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Figure 1: 3D object instance re-localization benchmark: we want to robustly estimate the 6DoF pose (T1,T2, ...Tn) of changed rigid

object instances from a segmented source to a target scan taken at a later point in time.

Abstract

In this work, we introduce the task of 3D object instance

re-localization (RIO): given one or multiple objects in an

RGB-D scan, we want to estimate their corresponding 6DoF

poses in another 3D scan of the same environment taken

at a later point in time. We consider RIO a particularly

important task in 3D vision since it enables a wide range

of practical applications, including AI-assistants or robots

that are asked to find a specific object in a 3D scene. To

address this problem, we first introduce 3RScan, a novel

dataset and benchmark, which features 1482 RGB-D scans

of 478 environments across multiple time steps. Each scene

includes several objects whose positions change over time,

together with ground truth annotations of object instances

and their respective 6DoF mappings among re-scans. Au-

tomatically finding 6DoF object poses leads to a particular

challenging feature matching task due to varying partial

observations and changes in the surrounding context. To this

end, we introduce a new data-driven approach that efficiently

finds matching features using a fully-convolutional 3D cor-

respondence network operating on multiple spatial scales.

Combined with a 6DoF pose optimization, our method out-

performs state-of-the-art baselines on our newly-established

benchmark, achieving an accuracy of 30.58%.

* Authors share senior authorship.

1. Introduction

3D scanning and understanding of indoor environments is

a fundamental research direction in computer vision laying

the foundation for a large variety of applications ranging

from indoor robotics to augmented and virtual reality. In

particular, the rapid progress in RGB-D scanning systems

[17, 18, 31, 6] allows to obtain 3D reconstructions of in-

door scenes using only low-cost scanning devices such as

the Microsoft Kinect, Intel Real Sense, or Google Tango.

Along with the ability to capture 3D maps, researchers have

shown significant interest in using these representations to

perform 3D scene understanding and developed a rapidly-

emerging line of research focusing on tasks such as 3D

semantic segmentation [4, 19, 26] or 3D instance segmenta-

tion [10]. However, the shared commonality between these

works is that they only consider static scene environments.

In this work, we focus on environments that change over

time. Specifically, we introduce the task of object instance

re-localization (RIO): given one or multiple objects in an

RGB-D scan, we want to estimate their corresponding 6DoF

poses in another 3D scan of the same environment taken

at a different point in time. Therefore, the captured recon-

structions naturally cover a variety of temporal changes; see

Fig. 1. We believe this is a critical task for many indoor

applications, for instance, for a robot or virtual assistant to

find a specific object in its surrounding environment.

The main challenge in RIO – finding the 6DoF of each

object – lies in establishing good correspondences between

re-scans, which is non-trivial due to different scanning pat-

https://waldjohannau.github.io/RIO/
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Figure 2: Example of a 3D scene pair of the 3RScan dataset. It provides: e) calibrated RGB-D sequences, a), b) aligned textured 3D

reconstructions, c) dense instance-level semantic segmentation as well as d) symmetry-aware local alignment of changes.

terns and changing geometric context. These make the use

of hand-crafted geometric descriptors, such as FPFH [22]

or SHOT [27], less effective. Similarly, learned 3D feature

matching approaches, such as 3DMatch [32, 7], cannot be

easily leveraged since they are trained on self-supervised

correspondences from static 3D scenes, and are hence very

susceptible to geometry changes. One of the major limi-

tations in using data-driven approaches for object instance

localization is the scarce availability of supervised training

data. While existing RGB-D datasets, such as ScanNet [4] or

SUN RGB-D [25], provide semantic segmentations for hun-

dreds of scenes, they lack temporal annotations across scene

changes. In order to address this shortcoming, we introduce

3RScan a new dataset that is composed of 1482 RGB-D

sequences. An essential novelty of the proposed dataset is

that several re-scans are provided for every environment.

The dataset includes not only dense ground truth semantic

instance annotations (for every scan), but also associates

objects that have changed in appearance and/or location be-

tween re-scans. In addition to using 3RScan for training

feature descriptors, we also introduce a new benchmark for

object instance localization.

In order to learn from this data, we propose a fully-

convolutional multi-scale network capable of learning ge-

ometric features in dynamic environments. The network

is trained with corresponding TSDF (truncated signed dis-

tance function) patches on moved objects extracted at two

different spatial scales in a self-supervised fashion. As a

result, we obtain change-invariant local features that outper-

form state-of-the-art baselines in correspondence matching

and on our newly created benchmark for re-localization of

object instances. In summary, we explore the task of 3D

Object Instance Re-Localization in changing environments

and contribute:

• 3RScan, a large indoor RGB-D dataset of changing en-

vironments that are scanned multiple times. We provide

ground truth annotations for dense semantic instance

labels and changed object associations.

• a new data-driven object instance re-localization ap-

proach that learns robust features in changing 3D con-

texts based on a geometric multi-scale neural network.

2. Related Work

3D Object Localization and Keypoint Matching 3D ob-

ject localization and pose estimation via keypoint matching

are long standing areas of interest in computer vision. Until

very recently, 3D hand-crafted descriptors [27, 22] where

prominently used to localize objects under occlusion and

clutter by determining 3D point-to-point correspondences.

However with the success of machine learning, the interest

shifted to deep learned 3D feature descriptors capable of

embedding 3D data, such as meshes or point clouds, in a

discriminative latent space [32, 19, 7]. Even though these

approaches show impressive results on tasks such as corre-

spondences matching and registration, they are restricted to

static environments. In this work, we go one step further by

focusing on dynamic tasks; specifically, we aim to localize

given 3D objects from a source scan in a cluttered target scan

which contains common geometric and appearance changes.

RGB-D Scene Understanding Scene understanding

methods based on RGB-D data generally rely on volumetric

or surfel-based SLAM to reconstruct the 3D geometry of the

scene while fusing semantic segments extracted via Random

Forests [29, 30] or CNNs [13, 15]. Other works such as

SLAM++ [24] or Fusion++ [12] operate on an object level

and create semantic scene graphs for SLAM and loop closure.

Non-incremental scene understanding methods, in contrast,

process a 3D scan directly to obtain semantic, instance or

part segmentation [19, 20, 21, 5, 10]. Independently from

the approach, all these methods rely on the assumption that
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Table 1: RGB-D indoor datasets for 3D scene understanding: We list synthetic as well as real dataset and compare their size together with

other properties such as the availability of scene changes.

Dataset Size Real Data Acquisition / Generation Benchmarks Changes

NYUv2 [16] 464 scenes ✓ recordings with Kinect Depth and Semantics ✗

SUN RGB-D [25] 10k frames ✓ recordings with 4 different sensors 3D Object Detection ✗

SUN-CG [26] 45K rooms, 500K images ✗ rendered, layout hand-designed Scene-Completion ✗

ScanNet [4] 1513 scans, 2.5M images ✓ recordings with Structure Sensor Semantic Voxel Labeling ✗

Fehr et al. [8] 23 scans of 3 scenes ✓ recordings with Tango Change Detection ✓

Matterport3D [3] 90 buildings, ∼ 200k images ✓ recordings with Matterport several ✗

SceneNet RGB-D [14] 15K trajectories, 5M images ✗ photo-realistic, random scenes SLAM ✗

InteriorNet [11] millions / unknown ✗ photo-realistic, layout hand-designed SLAM ✓

RGB Reloc [28] 4 scenes, 12 rooms ✓ recording with Kinect Camera Re-Localization ✗

3RScan (Ours) 1482 scans of 478 scenes ✓ recordings with Tango Object Instance Re-Localization ✓

objects are static and the scene structure does not change

over time.

RGB-D Datasets Driven by the great interest in the devel-

opment of scene understanding applications, several large-

scale datasets based on RGB-D data have been recently pro-

posed [9]. We have summarized the most prominent efforts

in Table 1, together with their main features (e.g., number

of scenes, mean of acquisition). The majority of datasets do

not include changes in the scene layout and objects therein,

and assume each scene is static over time. This is the case

of ScanNet [4], currently the largest real dataset for indoor

scene understanding consisting of 1500 scans of approx. 750
unique scenes. Notably, only a few recent proposals started

exploring the idea of collecting scene changes to allow long-

term scene understanding. InteriorNet [11] is a large-scale

synthetic dataset, in which random physics-based furniture

shuffles and illumination changes are applied to generate

appearance and geometry variations which indoor scenes

typically undergo. Several state-of-the-art sparse and dense

SLAM approaches are compared on this benchmark. De-

spite the impressive size and indisputable usefulness, we

argue that, due to the domain gap between real and synthetic

imagery, the availability of real sequences remain crucial for

the development of long-term scene understanding. To the

best of our knowledge, the only real dataset encompassing

scene changes is the one released by Fehr et al. [8], which in-

cludes 23 sequences of 3 different rooms used to segment the

scene structure from the movable furniture, though lacking

the annotations and necessary size to train and test current

learned approaches.

3. 3RScan-Dataset

We propose 3RScan, a large scale, Real-world dataset

which contains multiple (2− 12) 3D snapshots (Re-scans)

of naturally changing indoor environments, designed for

benchmarking emerging tasks such as long-term SLAM,

scene change detection [8] and camera or object instance

Re-Localization. In this section, we describe the acquisition

of the scene scans under dynamic layout and moving objects,

as well as that of annotation in terms of object pose and

semantic segmentation.

3.1. Overview

The recorded sequences are either a) controlled, where

pairs are acquired within a time frame of only a few min-

utes under known scene changes or b) uncontrolled, where

unknown changes naturally occurred over time (up to a few

months) via scene-user interaction. All 1482 sequences were

recorded with a Tango mobile application to enable easy

usage for untrained users. Each sequence was processed of-

fline to get bundle-adjusted camera poses with loop-closure

and texture mapped 3D reconstructions. To ensure high vari-

ability, 45+ different people recorded data in more than 13
different countries. Each sequence comes with aligned se-

mantically annotated 3D data and corresponding 2D frames

(approximately 363k in total), containing in detail:

• calibrated RGB-D sequences with variable n RGB

Ri, ...Rn and depth images Di, ...Dn.

• textured 3D meshes

• camera poses Pi, ...Pn and calibration parameters K.

• global alignment among scans from the same scene as

a global transformation T.

• dense instance-level semantic segmentation where each

instance has a fixed ID that is kept consistent across

different sequences of the same environment.

• object alignment, i.e. a ground truth transformation

TGT = RGT + tGT for each changed object together

with its symmetry property.
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• intra-class transformations A of ambiguous instances

in the reference to recover all valid object poses in the

re-scans (see Figure 3).

3.2. Scene Changes

Due to the repetitive recording of interactive indoor en-

vironments, our data naturally captures a large variety of

temporal scene changes. Those changes are mostly rigid

and include a) objects being moved (from a few centimeters

up to a few meters) or b) objects being removed or added

to the scene. Additionally, non-rigid objects such as cur-

tains or blankets and the presence of lighting changes create

additional challenging scenarios.

3.3. Annotation

The dataset comes with rich annotations which include

scan-to-scene-mappings and 3D transformations (section

3.3.2) together with dense instance segmentation (section

3.3.1). More details and statistics regarding the annotations

are given in the supplementary material.

3.3.1 Semantic Segmentation

Similarly to ScanNet [4], instance-level semantic annota-

tions are obtained by labeling on a segmented 3D surface

directly. For this, each reference scan was annotated with a

modified version of ScanNet’s publicly available annotation

framework. To reduce annotation time, we propagate the

annotations in a segment-based fashion from the reference

scan to each re-scan using the global alignment T with the

scan-to-scene mappings. This gives us very good annotation

estimates for the re-scans, with the assumption that most

parts of the scene remain static. Figure 4 gives an example

of automatic label propagation from a hand-annotated scene

in the presence of noise and scene changes. Semantic seg-

ments were annotated by human experts using a web-based

crowd-sourcing interface and verified by the authors. The

average annotation coverage of the semantic segmentation

for the entire dataset is 98.5%.

3.3.2 Instance Changes

To obtain instance-level 3D transformations, a keypoint-

based 3D annotation and verification interface was developed

based on the CAD alignment tool used in [2]. A 3D trans-

formation is obtained by applying Procrustes on manually

annotated 3D keypoint correspondences on the object from

the reference and its counterpart in the re-scan (see Figure 5).

Additionally to this 3D transformation, a symmetry property

was assigned to each instance.

3.4. Benchmark

Based on this data, we set up a public benchmark for

3D instance-level object re-localization in changing indoor

environments. Given one or multiple objects in a segmented

source scene, we want to estimate the corresponding 6DoF

poses in a target scan of the same environment taken at a

different point in time. Namely, transformations T1 = R1+
t1, ...,Tm as a translation t1, ..tm and rotation R1, ...,Rm

need to be detected for all given m instances in A (left Figure

1) to instances in B (right). Predictions are evaluated against

the annotated 3D transformation. A 6DoF pose estimation is

considered successful if the translation and rotation error to

the given ground truth transformation is within a small range.

In our experiments we set these thresholds to t ≤ 10 cm and

r ≤ 10◦ and t ≤ 20 cm and r ≤ 20◦ respectively. To avoid

misalignment of symmetric objects, the respective symmetry

property is considered. We publicly release our dataset with

a standardized test, validation and training set (see Table 2)

and all mentioned annotations. To allow a fair comparison of

different methods, we also release a hidden test set together

with an automatic server-side testing script.

Table 2: Statistics on the test, train and validation set of 3RScan.

test train validation total

#scenes 46 385 47 478

#re-scans 101 793 110 1004

#scans 147 1178 157 1482

4. 3D Object Instance Re-Localization

In order to address the task of RIO, we propose a new data-

driven approach that finds matching features in changing 3D

scans using a 3D correspondence network. Our network op-

erates on multiple spatial scales to encode change-invariant

neighborhood information around the object and the scene.

Object instances are re-localized by combining the learned

correspondences with RANSAC and a 6DoF object pose

optimization.

4.1. Data Representation

The input of our network are TSDF patches. For each

3D keypoint on the source object or the target scene, the

surrounding 3D volume is extracted at two different scales.

They are chosen to be 32 × 32 × 32 voxel grids contain-

ing TSDF values with spatial resolutions of (1.2m)3 and

(0.6m)3. Their corresponding voxel sizes are 1.875 cm and

3.75 cm.

4.2. Network Architecture

The network architecture of RIO is visualized in Figure 6.

Due to non-padded convolutions and two pooling layers the
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Figure 3: Instance ambiguities in presence of scene changes: since the instance mapping is unknown, multiple solutions are plausible,

which we provide in our dataset from user annotations indicating all possibilities.

input volumes are reduced to a 512-dimensional feature

vector. It consists of two separate single scale encoders

(SSE) and a subsequent multi-scale encoder (MSE). The two

different input resolutions capture different neighborhoods

with a different level of detail. Since both single scale en-

coder branches are identical, their network responses are

concatenated before being fed into the MSE, as visualized

in Figure 6. This multi-scale architecture helps to simultane-

ously capture fine geometric details as well as higher-level

semantics of the surroundings. We show that our multi-

resolution network produces richer features and therefore

outperforms single scale architectures that process each scale

independently by a large margin. Please also note that the

two network branches do not share weights since they pro-

Figure 4: Propagation result from a reference (left) to a re-scan

(center) and the manual cleanup (right). Please note the false propa-

gations in the presence of scenes changes: here the orange armchair

was moved and its label was therefore incorrectly propagated.

Figure 5: Example of the correspondences-based 3D instance

alignment (right). 3D transformations are computed by manual

annotation of corresponding keypoints on the objects (left, green)

and the scene (center, red) respectively.

cess the geometry of different context. To achieve a strong

gradient near the object surface the raw TSDF is inverted in

the first layer of the network such that

ˆTSDF = 1− |TSDF | . (1)

4.3. Training

During training, a triplet network architecture together

with a triplet loss (equation 2) is used. It maximizes the L2

distance of negative patches and minimizes the L2 distance

of positive patches. We choose the margin α to be 1. For

optimization, Adam optimizer with an initial learning rate

of 0.001 is used.

N
∑

i=1

N
[

||fa
i − f

p
i ||

2
2 − ||fa

i − fn
i ||

2
2 + α

]

(2)

4.4. Training Data: From Static to Dynamic

We initially train our network fully self-supervised with

static TSDF patches extracted from RGB-D sequences of

our dataset. To be able to deal with partial reconstructions

induced by different scanning patterns, two small sets of

non-overlapping frames are processed to produce two dif-

ferent TSDF volumes of the same scene. Then, first Harris

3D keypoints are extracted on one volume, then these same

locations are refined on the other volume via non-maxima

suppression of the Harris responses within a small radius

around each extracted keypoint. If corresponding keypoints

on the two volumes are above a certain threshold, we con-

sider them a suitable patch pair and use it for pre-training of

our network.

The goal of our method is to produce a local feature en-

coding that maps the local neighborhood of an object around

a 3D keypoint on a 3D surface to a vector while being in-

variant to local changes around the object of interest. We

learn this change-invariant descriptor by using the object

alignments and sampling dynamic patches from our pro-

posed 3RScan-dataset. So, once converged we fine-tune the

static network with dynamic 3D patches specifically gener-

ated around points of interest on moving objects. To learn

only higher level features, during fine-tuning, we freeze the

first layers and only train the multi-scale encoder branch
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Figure 6: Our multi-scale triplet network architecture: during training, each anchor (blue) is paired with a positive (green) and a negative

sample (red). The network minimizes the distance between the positive samples and maximizes negative sample distances by processing two

scales in a separate branch each. Weights are shared in each SSE block of the same size and the MSE.

of our network. Correspondence pairs are generated in a

self-supervised fashion while using the ground truth pose an-

notations of our training set to find high keypoint responses

in the same small radius around each source 3D keypoint.

The negative counterpart of each triplet is randomly selected

from another training scene but also includes TSDF patches

on removed objects. Random rotation augmentation is ap-

plied to enlarge our training data.

4.5. 6DoF Pose Alignment

To re-localize object instances, we first compute features

for keypoints on the source objects and the whole target

scene. Correspondences for the model keypoints are then

found via k-nearest neighbour search in the latent space of

the feature encoding of the points in the scene. After out-

liers are filtered with RANSAC, remaining correspondences

serve as an input of a 6DoF pose optimization. Given the

remaining two sets of correspondences on the source object

O = p1, p2, ...pn ∈ R3 and the target scene S = q1, q2, ...qn
∈ R3 we then want to find a optimal rigid transformation that

aligns the two sets. Specifically, we want to find a rotation

R and a translation t such that

(R, t) = argmin
R∈SO(d),t∈R3

n
∑

i=1

||(Rpi + t)− qi||
2 . (3)

We solve this optimization using Singular Value Decom-

position (SVD). The resulting 6DoF transformation gives us

a pose that aligns the model to the scene. Qualitative results

of our alignment method with corresponding ground truth

alignments on some scans of our 3RScan-dataset are shown

in Figure 7.

5. Evaluation

In the following, we show quantitative experimental re-

sults of our method by evaluating it on our newly created

3RScan-dataset. In the first section, we compare the abil-

ity of different methods to match dynamic patches around

keypoints on annotated changed objects. Our proposed multi-

scale network is then evaluated on the newly-created bench-

mark for re-localization of object instances.

5.1. Correspondence Matching

For accurate 6D pose estimation in changing environ-

ments, robust correspondence matching is crucial. The fea-

ture matching accuracy of different network architectures

is reported in Table 3. Each network is pre-trained with

static samples (marked as static) and then fine-tuned on dy-

namic patches from the training (marked as dynamic). The

F1 score, accuracy, precision, false positive rate (FPR) and

error rate (ER) at 95% recall are listed and visualized with
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Figure 7: Qualitative results of 3D rigid object instance re-localization (RIO) of our learned multi-scale method in different changing

environments. Different instances, taken from the reference scan, are visualized with different colors on top of the re-scan.

Table 3: Evaluation: keypoint matching of dynamic 3D TSDF patches in 3RScanat 95% recall.

Method (train) F1 Accuracy Precision FPR ER Top-1 Top-3 Top-5 Top-10

RIO-singlescale 60cm (static) 71.54 62.21 57.37 70.60 75.59 2.17 4.12 5.96 17.56

RIO-singlescale 120cm (static) 74.17 66.92 60.83 61.18 66.16 3.94 4.58 8.21 20.38

RIO-singlescale 120cm (dynamic) 78.71 74.29 67.17 46.43 51.41 6.26 7.26 9.58 27.82

RIO-multiscale (static) 85.58 83.98 77.82 27.09 32.04 30.73 53.48 69.61 89.03

RIO-multiscale (dynamic) 94.37 94.33 93.61 6.50 11.35 64.10 86.20 93.40 98.30

their respective PRC graphs in Figure 8. Additionally to

the 1:1 matching accuracy, we also use a top-1 metric: the

percentage of top-1 placements of a positive patch given

50 randomly chosen negative patches. Such a metric better

represents the real test case of object instance re-localization

where several negative samples are compared against a pos-

itive keypoint. In can be seen that our multiscale network

architecture – even if only trained with static data – outper-

forms all single scale architectures by a large margin and

improves further to an F1 score of 94.37 if additionally

trained with dynamic data.

5.2. Object Instance Re­localization

In the following we discuss results on our newly created

benchmark that has been carried out on the test set of 3RScan

which is provided with the data. We evaluate our method

against hand-crafted features from PCL [23] such as SHOT

[27] and FPFH [22, 1]. A transformation of each object

instance is computed separately by (1) sampling keypoints,

(2) extracting descriptors at each keypoint followed by a (3)

correspondence matching and (4) RANSAC-based filtering.

A learned baseline we evaluate against is 3DMatch [32].
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Table 4: Performance of object instance re-localization. Numbers are reported in terms of average % correct rotation and translation

predictions. MTE (Median Translation Error) is measured in meters while the MRE (Median Rotation Error) is in degrees

Method (train) Recall <0.1m, 10◦ MRE [deg] MTE [m] Recall <0.2m, 20◦ MRE [deg] MTE [m]

FPFH [22] 2.61 7.25 0.0645 8.36 10.57 0.0776

SHOT [27] 6.79 5.35 0.0268 12.27 8.18 0.0393

3DMatch (dynamic) 5.48 5.81 0.0542 13.05 7.30 0.0708

RIO-multiscale (static) 9.92 4.33 0.0425 17.75 6.39 0.0545

RIO-multiscale (dynamic) 15.14 4.75 0.0437 23.76 6.08 0.0547

Figure 8: Precision-Recall Curves (PRC) of the dynamic keypoint

matching task, corresponding to the different methods evaluated

and listed in Table 3.

Table 5: Matching accuracy of the different methods for different

instance categories at <0.2m, 20◦ and our method trained on static

(RIO-S) and dynamic data (RIO-D). See supplementary for detailed

class description.

class FPFH SHOT 3DMatch RIO-S RIO-D

seating 5.08 12.71 6.78 14.41 21.19

table 9.33 5.33 21.33 25.33 29.33

items 5.06 13.92 7.59 11.39 16.46

bed / sofa 56.52 21.74 34.78 34.78 47.83

cushion 0.00 15.52 8.62 8.62 10.34

appliances 11.11 16.67 33.33 44.44 55.56

structure 0.00 0.00 8.33 16.67 33.33

avg. 12.44 12.27 17.25 22.23 30.58

It computes a feature given a patch around a keypoint. We

trained 3DMatch on 30×30×30 static positive and negative

patches of 30 cm size generated with our dataset as described

in the original paper. We evaluate the predicted rotation

Rp and translation tp against the ground truth annotation

RGT and tGT according to equation 5 and 4. An instance

has successfully been aligned if the alignment error for the

translation t∆ and rotation R∆ are lower than t ≤ 10 cm,

r ≤ 10◦ or t ≤ 20 cm, r ≤ 20◦. Please note that respective

symmetry are considered in the error computation:

t∆ = tp − tGT (4)

R∆ = R
−1
p RGT → axis angle (5)

Evaluation results for all object instances are listed in Ta-

ble 4 and Table 5. While classical hand-crafted methods still

perform reasonable well – especially for more descriptive

objects such as sofas and beds – our method outperforms

them with a large margin. Qualitative results are shown in

Figure 7.

6. Conclusion

In this work, we release the first large-scale dataset of real-

world sequences with temporal discontinuity that consists of

multiple scans of the same environment. We believe that the

new task of object instance re-localization (RIO) in changing

indoor environments is a very challenging and particularly

important task, yet to be further explored. Besides 6D ob-

ject instance alignments in those changing environments,

3RScan comes with a large variety of annotations designed

for multiple benchmark tasks including – but not limited

to – persistent dense and sparse SLAM, change detection or

camera re-localization. We believe that 3RScan helps the

development and evaluation of these new algorithms and we

are excited to see more work in this domain to, in the end,

accomplish persistent, long-term understanding of indoor

environments.
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