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Abstract

Recent work on single-view 3D reconstruction shows im-

pressive results, but has been restricted to a few fixed cate-

gories where extensive training data is available. The prob-

lem of generalizing these models to new classes with lim-

ited training data is largely open. To address this problem,

we present a new model architecture that reframes single-

view 3D reconstruction as learnt, category agnostic refine-

ment of a provided, category-specific prior. The provided

prior shape for a novel class can be obtained from as few

as one 3D shape from this class. Our model can start re-

constructing objects from the novel class using this prior

without seeing any training image for this class and without

any retraining. Our model outperforms category-agnostic

baselines and remains competitive with more sophisticated

baselines that finetune on the novel categories. Addition-

ally, our network is capable of improving the reconstruc-

tion given multiple views despite not being trained on task

of multi-view reconstruction.

1. Introduction

A key aspect of visual understanding is recovering the

3D structure of a scene. While classically such recovery

of 3D structure has used multiple views of a scene, there

has been recent research on 3D reconstruction from a sin-

gle image using machine learning techniques. However, re-

covering 3D structure from a single image is a challenging

learning problem. First, the output space is not just very

large (e.g., represented as voxels, a 100× 100× 100 grid is

already a million-dimensional space) but also very struc-

tured: of all possible 3D shapes that are consistent with

an image of a chair, a vanishingly small number are valid

chair shapes. To perform well, the machine learning algo-

rithm needs to capture a prior over possible chair shapes.

Large, deep networks can indeed capture such priors when

provided enough chairs for training, and this has been the

dominant approach taken by prior work. However this leads

to the second challenge: the cost of acquiring training data.

Training data for single view 3D reconstruction requires

Figure 1. We train on 7 base categories and test the model’s few-

shot transfer ability on 6 novel categories. Our model takes in an

image of the object to reconstruct along with a category-specific

prior shape which can be as simple as a single novel class exam-

ple. It then optionally iteratively refines this prior to produce a

reconstruction.

either 3D shapes [5] or at the very least multiple views of

the same physical object [33]. Such training data can be

acquired for a small number of categories, but is too expen-

sive to obtain for every single object class we might want to

reconstruct. Prior work attempts to circumvent this issue by

training a category-agnostic model [32, 33], but such mod-

els might underperform due to ignoring category-specific

structure in the output space. Therefore, we ask: is it pos-

sible to capture category-specific shape priors for single-

image 3D reconstruction from very limited training data?

In this paper, we show that the answer is yes. We present

a simple few-shot transfer learning approach that can very
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quickly learn to reconstruct new classes of objects using

very little training data. Instead of training a direct map-

ping from RGB images to 3D shapes, we train a model that

uses image input to refine an input prior shape. This simple

reparametrization allows us to swap in new priors for new

classes at runtime, enabling single view reconstruction of

novel object classes with no additional training. We show

that this boosts reconstruction accuracy significantly over

category-agnostic models.

We find an additional benefit to implementing the prior

in this way: the output of our model can used as a new prior

and fed back into the model to iteratively refine the pre-

diction. While the notion of iterative prediction for better

accuracy has been proposed before [19, 15, 2], the connec-

tion to few-shot learning in this context is new. We demon-

strate that this iterative strategy can also be used out-of-the-

box for competitive multi-view reconstruction without any

multi-view training. Our approach is shown in Figure 1.

Summarizing the contributions of this paper, we:

1. Propose an augmented network architecture and train-

ing protocol that can incorporate prior categorical in-

formation at runtime

2. Demonstrate this network’s ability on few-shot learn-

ing

3. Demonstrate this network’s ability to perform compet-

itive multiview reconstruction without being trained on

the task

2. Related Work

Classically, the problem of 3D reconstruction has been

solved using multiple views and geometric or photometric

constraints [6, 13]. However, recently the success of con-

volutional networks on recognition tasks has prompted re-

search into using machine learning for single-view 3D re-

construction. Early success in this paradigm was shown

by R2N2 [5]. R2N2 iteratively refines a 3D reconstruc-

tion based on multiple views; this is similar in spirit to

our approach of refining a prior shape, but the focus is

on multi-view reconstruction and not generalization. Later

work has since improved the underlying representation of

3D shapes [7, 9, 34, 23, 17, 24], replaced 3D training

data with multiple calibrated views of each training ob-

ject [20, 32, 33], incorporated insights from geometry to

improve performance [10, 36], or made other improvements

to the learning procedure [26, 22]. However, the question

of generalizing to novel classes with limited training data is

under-explored.

Work on generalization in the context of 3D reconstruc-

tion is limited. Recently Tatarchenko et al. demonstrated

that single view 3D reconstruction models tend to memorize

and retrieve similar shapes from the training set; an indica-

tion of overfitting [18]. This suggests that more generaliz-

able models are necessary. Yang et al. are one of the first to

attempt transfer learning for 3D reconstruction and find the

best solutions to be using class-agnostic models and finetun-

ing. [33]. We show that our approach outperforms both of

these solutions when training data for novel classes is lim-

ited. Class agnostic models might be more generalizable

if they incorporate geometrical constraints [36] or leverage

pose information[11]. This idea of using geometry is or-

thogonal to, and indeed complementary to, our insight of

separating out the category-specific prior.

The notion of using or learning priors has also been ex-

plored before. One approach to using priors is to use an

adversary to enforce realistic reconstruction [28, 12]. Cher-

abier et al. use shape priors to learn from relatively little

data, but focus on scene reconstruction with semantically

labeled depth maps as inputs [3]. 3D-VAE-GAN is sim-

ilar to our work in leveraging categorical knowledge[27].

Closer in spirit to our work are single-view reconstruction

methods that use meshes as their underlying representation,

which often function by deforming a prior mesh [23, 9]

However, in all these approaches, the focus is on improving

the in-category performance rather than on generalization

or transfer; which are often not even evaluated. In contem-

porary work, Wang et al. propose to deform a source mesh

to match a taarget shape, but their focus is on point cloud

registration rather thaan single view reconstruction [25].

The approach we propose also has connections to models

which use iterated inference in structured prediction prob-

lems. This idea was originally proposed for more classical

approaches based on graphical models [19, 15] but has re-

cently been applied to deep networks [2]. An iterative ap-

proach to single-view reconstruction is that of Zou et al.,

who build reconstructions via sequential concatenation of

shape primitives [37]. Although shape primitives can some-

times lack expressivity for complex shapes, they also cap-

ture some priors about shape.

Our work is also related to few-shot transfer learning.

Most prior work on the few-shot learning problem focuses

on classification tasks. A large class of recent work in this

domain uses the idea of meta-learning, where the model is

trained using simulated few-shot learning scenarios it will

encounter in deployment [21, 16, 30]. Our training proce-

dure is similar in this regard, but focuses on structured pre-

diction instead of classification. Some early work on few-

shot learning also has the notion of separating out a class-

specific mean shape from class-agnostic aspects of the clas-

sification problem [14], but again the key difference in this

paper is the structured prediction problem.

3. Problem Setup

We are interested in learning single view 3D reconstruc-

tion for novel classes from very limited training data. We

approach this broad problem through the lens of few-shot
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learning and transfer learning. We assume that we have a

large dataset of 3D shapes with corresponding images for

some set of classes, which we call base classes [8]. We will

train our model on these base classes.

After training, the model will encounter novel classes for

which we have very limited ground truth 3D shape informa-

tion. In general, we will assume access to between 1 and 25

examples of 3D models for each class. Note that we do

not assume that these 3D models come equipped with cor-

responding images; the model we propose below only uses

the 3D models themselves to construct a category-specific

prior. The model must use these example 3D models to

reconstruct 3D shape for test examples of each class. The

final performance metric will be its reconstruction accuracy

on these test examples. In particular, we follow prior work

and look at intersection-over-union between the predicted

shape and the ground truth.

4. Approach

4.1. Model Architecture

We first create a category-specific shape prior in the

form of a voxel grid by averaging the voxel representations

for a small number of 3D shapes available for the novel

class. Note that the individual voxels can take floating point

values in this grid. We then design a category-agnostic neu-

ral network that refines this category-specific prior based

on image input. This neural network uses two encoders to

encode the image and the category prior into a common em-

bedding space. The embeddings of the image and the cat-

egory prior are added together and fed into a decoder that

produces the refined shape.

This scheme for few-shot prediction offers several major

advantages:

1. Very little runtime is required to incorporate the few-

shot information. The shapes must simply be loaded

and averaged, a negligible operation compared to the

network’s forward pass.

2. No retraining of the network is performed.

3. There is no difference in the predictive method for new

or old categories.

4. Multiple types of priors can be incorporated in this

fashion.

5. No corresponding images are required for transfer

learning, only shapes. These might be obtained from

CAD models created by designers.

Iterative prediction: Because our model refines an input

shape, its output can be fed back in again to refine the shape

further. Such iterative refinement has been shown to be use-

ful for structured prediction problems [19, 15, 2]. We eval-

uate both iterative and non-iterative versions in our experi-

ments.

Implementation details: The precise architecture is shown

in Figure 2. The image encoder takes in a 127 × 127 RGB

image as input and feeds it through a series of convolutions

(3 × 3 except for an initial 7 × 7) alternating with max

pooling layers and finishing with a fully connected layer.

The shape encoder takes in the category prior as input. The

shape encoder is a series of 3-dimensional convolutions fol-

lowed by two dense layers. The image encoder is the same

as that used by R2N2 and the shape encoder and decoder are

similar to architectures employed by Yang et al [33]. The

output of the two encoders are feature vectors of length 128

which are summed before being fed into the generator.

LeakyRelu is used in both encoders, with α = 0.01 in

the image encoder and α = 0.3 for the shape half [31].

Traditional Relu was used in the shape generator. A sigmoid

activation is applied at the final step of the shape generator.

4.2. Training

For every training datapoint, we sample an image from

one of the base classes and the corresponding ground truth

3D shape as the target. Our secondary input, the prior

shape, consists of an average of some number of other

same-category shapes from the training set. For some mod-

els, this prior shape is the “Full Prior”: all the shapes in the

train dataset are averaged. When a “k-shot” prior is used,

it consists of k averaged shapes, always from the training

dataset. The “Full Prior” models always have the same ini-

tial input shape within a category while the “k-shot” prior

networks use a different randomly generated prior for each

image-target pair. We display the “Full Prior” shapes for

each category in Figure 3. The loss is the binary cross-

entropy loss.

Training iterative models: To train the model in an iter-

ative setting, we repeat each training batch multiple times,

with the model outputs of one iteration being fed as inputs

in the next. For each batch from the generator, the same

input images and target shapes are used each time and the

input shapes change after the first step, being the output of

the previous forward pass (Algorithm 1).

Implementation details: All experiments are done using

Keras with a Tensorflow backend [4, 1]. Training is done

in batches of 32 using an Adadelta optimizer [35]. Early

stopping is used, with our metric of accuracy being the per-

category average Intersection-over-Union (IoU) on the base

classes with a threshold on the output of 0.4. This thresh-

old is standard in literature, and in our case as well offered

good performance. Relative performances of the models

were maintained at different thresholds.

3820



Figure 2. Our model is dual-input. The first input is an image encoded using the exact same architecture as 3D-R2N2 [5]. The second

is a voxelized prior shape encoded via 3D convolutions, similar to Yang et al. [33]. The generator is similar to that of Yang et al. The

128-dimensional output of the encoders are summed. Each Conv2D layer is followed by 2x2 MaxPooling and LeakyRelu with α = 0.01

and each Conv3D layer is followed by LeakyRelu with α = 0.3. ReLu activations are used in the generator.

Figure 3. The averaged shapes of the entire training dataset for

each category. The color represents the frequency of models in

which a given gridpoint was occupied. Red indicates 90-100%,

yellow 60-90% and blue 30-60%. We see that airplanes, cars,

and rifles have an extremely consistent shape, while other cate-

gories such as lamps and tables have relatively weak priors, with

no visible non-blue gridpoints.

Algorithm 1 Training for iterative refinement.

1: for epoch in epochs do

2: for batch in batches do

3: Load input images, input shapes, target shapes

from generator

4: for iter i in 1..#iters do

5: Train on input images, input shapes, target

shapes with backprop

6: Set the input shapes equal to the output of

the model

7: end for

8: end for

9: end for

5. Results

5.1. Experimental setup

We experiment with the ShapeNet dataset. Seven of

the 13 categories are designated base classes and are

used during training: airplanes, cars, chairs, displays,

phones, speakers, and tables (matching the work of Yang

et al [33]). We use 127 × 127 RGB rendered images of

models and 32× 32× 32 voxelized representations. Exam-

ples of the data as input-target pairs can be seen in Figures 1

and 5. Each model has 24 associated images from random

viewpoints. We use the same training-testing split as R2N2

which was an 80-20 split. We further divide this into a 75-

5-20 split to obtain a validation set.

When testing on base classes, we use the full prior un-

less otherwise noted. For novel-category testing, we always

report the number of shapes being averaged into the prior.

We consider both iterative and non-iterative models.

Baselines: We compare against multiple baselines. The

first baseline is a category-agnostic mapping from images

to 3D shapes. This model uses the same image encoder and

shape decoder architecture, but does not use any category-

specific prior as input or employ novel-category data at all.

Such a category-agnostic model has been shown to perform

very well in prior work [5, 33] and is thus a strong base-

line. The second baseline finetunes the image-only model

on the novel classes. k shapes are rendered from up to 24

viewpoints, resulting in between k and 24k image-pairs (de-

pending on the model) which are then finetuned on. Note

that this baseline uses paired images, which are not avail-

able to our approach. We finetune the models for 200 itera-

tions using SGD with a learning rate of 0.005.

5.2. Main results

We first present results for our best model variant under

the few-shot learning setting along with multiple baselines

in Table 1. We vary the number of novel-class example

3821



# Novel class Image-Only Finetune Finetune Finetune 1-Iteration

Examples (k) Baseline 1 Render 5 Renders 24 Renders 1-Shot

1-shot 0.36 0.38 0.38 0.39 0.38

2-shot 0.36 0.38 0.39 0.40 0.39

3-shot 0.36 0.38 0.39 0.41 0.39

4-shot 0.36 0.39 0.40 0.42 0.39

5-shot 0.36 0.39 0.40 0.42 0.40

10-shot 0.36 0.39 0.42 0.44 0.40

Full Prior 0.36 0.40

Table 1. Few-shot learning results on novel classes. The Image-

Only Baseline does not incorporate new-category information at

all. The “1-Iteration 1-shot” model is a non-iterative model trained

with 1-shot priors and tested with priors consisting of k averaged

shapes from the training category. We see that our model of-

fers competitive performance, especially in very low-shot regimes,

despite no image supervision or retraining. Scores reported are

category-wise average IoU. The same Image-Only Baseline archi-

tecture achieved 0.55 IoU when trained on all of the classes at

once. We perform 3-5 runs of each experiment with σIoU < 0.01.

shapes available and evaluate models on the average IoU

across all novel classes. Figure 4 plots the performances of

the models for priors containing varying amounts of infor-

mation.

We observe that our best model variant (1 iteration

trained on 1-shot priors) significantly outperforms the

category-agnostic baseline across the board on the novel

classes indicating the usefulness of the category prior. Com-

pared to the finetuning-based approaches, our method out-

performs the variant that sees one rendering per model, and

is competitive with the variant that sees five images per

model. Note that the finetuning approaches see significantly

more information than our approach, which gets no novel-

class images at all. Furthermore, unlike the finetuning ap-

proaches, our model requires no retraining on the target

class at all. Any new class can thus be added to our models’

repertoire simply by adding a corresponding prior. Further-

Figure 4. Performance of the 1-iteration 1-shot-trained model

against various baselines tuned with 1 view per model. We see

that the majority of improvement (60%) comes within the first 1 to

3 shots.

Figure 5. Examples of ground-truth and predicted shapes from an

image. Note that the category lamps is not in our training set,

we use a prior to enable generalization to this previously unseen

category.

# Novel class 1-Iteration 2-Iteration 3-Iteration 2-Iteration

Examples Full Prior Full Prior Full Prior 1-Shot Prior

1-shot 0.34 0.36/0.37 0.34/0.37/0.38 0.38/0.38

2-shot 0.36 0.38/ 0.38 0.37/0.39/0.38 0.39/0.38

3-shot 0.36 0.38/0.38 0.38/0.39/0.39 0.39/0.38

4-shot 0.36 0.39/0.38 0.39/0.39/0.39 0.39/0.38

5-shot 0.37 0.39/0.38 0.39/0.39/0.39 0.39/0.38

10-shot 0.37 0.39/0.39 0.40/0.40/0.39 0.39/0.38

25-shot 0.37 0.40/0.39 0.40/0.40/0.39 0.40/0.38

Full Prior 0.37 0.40/0.39 0.41/0.40/0.39 0.40/0.38

Table 2. Few-shot learning results on novel classes for additional

model variants. Models are trained and tested for the same number

of iterations. Setup as in Table 1. The best-performing iteration for

each model is underlined.

more, as shown in Figure 4, we find that very few novel-

class shapes are needed for this prior: with only 5 shapes,

our model sees a gain of 4 points over the category-agnostic

baseline. Example predictions are shown in Figure 5.

We include results from additional variants of our model

in Table 2. We note that among the different model vari-

ants, models that perform iterated inference do not outper-

form the 1-iteration 1-shot model. Furthermore, for more

informative priors, iteration buys no gain and sometimes

even hurts the novel classes. Despite these shortcomings,

we do find that they prove useful in the multi-view setting

(Sec. 5.3).

In Table 3 we see that the improvements on novel classes

do not come at the expense of performance within base

classes. We also include the averaged performance of the

R2N2 network as presented in the original work, to show

that our baseline when trained on all 13 categories is slightly

better, and thus a very strong control architecture to use.

5.3. Multi­view Reconstruction

In practice, it is often the case that we have more than one

view of the object we want to reconstruct. Neural network
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Training Procedure Training Base-class

Classes performance

R2N2 All 0.58

1 Iteration No Prior All 0.59

1 Iteration No Prior Base 0.62

1 Iteration Full Prior Base 0.63

2 Iteration Full Prior Base 0.62/0.62

3 Iteration Full Prior Base 0.61/0.61/0.61

1 Iteration 1-Shot Prior Base 0.62

2 Iteration 1-Shot Prior Base 0.61/0.61

Table 3. Training Category Results Summary. Models are tested

on the test dataset of the training categories. The prior used is the

same as during training. Our models perform comparably to an

image-only baseline fitted on the training categories. This baseline

outperforms R2N2 substantially, which we see is primarily due to

the reduced categorical load.

approaches to multi-view reconstruction from uncalibrated

views typically use recurrent neural networks as in R2N2.

However, since our model is framed as refining a prior, we

can use it iteratively, feeding in new images at each step.

Table 4 shows the performance of two of our best vari-

ants in the multi-view settings for both the base and the

novel classes. We show both the non-iterative model trained

on 1-shot priors (best performer in Table 1) as well as the

3-iteration model trained on the full prior. For the base

classes, we use the full category prior and compare to R2N2

(with the caveat that R2N2 is trained on more classes). For

the novel classes, we use a 1-shot prior.

We find that on the base classes, our 3-iteration model

significantly improves on its single-view accuracy and

achieves competitive performance to R2N2 without any

multi-view training. Access to multiple views is even more

beneficial for novel classes, where performance increases

by close to 7 points. This again is despite not being trained

on the multiview task, and only being given 1 example

shape to learn from.

Interestingly, the non-iterative model is unable to benefit

from the additional images. This suggests that when the tar-

get task requires iterative refinement, training for iterative

refinement might be necessary, even if it is only single-view

training.

5.4. Analysis

As shown above, our approach demonstrates strong per-

formance on novel classes with very limited training data,

for both single view and multiview reconstruction. We now

perform a thorough analysis of our results, including the

following questions:

1. How do the performance improvements break down

over categories and over examples?

Method # Views=1 2 3 4 5

Base classes

R2N2 [5] 0.58 0.62 0.64 0.64 0.65

LSM [11] 0.60 0.71 0.75 0.77 -

3-Iteration 0.61 0.63 0.63 0.63 0.64

1-iteration 1-shot 0.62 0.62 0.62 0.62 0.62

Novel classes

3-Iteration 0.34 0.38 0.40 0.40 0.41

1-iteration 1-shot 0.39 0.39 0.39 0.39 0.39

Table 4. Multi-view performance (IoU) on base categories (top)

and novel categories (bottom). For base classes we compare to

R2N2 (of which our architecture is an augmented version) and

Learned Stereo Machines (an approach which uses provided pose

information to backproject the pixels into a canonical, shared, ref-

erence frame. A full prior is used for the base classes and a 1-shot

prior is used for the novel classes. The models iterative scheme

can be adapted to multi-view reconstruction and shows substantial

benefit despite not being trained on the task.

Figure 6. Here we plot the IoUs in increasing order for each model-

category pair. We see that both of our new models substantially

outperform the baseline on rifles and vessels. A 10-shot prior was

used. Note that this is the same data as shown in Figure 7.

2. How important is the prior?

3. Can this approach be used on real-world images?

5.4.1 Analyzing Performance Distribution

While we have presented the average IoU on transfer learn-

ing tasks, this doesn’t address the question of how these

statistical results are achieved (e.g. translation of the dis-

tribution or a few exceptionally strong reconstructions). To

determine the cause, we first look at the error distributions

by plotting the IoUs for three categories and models in Fig-

ure 6. Here a 10-shot prior is used.

We see that increases in accuracy primarily come not

from substantially increasing the number of highly accu-

rately reconstructed shapes, but reducing the number of
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poorly reconstructed shapes. In rifles for example, the base-

line has an IoU of less than 0.1 for over half the instances,

whereas for our models this number is less than 17%.

Having analyzed the distribution of performances, we

now graph the relations between model performances on

the same input in Figure 7. We see that our models im-

prove upon baseline performance for the vast majority of

datapoints. We confirm that our new models mitigate many

bad predictions, evidenced by clusters where the Baseline

IoU is approximately 0.2 while our models achieve double

that or more.

Figure 7 also shows an example instance for which the

reconstruction changes significantly, and demonstrates the

cause of this performance difference. Vessels are very elon-

gated, and the only elongated category in the training set is

airplanes. However, airplanes have wings and vessels do

not. The baseline, relying on the prior it has learnt on air-

planes, erroneously includes the wings in the reconstruc-

tion. In contrast, our model uses the provided prior to avoid

this mistake. It is important to note that our model does this

without any retraining, simply by virtue of disentangling

the prior from other aspects of the reconstruction problem.

Figure 7. Scatter plots of model performances vs each other for

vessels. Note that a point on the identity line has equal reconstruc-

tion IoU across two models. Predictions from the Baseline and

3-Iteration models for the red datapoint are shown in the bottom

row. A 10-shot prior was used.

The previous discussion also suggests that improvements

on different categories should vary depending on how far

the class is from the set of base categories in terms of its

distribution of shapes. To see if this is true, we present

the per-category accuracies of the baseline, 3-iteration full-

prior, and 1-iteration 1-shot models in Table 5. We see that

both of the new models perform impressively on rifles and

vessels and neutrally to poorly on cabinets. Referring back

to the average shapes presented in Figure 3, we note that

vessels and rifles, the two categories that our models per-

form best on, are both very elongated. The only elongated

category in the training set is airplanes. Meanwhile, cabi-

nets have a simple blocky prior. We hypothesize that this

makes the prior less useful for learning, as such a basic

shape is very simple to extrapolate from an image.

5.4.2 Importance of the prior

A neccessary question to ask when implementing a prior for

a model is whether the observed performance stems from

model or the prior itself. One could hypothesize that the

improved results we see could be due to the model simply

regurgitating the input prior. To test this, we performed ex-

periments with a naive baseline that simply outputs the prior

without taking into account the image at all. In the far-right

column of Table 5, we show the average IoU for such a

baseline using a 1-shot prior. We see that, while the per-

formance of this naive guess is correlated with our model

in terms of its difference from baseline performance, it per-

forms significantly worse than both of our models. We also

tested the performance of the naive prior guess with up to

25 shot priors, never observing category-wise IoU greater

than 0.30. This shows that our model does provide valuable

inference, and it is the combination of the prior with this

inference that yields the performance.

At the other extreme of prior quality, we experimented

with using the target shape as the input prior, where the

1-iteration 1-shot model achieved an IoU of 0.64 on the

training categories and 0.41 on the novel categories This

might be because the network is combining the provided

prior with both the image information as well as general

shape priors it has learnt from other classes, this is indeed

intended behavior. Finally, we note that using different 1-

shot shapes on the same image-target pair results in a score

distribution with σ ≈ 0.05.

Performance With Inaccurate Priors An assumption of

our framework is categorical knowledge at runtime, allow-

ing the selection of a prior shape. As we have shown,

this assumption enables boosted performance on novel cat-

egories. In Figure 8 we perform experiments to observe

what happens when that assumption breaks down. We run

our model on the novel categories with priors drawn from

Category Baseline 3-Iteration 1-Iteration 1-Shot 1-Shot Guess

Benches 0.37 0.39 (5.4%) 0.37 (0.0%) 0.13 (-64%)

Cabinets 0.66 0.62 (-6.5%) 0.66 (0.0%) 0.29 (-56%)

Lamps 0.18 0.19 (5.6%) 0.19 (5.6%) 0.11 (-40%)

Sofas 0.50 0.51 (2.0%) 0.52 (4.0%) 0.33 (-35%)

Vessels 0.33 0.37 (12%) 0.38 (15%) 0.22 (-34%)

Rifles 0.12 0.16 (33%) 0.19 (58%) 0.27 (120%)

Mean 0.36 0.37 0.39 0.23

Table 5. Per-category transfer performances. A 1-shot prior was

used for both models. The far-right column is the result of naively

guessing a random shape from the training set. The accuracy of

our models are correlated with the accuracy of the 1-shot guess,

yet avoid large errors when 1-shot guesses are very poor.
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Figure 8. Performance across iterations with the model being fed

a 1-shot prior from a random training/testing category. The green

line is the transfer baseline of 0.36. We see that the models never

achieve baseline performance, confirming the neccessity of cate-

gorical knowledge when implementing the presented framework.

other randomly selected categories.

We see that the models never achieve baseline perfor-

mance, implying that categorical information is necessary

to obtain the improvement that we have seen. This might

be construed as a disadvantage of the presented framework,

but it is also evidence that the model has disentangled the

category-specific and the category-agnostic aspects of the

problem and is relying more on the input prior to provide

the category-specific information. In practice, given the

advanced state of image classification, knowledge of the

category at test time is a valid assumption. This assump-

tion is in fact common in prior single-view reconstruction

work [33, 7].

It is interesting to note that the performance of the 1-

iteration model trained with 1-shot priors suffers substan-

tially less than other models on the transfer task when given

an incorrect prior. We hypothesize that, given the high vari-

ability of 1-shot input priors, this model has come to rely

less on the prior than others.

5.4.3 Application to In-the-Wild Images

We finetune the 1-shot 1-iteration model on PASCAL 3D+

[29]. We train on all 13 ShapeNet categories and 7 of the

10 non-deformable PASCAL 3D+ categories. We hold out

bicycles, motorcycles and trains as these categories are

not present in the ShapeNet dataset. As seen in Table6 our

model far outperforms the image-only architecture on both

the training and testing categories. These results should

be considered cautiously due to extremely low variation of

PASCAL models, as noted in the original PASCAL 3D+ pa-

per [29]. As observed by Tatarchenko et al., retrieval tech-

niques work extremely well on PASCAL, explaining why a

Model Training Categories (Validation) Novel Categories

Image-Only 0.40 0.26

1-Shot 1-Iteration 0.50 0.37

Table 6. Results of finetuning a ShapeNet-trained model on the

common categories of PASCAL3D+.

shape prior is so useful[18].

6. Future Work

The proposed idea of separating out the category-specific

prior as an additional input can apply to other single-view

reconstruction approaches using other representations of

shape too. The prior can be derived from other sources, such

as CAD models or geometry-based reasoning. The results

of Tatarchenko et al. also suggest that a simple category-

based approach can yield state-of-the-art results on recon-

struction, implying a possible crossover between our tech-

nique and theirs. This viewpoint of separating out category-

specific priors and learnt category-agnostic refinement can

also be applied to many computer vision regression prob-

lems (e.g. segmentation or shape completion) that have had

relatively little few-shot transfer work done on them.

7. Conclusion

In conclusion, we presented a new framework for 3D

reconstruction that significantly improves generalization to

new classes with limited training data, and offers multi-view

reconstruction for free. Our models take two inputs: the

typical image of the object to reconstruct along with a shape

prior. Few-shot knowledge consisting of shape models can

be used by inputting the average in as the prior. Such a

model can then make iterative predictions by using its own

output as a prior. Our model requires no novel class images

and no retraining. We identified that our model offers far

less extremely poor reconstructions than the baseline. We

found that this framework peformed well on the multi-view

reconstruction task. This finding in particular is surprising

given that this model is never trained on multiview. The

results here show that explicit categorical information and

priors can be a powerful tool in 3D reconstruction.
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