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Abstract

Crowd counting is an important topic in computer vision

due to its practical usage in surveillance systems. The typi-

cal design of crowd counting algorithms is divided into two

steps. First, the ground-truth density maps of crowd im-

ages are generated from the ground-truth dot maps (density

map generation), e.g., by convolving with a Gaussian ker-

nel. Second, deep learning models are designed to predict a

density map from an input image (density map estimation).

Most research efforts have concentrated on the density map

estimation problem, while the problem of density map gen-

eration has not been adequately explored. In particular, the

density map could be considered as an intermediate rep-

resentation used to train a crowd counting network. In the

sense of end-to-end training, the hand-crafted methods used

for generating the density maps may not be optimal for the

particular network or dataset used. To address this issue,

we first show the impact of different density maps and that

better ground-truth density maps can be obtained by refin-

ing the existing ones using a learned refinement network,

which is jointly trained with the counter. Then, we propose

an adaptive density map generator, which takes the annota-

tion dot map as input, and learns a density map represen-

tation for a counter. The counter and generator are trained

jointly within an end-to-end framework. The experiment re-

sults on popular counting datasets confirm the effectiveness

of the proposed learnable density map representations.

1. Introduction

Crowd counting is important task for understanding

crowded scenes, and it can be used to prevent accidents

caused by overcrowding and to estimate the crowd flows in

stations. Given an image as input, the aim of crowd count-

ing is to estimate the number of people in the image. Crowd

counting is a difficult task since the scale of people varies

dramatically in images, and the congested crowds frequent-

ly contains partial occlusions among people. One of the

traditional methods is to detect each individual in the im-

age, which does not work well in highly congested scenes
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Figure 1. Counting by crowd density maps: the ground-truth

crowd density map is generated from the ground-truth dot annota-

tions of people. Given an input image, a model is trained to predict

the density map, which is summed to obtain the predicted count.

Current approaches treat the density map generation as a fixed in-

termediate representation, which is based on hand-crafted designs.

In this paper, we propose to jointly learn the density estimator and

the density generator.

[17, 39]. Another method is to directly estimate the final

count based on hand-crafted features, which can only be

applied to simple scenarios [4, 6].

Current state-of-the-art methods use crowd density maps

to achieve superior counting performance [8, 7, 36]. Densi-

ty maps are an intermediate representation, where the sum

over any region in the density map indicates the number

of people in the region. First, the density maps are gen-

erated from the dot annotations, where each dot indicates

a person’s location. Second, given the input image, algo-

rithms are designed to predict the density map (see Figure

1), which is then summed to obtain the count. In this pa-

per, we call these two steps density map generation and

density map estimation, respectively. Most works focus on

density map estimation and ignore density map generation.

Many different deep networks have been proposed to im-

prove density map estimation, e.g., using different kernel

sizes [42] or image pyramids [14] to handle scale variation-

s, or using context [33] or prior information [23] to han-

dle occlusions. Although density map estimation is well-

studied, the generation of density maps is often overlooked

and uses handcrafted designs without adequate investiga-

tion and analysis. The simplest approach to obtain a density

map is to convolve the annotation dot map with a Gaussian

with fixed width [18], i.e., place a Gaussian on each dot.

Other works scale the Gaussian bandwidth according to the

scene perspective [41], or adaptively use the local conges-

tion level (or distance to nearest neighbors) [42]. [41] uses

human-shaped kernels, composed of two Gaussians, but is

less popular since the body of the person is often occluded
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in crowd images.

In practice, the method for generating the density maps

is crucial for crowd counting. Improperly generated density

maps may dramatically hurt the counting performance – the

choice the kernel bandwidth or kernel shape used to gen-

erate the density map is often dataset dependent, and such

choices often do not work across different datasets. In the

era of deep learning, we may consider current density map-

s as a hand-crafted intermediate representation, which is

used as a target for training deep networks to count. From

the standpoint of end-to-end training, these hand-designed

intermediate representations may not be optimal for the par-

ticular network architecture and particular dataset.

In this paper, we take the first step towards learnable den-

sity map representations, which are jointly trained with the

density map estimator (counter). We propose two method-

s: 1) density map refinement, which is trained to improve

existing traditional density maps; 2) adaptive density map

generation, which learns a novel density map representa-

tion using the annotation dot map as input. Both methods

are jointly trained with the density map estimator, yielding

superior performance compared with using traditional den-

sity maps. The contributions of this paper are four-fold:

1. We study the impact of density maps on differen-

t datasets, and confirm through experiments that proper

selection of density maps is essential for counting.

2. To improve manually-generated density maps, we pro-

pose to refine traditional density maps and achieve su-

perior performance, which confirms that the quality of

density maps can be improved.

3. We propose an adaptive density map generator, which

takes the dot map as input, and produces a learnable

density map representation. The density map generator

and density map estimator (counter) are jointly trained.

4. With the proposed framework, we achieve state-of-the-

art performance on ShanghaiTech A, ShanghaiTech B

and UCF-QNRF without modifying the structure of

the counter.

2. Related Work

Crowd counting algorithms can be divide into two cat-

egories: global regression and density estimation. Global

regression directly estimates the final count from images,

while density estimation first predicts a density map, which

is then summed to obtain the final count. Since more spa-

tial information is utilized in density estimation, the perfor-

mance is usually better than global regression.

Most traditional counting algorithms are based on de-

tection and global regression. [19] used head and shoulder

detection for counting, but these detection-based algorithms

will fail when people are highly occluded. Therefore, glob-

al regression algorithms were proposed to estimate crowd

number without detection. Given an image as input, low-

level features are extracted, from which a regression algo-

rithm predicts the number of people [5, 4]. To improve the

performance, multiple features are used in [12]. However,

the performance of global counting is limited due to scale

variation and occlusion in crowd images.

To better use spatial information of the people, [18] pro-

posed crowd counting as a density map estimation prob-

lem, where the density map is an intermediate representa-

tion generated by the “dot” annotations of the people. To

deal with scale variations, [42] proposed a multi-column

convolutional network (MCNN) with different kernel sizes

in each column. Instead of extracting multi-scale features,

switch-CNN [29] chooses the column with the proper re-

ceptive field for the input image. Similarly, [1] proposed a

tree-structured CNN to handle scale variations. SANet [3]

is proposed to extract multi-scale features in all convolu-

tional layers. Besides network structure, image pyramids

are used in [14] to overcome scale variations.

Refinement-based approaches take an initial density map

estimate and iteratively refine it to improve its accuracy.

[26] propose a two-stage method, where the second stage

estimates a high resolution density map from the low reso-

lution density map predicted in the first stage, while [28]

proposes a feedback mechanism to refine the prediction.

Besides image-based refinement, a region-wise refinemen-

t algorithm is proposed in [22]. Related to refinemen-

t approaches are ensemble-based approaches, such as [35],

which uses a CNN boosting algorithm, or [31], which uses

multiple negative correlated regressors.

Finally, contextual information is also useful for crowd

counting; [33] propose a contextual pyramid CNN (CP-

CNN), while [40] uses temporal context. To exploit un-

labelled data, [23] propose a ranking-based algorithm. To

solve global counting, density estimation and localization

simultaneously, the composition loss is proposed in [13].

Other works have also shown that crowd density maps are

also useful for people detection and tracking in crowds

[24, 15, 27]. A further survey of related work is in [34].

Although density map estimation has been researched

for many years, density map generation has been largely

overlooked. The current methods convolve the ground-truth

dot annotation map with a Gaussian kernel with either fixed

bandwidth [18], variable bandwidth based on the scene per-

spective [41], or adaptive bandwidth based on the crowded-

ness [42]. [13] composes multiple loss functions together,

each using a ground-truth density map with a different fixed

bandwidth. However, these bandwidth parameters are se-

lected manually. In contrast to these hand-crafted method-

s, we propose a learnable density map generator, which is

jointly trained with the counting algorithm.
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Figure 2. Density map refinement framework. The Counter is a

network that estimates the density map of an input image. The Re-

finer is another network that takes a density map as input and pro-

duces a better density map as the ground truth to train the Counter.

Both the Counter and Refiner are trained jointly.

3. Density Map Refinement

A traditional density map Y is generated by convolving

the ground-truth dot map D, where each position with a

person is marked as 1, with a Gaussian kernel,

Y = D ∗ kσ, (1)

where kσ is a 2D Gaussian kernel with bandwidth σ, and ∗
is 2D convolution. This is equivalent to placing a Gaussian

on each dot annotation to obtain the density map

Y (p) =
∑

{p′|D(p′)=1}

N (p|p′, σ2I), (2)

where p, p′ are pixel locations in the image, and N (p|µ,Σ)
is a multivariate Gaussian with mean µ and covariance Σ.

For adaptive kernels, the kernel bandwidth changes with lo-

cation based on the crowdedness [42] or scene perspetive

[41]. The counter is then trained using images and the cor-

responding density maps as the ground truth.

To confirm that traditional density maps can be improved

to produce better counting performance, we first propose a

density map refinement framework that jointly refines the

density map and trains a counter from the refined density

map (see Figure 2). Formally, let (Xi, Yi) be the i-th im-

age and traditional density map pair. We denote f(Xi) as

the predicted density map for image Xi, and g(Yi) as the

refined density map for Yi. The counter f and refiner g are

jointly trained using a combined loss,

L =

counting loss
︷ ︸︸ ︷
∑N

i=1
‖f(Xi)− g(Yi)‖

2 +α‖g(Yi)− Yi‖
2

︸ ︷︷ ︸

refinement loss

, (3)

where N is the number of training pairs. The first term in

(3) trains the counter to predict the refined density map, and

vice versa, trains the refiner to produce density maps that

favor the Counter’s architecture. The second term in (3)

Algorithm 1 Training using density map refinement

1: Input: Set of image and density map pairs

{(Xi, Yi)}
N
i=1.

2: Initialize parameters of counter f and refiner g.

3: for epoch = {1, . . . , Ne} do

4: for i = {1, . . . , N} do

5: Estimate density map f(Xi) by the counter.

6: Produce refined ground truth g(Yi) by the refiner.

7: Update counter f using the counting loss in (3).

8: Update refiner g using the refinement loss in (3).

9: end for

10: end for

11: Output: a counter and a refiner.

Table 1. The architectures of (top) the refiner and (bottom) the gen-

erator. C(K,S) is a convolution layer with K features and kernel

size S. P is average pooling that decreases the spatial size by half.

Each conv layer is followed by a ReLU, except the last layer.

Subnetwork Architecture

Refiner C(512,3)-C(512,3)-C(256,3)-C(128,3)-C(64,3)-C(1,3)

Self-attention C(128,3)-C(32,3)-C(5,3)-Softmax

Fusion C(128, 3)-P-C(32, 3)-P-C(8, 3)-P-C(1,3)-PReLU

constrains the refined density map to be close to the original

density map Yi, so that the global count and spatial distri-

bution of the crowd is preserved. The joint training is sum-

marized in Algorithm 1. Note that the refiner is only needed

for training, i.e., to find the optimal intermediate represen-

tation – at inference time, only the counter is used to predict

the density map from a novel image. Table 1 shows the ar-

chitecture of the refiner. We use existing methods, such as

MCNN [42], FCN-7c [14], SFCN [37] and CSRNet [20],

for the counting network.

4. Adaptive Density Map Generation

One disadvantage of the density map refiner proposed in

Section 3 is it still depends on a hand-crafted density map

as an input. Our experiments show that, although refine-

ment can improve the accuracy, it still highly depends on

the original density maps used. Therefore, in this section,

we propose an adaptive density map generation framework,

which directly generates the ground-truth density map from

the ground-truth dot annotations. With this method, tradi-

tional density maps are not required and the whole system

can be trained end-to-end without any intermediate steps.

The architecture of the proposed framework is shown in

Fig. 3. Given a dot map as the input, the density map gener-

ator adaptively generate a density map based on the people

distribution of the image by a self-attention fusion network.

The learned density map is used to supervise the counter,

and both the generator and counter are trained jointly.
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Figure 3. Density map generation framework. The input dot map is convolved with different Gaussian kernels, yielding a set of blurred

density maps. The blurred density maps are adaptively masked using a self-attention module, and then passed through a fusion module to

produce the final density map. The generated density map serves as the ground truth for training the density map estimator (counter).

4.1. Generation via Selfattention and Fusion

Given the dot map as input, the generation of the den-

sity map is divided into 3 steps: Gaussian blurring, self-

attention, and fusion. First, the input dot map Di is con-

volved with k Gaussian kernels with different bandwidths,

resulting in a stack of k blurred density maps Bi = {Bj
i }j ,

B
j
i = Di ∗ kσj

, (4)

which is equivalent to a convolutional layer with a differ-

ent Gaussian kernel for each filter channel. Second, a self-

attention module uses the blurred maps Bi as input to effec-

tively select the best kernel size for each region, In particu-

lar, the attention map is

Ai = Fa(Bi), (5)

where Fa is a small convolutional network (see Table 1),

and each channel of Ai is an attention map for the corre-

sponding blurred density map. Third, the blurred density

maps are adaptively fused based on the attention maps,

Mi = Ff (Ai ⊗Bi), (6)

where ⊗ is the pixel-wise multiplication, Mi is the final

learned density map that is used to supervise the counter,

and Ff is the fusion network (see Table 1).

4.2. Loss Function

Given a training set of images and corresponding

ground-truth dot maps {(Xi, Di)}
N
i=1, the density map gen-

erator and counter are jointly trained using the loss function,

L =

counting loss
︷ ︸︸ ︷
∑N

i=1
‖M̂i −Mi‖

2 +β(1TMi − 1TDi)
2

︸ ︷︷ ︸

refinement loss

(7)

where M̂i is the density map predicted by the counter, Mi is

the generated density map, and 1TM is the sum over entries

in M , i.e. the count from M . Similar to the refinement

framework, the first term in (7) trains the counter to predict

the generated density map, while also training the generator

to produce density maps that the counter can predict well.

The 2nd term in (7) encourages that the generated density

maps have counts that are close to the ground-truth count.

In practice, we notice that the spatial information of the

density map is well preserved when fixing the Gaussian k-

ernels in the first stage of the generator (see experiments in

Section 5.3.2). Thus we only use the global counting er-

ror to constrain the generated density maps. Algorithm 2

summarizes the training procedure for the counter and gen-

erator. The generator and dot maps are only used to train

the counter. At test time, the counter predicts the density

map from the input image.

5. Experiments

We present experiments using our proposed density map

refinement and density map generator.

5.1. Experiment setup

We conduct experiments on four popular datasets, in-

cluding ShanghaiTech (ShTech) A and B [42], WorldEx-

po [41], and UCF-QNRF [13]. ShanghaiTech A contain-

s 482 crowd images with crowd numbers varying from 33

to 3139, and ShanghaiTech B contains 716 high-resolution

images with crowd numbers from 9 to 578. WorldExpo

evaluates the cross-scene crowd counting performance s-

ince the training images and testing images are from dif-

ferent scenes. UCF-QNRF is the most challenging dataset

and contains 1535 high resolution images with very large
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Algorithm 2 Training using density map generation

1: Input: Set of image and dot map pairs {(Xi, Di)}
N
i=1.

2: Initialize parameters of counter and refiner.

3: for epoch = {1, . . . , Ne} do

4: for i = {1, . . . , N} do

5: Estimate density map M̂i by the counter.

6: Produce ground truth Mi by the generator.

7: Update the counter using the counting loss in (7).

8: {update generator every Ng epochs.}
9: if mod (epoch,Ng) = 0 then

10: Update parameters of generator using (7).

11: end if

12: end for

13: end for

14: Output: a counter and a generator.

Table 2. Experimental results for density map refinement, evaluat-

ed using MAE. “w/o” means the baseline counter, and “w/ refine”

means using the proposed density map refinement. The original

density maps use “fixed” or “adaptive” Gaussian kernels.

ShTech A ShTech B

Counter Density Map w/o w/ refine w/o w/ refine

MCNN
Adaptive 103.3 96.7 17.9 18.0

Fixed 95.4 102.3 17.3 17.3

FCN
Adaptive 95.4 92.8 16.0 16.7

Fixed 90.7 89.9 18.8 15.2

SFCN
Adaptive 73.1 70.5 9.7 9.0

Fixed 70.8 67.8 9.9 9.3

CSRNet
Adaptive 66.4 64.2 10.6 9.2

Fixed 67.8 66.9 12.1 11.1

crowds. Methods are evaluated using mean absolute error

(MAE) and root mean squared error (RMSE):

MAE = 1
N

∑

i

|ŷi − yi|, RMSE =

√

1
N

∑

i

‖ŷi − yi‖2,

where N is the number of samples and ŷi, yi are the pre-

dicted and ground truth counts.

Our baseline counters include CSRNet [20], SFCN [37],

MCNN [42], and FCN [14]. Their training procedures fol-

low the original papers: SGD is used to train CSRNet with

learning rate set to 5e-7; The Adam optimizer [16] is used

to train SFCN with learning rate 1e-5; FCN and MCNN are

trained with Adam with learning rate of 1e-5. For the re-

finement network, Adam optimizer is used for training and

the learning rate is set to 1e-5. Different input density maps

are generated following [20]. The fixed bandwidth is set to

16 and the hyper-parameter α is set to 1. For the generation

network, Adam optimizer is used for training with learning

rate of 1e-7 and β = 1.

5.2. The Importance of Proper Density Maps

We first show that different density maps may produce

different performance when they serve as the ground truth

Table 3. Experimental results of density map generation (MAE).

σ is the bandwidth for the fixed kernel.

Counter Density Map ShTech A ShTech B

MCNN

Fixed kernel (σ=16) 95.4 18.7

Fixed kernel ( σ=4) 96.0 17.9

Adaptive kernel 103.3 17.9

Generator (ours) 93.5 17.7

FCN

Fixed kernel (σ=16) 90.7 18.8

Fixed kernel (σ=4) 88.9 13.8

Adaptive kernel 95.4 16.0

Generator (ours) 87.1 13.9

SFCN

Fixed kernel (σ=16) 70.8 9.9

Fixed kernel (σ=4) 70.8 10.6

Adaptive kernel 73.1 9.7

Generator (ours) 68.4 8.4

CSRNet

Fixed kernel (σ=16) 67.8 12.1

Fixed kernel (σ=4) 70.1 9.5

Adaptive kernel 66.4 10.6

Generator (ours) 64.7 8.1

for training a counter, and that these results can be improved

using density map refinement. Two types of density maps

are used: fixed kernel (bandwidth 16), and adaptive kernels

[20]. The experiments are performed on ShTech A and B.

The results are presented in Table 2. The effectiveness of

traditional density maps depends on the method and dataset

(see “w/o” columns in Table 2). For example, on ShTech A,

a fixed kernel is better for MCNN and FCN, but an adap-

tive kernel is better for CSRNet, while all most methods

(except MCNN) do better with adaptive kernels on ShTech

B. Looking at the results using refinement (“w/” columns),

the counting performance of CSRNet and SFCN are always

boosted when jointly training the density map refinemen-

t and counting tasks. However, the performance gain for

MCNN is limited, compared with CSRNet, which suggests

that the proposed density refinement framework requires a

strong baseline counter. The strong counter’s output is more

accurate, and thus the refined density map does not need to

be modified significantly, thus preserving the accuracy of

the original density maps.

These results suggest that there is room to improve the

manually-designed density maps. Unfortunately, the selec-

tion of traditional density maps depends on the dataset and

counting network, which requires manual effort to tune. For

this reason, we have proposed adaptive density map genera-

tion to learn to generate effective density maps directly from

the annotation dot maps.

5.3. Density Map Generation

We next conduct experiments on the effectiveness of our

proposed generation framework, which is jointly trained

with a counting network. Table 3 compares the counting

performance when using traditional density maps and our

generated density maps. Almost all counters trained with

the proposed generation framework achieve better perfor-
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mance than both types of traditional density maps. The ex-

ception is FCN on ShTech B, where our generated density

maps performs similarly to fixed kernels with bandwidth

4. Note that the generation framework works better on

stronger baselines (CSRNet/SFCN) than weaker ones (M-

CNN/FCN). A possible reason is that a weak baseline in-

troduces more noise when training the generator.

We visualize the generated density maps for two typical

images in Figure 4. The traditional density maps using a

fixed kernel is too smooth, while those produced by adap-

tive kernels are too sharp. The density maps from the pro-

posed generation framework can adapt to the people distri-

bution of the image, thus are more effective for the training

of counter. We also visualize the difference between gen-

erated density maps trained with different counters in Fig-

ure 5. Specifically, we show the difference maps between

density maps generated by CSRNet and the other network-

s. Since the receptive field of CSRNet is larger than FCN

and MCNN, the generated density maps for CSRNet are

more spread out (smoother) than those for FCN/MCNN, as

shown in Figs. 5 (a) and (b). SFCN and CSRNet have sim-

ilar receptive field size, so the smoothness of the generated

density maps are also similar. Since SFCN utilizes a spatial

CNN, its generated density maps are spatially moved from

that of CSRNet, see Figure 5 (c). The visualization shows

that the proposed framework can learn density maps that

adapt to different architectures.

fixed adaptive refined (ours) generated (ours)

Figure 4. Density maps using traditional methods (fixed, adaptive)

and learned methods (refined, generated).

(a) CSRNet � FCN (b) CSRNet � MCNN (c) CSRNet � SFCN

Figure 5. Comparison of generated density maps trained using C-

SRNet versus other counters (FCN, MCNN, SFCN). The differ-

ence map between the density map generated for CSRNet and for

other methods is shown for 2 examples.

Table 4. Ablation study on ShanghaiTech A (MAE) for the densi-

ty map generator using different loss functions and fixed/learned

initial blurring kernels.

global loss local loss hard norm

(a) fixed initial kernels 64.7 68.8 112.8

(b) learned initial kernels 74.7 73.0 101.6

fixed

local spatial loss

global loss

local spatial loss

global loss

fixed

Figure 6. (left) fixed initial kernels, and trained kernels using local

and global loss; (right) corresponding density maps.

5.3.1 Ablation Study: Loss Function

We run an ablation study on the choice of loss function for

training the density map generator. We replace the glob-

al count loss in (7) with a local spatial loss, which is the

average counting error over image patches. Instead of the

counting loss, we also consider hard normalization of the

generated density map so that it sums to the ground-truth

count. The results of the ablation study are presented in Ta-

ble 4 (a) – using the global loss term outperforms the spatial

loss and hard normalization.

5.3.2 Ablation Study: Initial Blurring Kernels

During the training of generator, we fix the initial Gaussian

kernels used to generate the set of blurred density maps. In

this ablation study, we consider making these initial kernel-

s learnable. Table 4 (b) presents the results when the ini-

tial kernels are learned using different loss functions. The

counter/generator trained with fixed initial kernels have bet-

ter counting performance than those with learnable initial

kernels.

Figure 6 visualizes the fixed and learned initial kernels.

The learnable kernels dramatically change compared to the

initial Gaussian kernels. When using the spatial loss, the

learned kernels become “plusses”, which produce minimal

leakage when an annotation is just outside the boundary of

a spatial region. When using the global loss, the kernels

expand to fill the whole convolution filter, which obfuscates

spatial information in the generated density map.

5.3.3 Ablation Study: Self-attention Fusion

To confirm the effectiveness of the self-attention module

(self-att), we compare it with three variations: 1) direct fu-

sion without the attention module; 2) image-based attention

(image-att), which uses the input image to generate atten-

tion; 3) naive fusion which sum the blurred maps directly.
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