all imagery pixels is a challenging problem, es-

pecially when models are trained on one domain, named as

source, yet evaluated on another domain, named as target.

The so-called domain gap between source and target dis-

tributions often causes drastic drops in target performance.

Instead, autonomous critical systems such as self-driving

cars require robust performance under diverse testing condi-

tions, despite the lack of ubiquitous training data. For such

systems, semantic segmentation models trained on sunny

urban images taken in Roma should yield good results even

on foggy scenes in London.

Techniques addressing the domain gap problem are usu-

ally classified as domain adaptation (DA) [7]. In previ-

ous works, most DA settings are unsupervised on the tar-

get side, i.e., only un-annotated target samples are available

during the supervised training on source domain. This is

referred to as unsupervised domain adaptation (UDA). In

recent years, considerable progress has been made in UDA
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with approaches such as distribution discrepancy minimiza-

tion with MMD [20, 42] or adversarial training [14, 35],

generative approaches [13] and others.

In this UDA context, the synthetic-2-real scenario, where

source and target samples are synthetic and real images re-

spectively, is especially appealing thanks to the zero-cost

source label acquisition. Moreover, recent virtual engines

can simulate other sensory outputs like dense/sparse depth

or radar; for example, the SYNTHIA dataset [29] pro-

vides corresponding virtual depth maps of synthesized ur-

ban scenes. Most previous UDA works ignore such extra

information, except for Lee et al. [18] who propose to use

depth for regularizing a style-transfer network.

In this work, we propose a new scheme to leverage depth

information available in source domain for UDA. We hy-

pothesize that introducing additional depth-specific adap-

tation brings complementary effects to further bridge the

performance gap between source and target at test time.

Toward this end, we transform the segmentation backbone

such that the depth information is embedded into a dedi-

cated deep architecture by means of an auxiliary depth re-

gression task. Depth, operating as an additional source-

domain supervision in our framework (only available while

training), will be considered as a privileged information.

Another challenge is to incorporate efficiently depth sig-

nals into the UDA learning. Addressing this concern, we

introduce a new depth-aware adversarial training protocol

based on the fusion of the network outputs. Such a late fu-

sion was inspired by our intuition that visual information at

different depth levels should be treated differently.

The proposed approach is illustrated in Figure 1, where

the benefit of depth-aware adaptation on key object cate-

gories like ‘human’ and ‘vehicle’ is visible. The contribu-

tions of this approach are the following:

• Depth-aware UDA learning strategy: we introduce a

novel depth-aware adaptation scheme, coined DADA

learning, which simultaneously aligns segmentation-

based and depth-based information of source and tar-

get while being aware of scene geometry.

• Depth-aware deep architecture: we propose a novel

depth-aware segmentation pipeline, named DADA ar-

chitecture, in which depth-specific and standard CNN

appearance features are fused before being forwarded

through the segmentation classifiers.

• State-of-the-art performance: evaluations show that

our framework achieves SotA results on challenging

synthetic-2-real benchmarks. We also report ablation

studies to provide insights into the proposed approach.

2. Related works

Unsupervised domain adaption has received a lot of at-

tention in last few years [7, 9, 14, 21, 37, 42]. It is usually

approached with domain discrepancy minimization, gener-

ative approaches or using some privileged information to

guide the learning. Since we are only concerned with visual

semantic segmentation in this work, we limit our review of

UDA to approaches that aim at this task as well.

Various approaches of UDA for segmentation employ

adversarial training to minimize cross-domain discrepancy.

The main idea, stemming from generative adversarial net-

works (GANs) [10], is to train a discriminator for predicting

the domain of the data (source or target) while the segmen-

tation network tries to fool it (along with the supervised seg-

mentation task on the source). Under the competition with

the discriminator, the segmentation network tries to map its

input to domain-agnostic intermediate or final representa-

tion (which is the input to the discriminator), before accom-

plishing its task. This alignment with adversarial training is

usually done in the feature space. In [14], the feature align-

ment is done not only with adversarial training but also by

transferring the label statistics of the source domain by cat-

egory specific adaptation. [5] uses adversarial training for

class-level alignment on grid-wise soft pseudo-labels. In

[4], spatial-aware adaptation is conducted and a distillation

loss is used to address specifically synthetic-to-real adapta-

tion by enforcing the segmentation network’s output to be

similar to a reference network trained on real data. While

most of these methods do alignment on the features space,

recently [35, 39] propose alignment on the output space.

[35] does the alignment on the prediction of the segmen-

tation network and [39] proposes to do it on the weighted

self-information of the prediction probability. [36] and [23]

extend the approach of [35] by patch-level alignment and

category-level adversarial loss respectively. Another use of

adversarial training for UDA is proposed in [30, 31], where

the discrepancy between two instances of the same input

from target domain is minimized while the classification

layer tries to maximize it. The approach we propose also

uses adversarial training but it takes this further by intro-

ducing the depth.

Another strategy that received much attention is the use

of generative networks to turn source domain samples into

target-like images. CyCADA [13] uses Cycle-GAN [45] to

generate target-like images conditioned on the source im-

ages, i.e., generated images contain the structure or seman-

tic content of the source with the “style” (colors and tex-

tures) of the target domain. These generated images inherit

the ground truth semantic segmentation of the conditioning

source images and can then be used for supervised train-

ing of the segmentation network. [46] aligns the source and

target embeddings using GAN [10] and replaces the cross-

entropy loss by a conservative loss (CL) which penalizes

the easy and hard source examples. In DCAN [41], a sim-

ilar generative approach is used with channel-wise feature

alignment in the generator and segmentation networks.
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Some other interesting works have investigated combi-

nation of adversarial and generative approaches [25, 32, 44],

self-training [47] and curriculum style learning [43].

In order to help domain adaptation in various tasks, sev-

eral works explore the use of privileged information on the

source data [2, 19, 33]. The idea of using privileged infor-

mation (PI) for learning was first formulated by Vapnik &

Vashist (2009) [38]. PI is an additional information avail-

able only at training time. This is conceptually similar to

humans learning new notions or concepts with the help of

teacher’s comment or explanation. Following [38] many

works [12, 22, 24, 34, 40] investigated PI for various tasks.

Recently, SPIGAN [18] has proposed such a UDA approach

for semantic segmentation. SPIGAN first uses a generative

network to convert the source images into target-type im-

ages. These new images are then used to train the segmen-

tation network along with a depth regression network (priv-

ileged information network) in a supervised manner, thanks

to the ground truth of the source images. This work shows

that the additional depth regression task helps in pixel level

adaptation or, in other words, better captures the content of

source images in the generated target-like images.

In the present work, we also leverage a depth regression

task to aid domain adaptation. However, this is accom-

plished in a way that notably differs form SPIGAN (which

uses depth only as a regularization for the generator).

3. Depth-aware domain adaptation

In this section, we describe our proposed UDA method

for semantic segmentation using depth. Our goal is to use

depth as the privileged information in the UDA setting to

improve segmentation performance on the target domain.

To this end, we modify a network of semantic segmenta-

tion by including a monocular depth regression part. More

specifically, we design a deep architecture to embed the

depth in a dedicated residual block as illustrated in Figure 2

(‘DADA architecture’ in top part). In Section 3.1, we de-

tail DADA network architecture and the supervised learn-

ing used on source dataset. The second part concerns the

learning scheme for such a UDA approach. To get the full

benefit of the geometry information, we propose a depth-

aware adversarial learning scheme. We argue that for do-

main adaptation, particularly in the urban settings, objects

closer to the ego-camera should be emphasized more. Our

framework, illustrated in Figure 2 (‘DADA learning’ in bot-

tom part), is detailed in Section 3.2.

3.1. DADA Network Architecture.

Starting from an existing semantic segmentation archi-

tecture, we insert additional modules (1) to predict monoc-

ular depth as additional output and (2) to feed the infor-

mation exploited by this auxiliary task back to the main

stream. More specifically, we adopt the residual auxiliary

block that was recently introduced in [24] for detection. It

amounts to grafting a new branch to the backbone CNN. In

this branch, the backbone CNN features are consecutively

fed into three encoding convolutional layers, followed by

an average pooling layer to output depth map predictions.

On the residual path back to the main branch, the encoded

features (before the depth pooling) are decoded by a con-

volutional layer and fused with the backbone features. The

top-part of Figure 2 shows the proposed hybrid architecture,

mixing the auxiliary block architecture with the backbone

one.

Importantly, for the feature-level fusion, we adopt an

element-wise product, indicated as “Feat. Fusion” in the

top part of Figure 2. To produce segmentation predictions,

we feed-forward the fused features through the remaining

classification modules.

Source domain supervised training. Our model is

trained with supervised segmentation and depth losses

on source domain. We consider a training set

Ts ⊂ R
H×W×3 × (1, C)H×W × R

H×W
+ of source

color images of size H × W along with pixel-level

C-class segmentation and depth annotations. Let

DADA be the network which takes an image x and

jointly predicts a C-dimensional “soft-segmentation map”

DADAseg(x) = Px =
[

P
(h,w,c)
x

]

h,w,c
1 and a depth

map DADAdepth(x) =
[

Z
(h,w)
x

]

h,w
. Similar to [15], we

adopt the inverse depth representation, i.e., depth attenu-

ates when moving away from the camera. The parameters

θDADA of DADA are learned to minimize the segmentation

and depth losses on source samples (xs,ys, zs) ∈ Ts:

Lseg(xs,ys) = −

H
∑

h=1

W
∑

w=1

C
∑

c=1

y(h,w,c)
s logP (h,w,c)

xs
, (1)

Ldep(xs, zs) = −

H
∑

h=1

W
∑

w=1

berHu
(

Z(h,w)
xs

−z(h,w)
s

)

, (2)

with the reverse Huber loss defined as [17]:

berHu(ez) =

{

|ez| , if |ez| ≤ c,
e2
z
+c2

2c otherwise,
(3)

where c is a positive threshold that we fix in practice to 1
5 of

the maximum depth residual. Empirically, the berHu loss is

favorable for the depth regression task: samples with larger

residuals are penalized more by the ℓ2 term, while gradients

of small-residual samples are more underlined with ℓ1.

Finally, our DADA optimization problem on source do-

main is formulated as:

min
θDADA

1

|Ts|

∑

Ts

Lseg(xs,ys) + λdepLdep(xs, zs), (4)

with λdep a weighting factor for depth regression.

1Seen as empirical probabilities that sum to one over the C classes.
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Figure 2: DADA architecture (top) and DADA learning scheme (bottom). In the top part, the dark-blue stack shows the backbone

CNN network; light-blue boxes symbolize the network modules; and green blocks stand for output features. In the lower part, the arrows

drawn in blue and red differentiate network flows of source and target samples respectively. For convenient reference, over the learning

blocks – illustrated by dashed boxes – we indicate the corresponding equation numbers.

3.2. DADA Adversarial Learning Scheme

For UDA in semantic segmentation, the key idea is to

align the source and target domains so that a discriminator

network cannot distinguish between the domains. We fol-

low here the recent strategies that align features at the output

level [35, 39], i.e., the soft segmentation map Px produced

by the segmentation network DADAseg on input image x.

We hereby question the plausibility of adapting such a

methodology for an auxiliary space, i.e., depth prediction

Zx in the present work, in the hope that the performance

of the main task is improved. We hypothesize that aligning

source and target distributions also in the depth space im-

plicitly bridges the domain gaps of the shared lower-level

CNN representations and should bring improvements to the

main task on target domain.

In order to carry out such a strategy, we propose a

joint alignment: we first merge both signals, then we feed-

forward the fused features as input to a discriminator.

We illustrate DADA adversarial learning scheme in the

lower right part of Figure 2. More precisely:

• We compute weighted self-information (“surprisal”)

maps [39] Ix ∈ [0, 1]H×W×C defined as:

I(h,w,c)
x

= −P (h,w,c)
x

· logP (h,w,c)
x

. (5)

• We fuse the weighted self-information Ix with the

depth prediction Zx to produce a depth-aware map Îx.

The fusion of Zx and Ix, which we refer to as DADA

fusion, is the element-wise product of Ix with Zx. As

here the inverse depth is used, such a multiplication

implies stronger attention toward scene elements that

are closer to the ego-camera.

• Then, we do the adversarial adaptation on Îx.

The depth-aware map Îx carries 3D-structural and geo-

metrical information which should be consistent across the

domains, thus alignment on this space is beneficial to adap-

tation as we will see in the next section.

Formally, given Xt the set of un-annotated images in the

target domain, the discriminator D is trained to distinguish

source vs. target outputs (labeled as ‘1’ and ‘0’ respectively)

with the following classification objective minimization:

min
θD

1

|Ts|

∑

Ts

LD(Îxs
, 1) +

1

|Xt|

∑

Xt

LD(Îxt
, 0), (6)

and the DADA network is updated using the “fooling” ob-

jective minimization:

min
θDADA

1

|Xt|

∑

Xt

LD(Îxt
, 1). (7)
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At each training iteration, we feed the network a mini-

batch of two samples coming from source and target do-

mains. The two objectives in (4) and (7) are jointly opti-

mized with a weighting factor λadv used for the adversarial

part. Gradients of all losses are accumulated and then back-

propagated to update the network.

Discussion. The only method using depth as privileged

information in the same task as ours is SPIGAN [18]. While

in DADA, with feature fusion and DADA fusion, we ex-

ploit depth to enhance the appearance features and improve

the source-target alignment, SPIGAN leverages depth as a

regularization for the pixel-level alignment generator. We

argue that our way of using depth is more explicit, which,

in return, gets more benefit from the privileged informa-

tion. Moreover, thanks to the residual fusion in the aux-

iliary block presented in Section 3.1, depth signals are di-

rectly taken into account while deriving main task predic-

tions. Such a residual fusion spreads beneficial effects of

the depth-specific adaptation to the main segmentation task.

4. Experiments

This section presents quantitative and qualitative results.

We introduce in Section 4.1 the synthetic-2-real bench-

marks used in this work. We then analyze the performance

of the proposed model in Section 4.2 and report ablation

studies in Section 4.3.

4.1. Experimental details

Datasets. In this work, we use SYNTHIA dataset [29]

as the source domain. It is composed of 9, 400 syn-

thetic images annotated with pixel-wise semantic labels and

depth. Similar to previous works [18, 35, 39], we adopt the

split SYNTHIA-RAND-CITYSCAPES using Cityscapes-

style annotations. For the target domain, we use either

Cityscapes [6] or Mapillary Vistas [26] datasets. What fol-

lows are our experimental set-ups in detail:

• SYNTHIA→Cityscapes (16 classes): This is a standard

evaluation protocol used in previous works. The mod-

els are trained on the 16 classes common to SYNTHIA

and Cityscapes. Similar to [35, 39], we also report per-

formance on the 13-class subset.

• SYNTHIA→Cityscapes / Vistas (7 classes): Follow-

ing [18], we conduct experiments on the 7 categories

that are common to SYNTHIA, Cityscapes and Vistas.

Network architecture. In our experiments, we adopt

Deeplab-V2 [3] based on ResNet-101 [11] as the backbone

segmentation architecture. Like [35, 39], we apply Atrous

Spatial Pyramid Pooling (ASPP) with sampling rates of {6,

12, 18, 24}. Segmentation prediction is only done on the

conv5 features. For the adversarial training, we use DC-

GAN’s discriminator [28] composed of 4 sequential convo-

lutional layers with leaky-ReLUs as activation functions.

The encoding module used for depth regression has three

consecutive convolutional layers: the first and last ones have

kernel size of 1; the middle layer has kernel size of 3 with

a suitable zero-padding to ensure the same input and output

resolutions. Each layer uses 4 times fewer channels than

the previous one. In the decoding part, we feed the encoded

features through a 1× 1 convolutional layer. The decoding

layer has the same number of output channels as the channel

size of the ResNet-101 backbone feature.

Implementation details. Implementations are done with

the PyTorch deep learning framework [27]. To train and

validate our models, we use a single NVIDIA 1080TI GPU

with 11GB memory. We initialize our models with the

ResNet-101 [11] pre-trained on the ImageNet dataset [8].

Segmentation and depth regression networks are trained by

a standard Stochastic Gradient Descent optimizer [1] with

learning rate 2.5 × 10−4, momentum 0.9 and weight de-

cay 10−4. For discriminator training, we adopt Adam opti-

mizer [16] with learning rate 10−4. In all experiments, we

fixed λdep as 10−3 for the depth regression task and used

λadv = 10−3 to weight the adversarial loss.

4.2. Results

We present results of the proposed DADA approach in

comparison to different baselines. On the three bench-

marks, our models achieve state-of-the-art performance.

Our extensive study shows the benefit of leveraging depth

as privileged information with our DADA framework for

UDA in semantic segmentation.

SYNTHIA→Cityscapes: In Table 1, we report seman-

tic segmentation performance in term of “mean Intersec-

tion over Union” (mIoU in %) on the 16 classes of the

Cityscapes validation set. DADA achieves state-of-the-art

performance on the benchmark. To the best of our knowl-

edge, SPIGAN [18] is the only published work targeting the

same problem that also considers depth as privileged infor-

mation. DADA achieves a D-Gain of 1.8%, almost double

of SPIGAN’s. Analyzing per-class results, we observe that

the improvement over AdvEnt [39] primarily comes from

the ‘vehicle’ category, i.e., ‘car’ (+7%), ‘bus’ (+8.1%)

and ‘bike’ (+5.1%). On ‘object’ classes like ‘light’ and

‘pole’, DADA introduces moderate gains. Figure 3 illus-

trates some qualitative examples comparing DADA and the

AdvEnt baseline. Our model shows better results on ‘ve-

hicle’ classes while AdvEnt sometimes makes severe mis-

takes of predicting ‘car’ as ‘road’ or ‘sidewalk’. DADA also

outperforms significantly other baseline methods that report

results on a 13-class subset.

57368



SYNTHIA → Cityscapes (16 classes)
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*
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r

b
u

s

m
b
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e

b
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e

m
Io

U

D
-G
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n

m
Io

U
*

SPIGAN-no-PI [18] 69.5 29.4 68.7 4.4 0.3 32.4 5.8 15.0 81.0 78.7 52.2 13.1 72.8 23.6 7.9 18.7 35.8 - 41.2

SPIGAN [18] X 71.1 29.8 71.4 3.7 0.3 33.2 6.4 15.6 81.2 78.9 52.7 13.1 75.9 25.5 10.0 20.5 36.8 1.0 42.4

AdaptSegnet [35] 79.2 37.2 78.8 - - - 9.9 10.5 78.2 80.5 53.5 19.6 67.0 29.5 21.6 31.3 - - 45.9

AdaptPatch [36] 82.2 39.4 79.4 - - - 6.5 10.8 77.8 82.0 54.9 21.1 67.7 30.7 17.8 32.2 - - 46.3

CLAN [23] 81.3 37.0 80.1 - - - 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 - - 47.8

AdvEnt [39] 87.0 44.1 79.7 9.6 0.6 24.3 4.8 7.2 80.1 83.6 56.4 23.7 72.7 32.6 12.8 33.7 40.8 - 47.6

DADA X 89.2 44.8 81.4 6.8 0.3 26.2 8.6 11.1 81.8 84.0 54.7 19.3 79.7 40.7 14.0 38.8 42.6 1.8 49.8

Table 1: Semantic segmentation performance mIoU (%) on Cityscapes validation set of different models trained on SYNTHIA.

Top and bottom sub-tables correspond to VGG-16-based and ResNet-101-based models respectively. For methods making use of depth,

we report the absolute depth-driven mIoU gain (D-Gain). We also show the mIoU (%) of the 13 classes (mIoU*) excluding classes with *.

(a) SYNTHIA → Cityscapes (7 classes) (b) SYNTHIA → Vistas (7 classes)
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m
Io
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32
0
×
64
0 SPIGAN-no-PI [18] 90.3 58.2 6.8 35.8 69.0 9.5 52.1 46.0 53.0 30.8 3.6 14.6 53.0 5.8 26.9 26.8

SPIGAN [18] X 91.2 66.4 9.6 56.8 71.5 17.7 60.3 53.4 74.1 47.1 6.8 43.3 83.7 11.2 42.2 44.1

Advent* [39] 86.3 72.7 12.0 70.4 81.2 29.8 62.9 59.4 82.7 51.8 18.4 67.8 79.5 22.7 54.9 54.0

DADA X 89.6 76.0 16.3 74.4 78.3 43.8 65.7 63.4 83.8 53.7 20.5 62.1 84.5 26.6 59.2 55.8

F
u

ll

Advent* [39] 89.6 77.8 22.1 76.3 81.4 54.7 68.7 67.2 86.9 58.8 30.5 74.1 85.1 48.3 72.5 65.2

DADA X 92.3 78.3 25.0 75.5 82.2 58.7 72.4 70.4 86.7 62.1 34.9 75.9 88.6 51.1 73.8 67.6

Oracle (only-target) 97.6 87.9 46.0 87.9 88.8 69.1 88.6 80.8 95.0 84.2 54.8 87.7 97.2 70.2 87.5 82.4

Table 2: Semantic segmentation performance mIoU (%) in 7-classes setups. (a) Cityscapes and (b) Vistas validation set. We report

results produced at different resolutions. AdvEnt* is the adaptation of AdvEnt published code to 7-classes set-ups.

Table 2-a shows results in the same experimental set-up,

except that training and validation were done on 7 cate-

gories. To be comparable with [18], we report additional

results produced at the 320 × 640 resolution. Our DADA

framework outperforms the state-of-the-art on this bench-

mark by a large margin. Over the AdvEnt baseline, we

achieve +3.2% mIoU improvement. Similar to the 16-class

results, an important gain on the ‘vehicle’ category (+3.7%)

is observed. In addition, we contrast a +3% IoU on the ‘hu-

man’ category to the negative IoU drops on classes ‘person’

and ‘rider’ reported in Table 1. We conjecture that this drop

stems from the intra-category confusion, i.e., ‘pedestrian’

and ‘rider’ are easily confused. A significant improvement

is pointed out in the lower resolution set-up where using

depth adds +14.0% to the ‘human’ category IoU. These re-

sults demonstrate the merit of DADA for UDA, especially

on crucial categories like ‘human’ and ‘vehicle’ – the vul-

nerable road users (VRUs).

An interesting UDA metric introduced in [18] is the neg-

ative transfer rate (lower is better) – the percentage of after-

adaptation test cases having per-image mIoUs lower than

ones coming from the model trained only on source (with-

out adaptation). On SYNTHIA→Cityscapes (7 classes),

320 × 640 resolution DADA model has only 5% negative

transfer rate, compared to 9% for SPIGAN. It is worth not-

ing that our only-on-source mIoU in this case is 50%, much

larger than the one reported in [18] (36.3%). The AdvEnt

baseline, without using depth, suffers from a negative trans-

fer rate of 11% – more than double of DADA’s.
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(a) Input image (b) GT (c) AdvEnt (d) DADA

Figure 3: Qualitative results in the SYNTHIA→Cityscapes (16 classes) set-up. The four columns plot (a) RGB input images, (b)

ground-truths, (c) AdvEnt baseline outputs and (d) DADA predictions. DADA shows good performance on ‘bus’, ‘car’, ‘bicycle’ classes.

Best viewed in color.

(a) Input image (b) GT (c) SPIGAN (d) DADA

Figure 4: Qualitative results in the SYNTHIA→Vistas (7 classes) set-up. All models were trained and tested at the resolution of

320 × 640. From left to right, we show (a) RGB input images, (b) corresponding segmentation ground-truths, (c) SPIGAN’s and (d) our

DADA’s segmentation predictions. Not only DADA performs visually better than SPIGAN, but it also produces correct predictions on

wrongly annotated construction areas. Best viewed in color.

SYNTHIA→Vistas: In this experiment, the Mapillary

Vistas [26] is used as the target domain. In SPIGAN [18],

the authors report unfavorable UDA behaviors on Vistas

compared to Cityscapes. This seems caused by the artifacts

that the source-target image translation introduces when try-

ing to close the larger gap between SYNTHIA and Vistas.

In such a case, leveraging depth information demonstrates

important adaptation improvement (+17.3%). On the other

hand, our UDA framework does not undergo such a diffi-

culty. Indeed, as shown in Table 2(a-b), the AdvEnt baseline

performs much better than SPIGAN-no-PI, with no signifi-

cant difference in absolute mIoU on the two target datasets

(59.4% vs. 54.0%). Over such a stronger baseline, DADA

still achieves an overall improvement of +2.4% mIoU. We

also obtain best per-class IoUs on the benchmark.

DADA (trained and tested on 320 × 640 images) has

30% negative transfer rate compared to the 42% of SPI-

GAN. As discussed in [18], the challenging domain gap

between SYNTHIA and Vistas might cause these high neg-

ative rates. In addition to this explanation, we also ques-

77370



Setup S
u

rp
.

A
d

ap
t.

D
ep

th
A

d
ap

t.

F
ea

t.
F

u
si

o
n

D
A

D
A

F
u

si
o

n

mIoU (%)

S1 (no adapt.) 32.2

S2 (AdvEnt) X 40.8

S3 X X 40.7

S4 X 35.7

S5 X X 38.0

S6 X X X 41.6

S7 (DADA) X X X X 42.6

Table 3: Segmentation performance (mIoU) on the Cityscapes

validation set of 7 ablation experiments. Setup S1, with no

check-marks, indicates source-only training.

tion the annotation quality of the Vistas dataset, visually in-

spection of results having revealed inconsistencies. Interest-

ingly, when we evaluate the DADA model trained with the

current set-up (SYNTHIA→Vistas) on the Cityscapes val-

idation set with arguably cleaner annotations, the obtained

negative transfer rate reduces to 6%.

In Figure 4, we show some qualitative results compar-

ing our best model with SPIGAN. As mentioned above, we

note that the Vistas segmentation annotations are noisy. For

example, some construction areas slightly covered by tree

branches are annotated as ‘vegetation’. DADA provides

reasonable predictions on these areas – sometimes even bet-

ter than human ground-truths.

4.3. Ablation studies

Effect of depth-aware adversarial adaptation. We re-

port in Table 3 performance with seven training setups, S1

to S7: S1 is the source-only baseline (no adaption at all),

S2 amounts to AdvEnt (no use of depth) and S7 is DADA.

Intermediate setups S3 to S6 amount to using or not the

AdvEnt’s “surprisal adaptation”, the auxiliary depth adap-

tation (“depth adaptation”), the point-wise feature fusion

mechanism (“feature fusion”) and the output-based fusion

for DADA adversarial training (“DADA fusion”). First, we

remark that adversarial adaptation on the auxiliary depth-

space (S4 and S5) does help improve performance of the

main task. Improvement of S5 over S4 demonstrates the

advantage of depth fusion at the feature-level. Comparable

performance of S2 and S3 indicates that depth supervision

on the source domain is not effective in absence of depth-

specific adaptation. Indeed, S6, with two separate adversar-

ial adaptations on the surprisal and depth spaces, works bet-

ter than S2 and S3. Still, in S6, the coupling between spaces

% of SYNTHIA 10% 30% 50% 70% 100%

Cityscapes mIoU 32.6 35.1 40.9 41.0 42.6

Table 4: DADA performance when trained on fractions of

SYNTHIA. Performance on Cityscapes as a function of the used

percentage of training set.

remains loose as the adversarial losses are separately opti-

mized. Our depth-aware adaptation framework S7 employ-

ing both feature fusion and DADA fusion performs best:

paying more attention to closer objects during adversarial

training is beneficial.

Annotation effort advantage. Table 4 reports DADA’s

performance when trained on different fractions of the

source dataset. Using only 50% of the SYNTHIA images

with segmentation and depth annotations, DADA achieves

comparable performance to AdvEnt trained on all images

with segmentation annotations (40.9% vs. 40.8%). This

finding is of practical importance for real-world setups

where the source domain is also composed of real scenes:

while dense depth annotation remains automatic in this case

(through stereo matching as in Cityscapes or densification

of sparse LiDAR measurements), semantic annotation must

be manual, which incurs high costs and quality problems.

Annotating fewer scenes can thus be beneficial even if depth

is additionally required.

Limitations. We observe a few failure cases where dif-

ferent objects are indistinguishable due to blurry depth out-

puts. Improving depth quality may help in such cases. How-

ever, in our framework depth regression is only an auxiliary

task which helps leveraging geometry-specific information

to enrich visual representation and thus to improve on the

main task. As in [24], paying too much attention to the aux-

iliary task actually hurts the performance on the main task.

5. Conclusion

In this work, we propose a novel UDA framework coined

DADA – Depth-Aware Domain Adaptation – which lever-

ages depth in source data as privileged information to help

semantic segmentation on the target domain. This addi-

tional information is exploited through an auxiliary depth-

prediction task that allows in turn a feature enrichment via

fusion as well as a depth-aware modification of the orig-

inal adaptation loss. Our experimental evaluations show

that DADA consistently outperforms other UDA methods

on different synthetic-2-real semantic segmentation bench-

marks. As a direction of future work, we envisage the exten-

sion to real-world scenarios where depth information in the

source domain is only sparsely available, e.g., as provided

by automotive laser scanners (LiDARs).
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